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Abstract

Redundant space frame dynamics are modelled through the structural eigenproblem, which is formulated
to account for the geometric stiffness due to self-equilibrating membrane forces. The resulting
mathematical eigenvalues and eigenvectors, respectively indicative of natural frequencies and modes of
oscillation, are then assumed to be continuous functions of a scalar factor upon a normalised set of forces
in equilibrium. Newton’s method—or sensitivity analysis—provides a means for minimising the difference
between mathematical and physically observed eigenvalues, whereupon the axial forces are inferred from
the model. Issues of convergence and root uniqueness are anticipated. Eigenvalue coalescence, in which
eigenvalues transitorily coalesce to permute their arbitrarily numerical ordering, is seen to define non-
smooth eigenvalue functions and hence encumber Newton’s method; mode tracing strategies to overcome
this are discussed. The existence of various degrees of eigenvalue degeneracy, owing to frame cyclic
symmetry or otherwise, is anticipated in terms of the influence upon Newton’s method. If the degree of
frame static redundancy is greater than one and there exist a number of linearly independent force
distributions, then the required force determination is a multidimensional Newton method. Problems
encountered in these manifold dimensions, including those arising from frame spatial periodicity and the
adversity of Newton’s method, are overcome. Emphasis is placed upon minimising the dimensionality of
Newton’s method through enforcement of equilibrium constraints. Illustrative numerical simulations are
given and some applications of the method are proposed.
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Nomenclature

d degree of eigenvalue degeneracy
f number of space frame members, mem-

ber force
f member force vector
G geometric stiffness matrix
Ĝ geometric stiffness matrix shell
I identity matrix
J Jacobian of eigenvalue derivatives
k iteration number
K constant stiffness matrix
L equilibrium matrix
L̂ reduced, full rank equilibrium

matrix
m number of linear equations
w modal mass vector
M mass matrix
n dimensionality of Newton’s method
N model order
p force parameter, factor upon f

p n-vector of force parameters
Dp, Dp Newton excursion
r modal designation
R Euclidean space
U matrix of left singular vectors
V matrix of right singular vectors
C transformation operator orthogonalis-

ing eigenvectors
C transformation operator aligning eigen-

vector bases
Y Boolean permutation operator upon

eigenpairs

k number of linearly independent force
distributions

l root-standardised eigenvalue
k vector of eigenvalues l
l eigenvalue
k vector of eigenvalues l
K diagonal matrix of degenerate eigenva-

lues of order d

s singular value
R diagonal matrix of singular value reci-

procals
f eigenvector
U matrix of eigenvectors
o natural frequency

Superscripts, subscripts

+ Moore–Penrose matrix pseudoinverse
* quasi-root designation
i vector entry designation, matrix row

designation
j matrix column designation
prm ambiguous root exactly satisfying ei-

genvalue constraints
R root designation
T matrix transpose

Vector and matrix operations

j j modulus
k k2 Euclidean vector norm
tr matrix trace
- set permutation
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1. Introduction

The dynamic response of axially loaded bars has long been understood. Lord Rayleigh [1], as
early as 1877, derived the equations governing the longitudinal, torsional and lateral free
vibrations of bars. Longitudinal and torsional vibrations are in nature simpler than lateral
vibrations, being governed by the one-dimensional wave equation; lateral vibrations may be
considered through the balance of potential and kinetic elemental energies. Rayleigh’s work went
on to include the effects of longitudinal tension in the equations of motion, most significantly the
raising of natural frequencies. More comprehensive accounts of the effects of axial load on beam
dynamics can be found in more recent papers: Shaker [2], Bokaian [3,4] and Liu et al. [5]; Stephen
[6] presents corresponding upper and lower bound approximations. These, extending the work of
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Rayleigh [1], include the effects of compressive as well as tensile force. The relationship
between the fundamental natural frequency and the Euler buckling load is made apparent
in that progressive compression leads to the fundamental dynamic and Euler buckling
modes coalescing, whereupon the former vanishes. Galef [7] studies the vibrations of
compressed beams and develops a simple formula relating the compressed beam frequency to
the magnitude of compression, each, respectively, normalised to the unloaded frequency and
Euler buckling load. Virgin and Plaut [8] investigate the effect of axial load on the forced
vibrations of beams.
While the case of an isolated bar or beam is easily appreciable, the effects on the

global dynamics of collective, axially loaded members in a framework are not intuitive.
Howson and Williams [9] investigate the frequencies of an H-frame comprising Timoshenko
members, under axial load, and find near-parabolic frequency–load relationships. Alpay
and Utku [10] develop an analysis tool through the finite-element method to study the dynamic
response of various systems under the influence of pre-stress. Xiaocheng [11] investigates
an approach for the analysis of the random response of pre-stressed structures, where pre-stress
can arise from static and thermal loads; there is a further interaction with dynamic load.
Mead [12] gives an extensive study of the effects of self-equilibrating forces on the frequencies
and mode shapes of two specific plane frames: a pair of parallel beams and a six-member cross-
braced square. The axial force is taken far beyond the values required to buckle the first frame
member in its fundamental Euler mode. What is immediately apparent is that the fundamental
frequency of a frame, much like that of an isolated member, vanishes upon buckling of the most
susceptible member. The two vanishing points of the fundamental frequency, corresponding to
the respective buckling loads of oppositely loaded frame members, cause there to be a point of
stationarity of the frequency somewhere between. This serves to show that the frame fundamental
frequencies are global systems coupling the analogous, single member, linear or quasi-linear
eigenvalue–load relationship systems. An earlier work by Przybylski et al. [13] investigates the
aforementioned parallel beam configuration, experimentally and with the perturbation method
formulated on Hamilton’s principle, and, while only concentrating on a narrow range of axial
force, is in places supportive of the findings of Mead [12]. Amongst other things, the additional
effect of external axial load is investigated. Lieven and Greening [14] study experimentally the
effect of pre-stress on the modal behaviour of a six-member plane frame, in nature that
investigated by Mead [12].
The effects of pre-stress on a narrow frequency range of a cyclic, indeterminate frame

are investigated by Holnicki-Szulc and Haftka [15] through the dynamic eigenproblem. Their
aim is to control vibration through a derivate-based optimisation scheme, not by
displacing frequencies from a specific range—as it is stated that it is unlikely that these can
be distanced enough in the spectrum so that their effects become negligible—but to manipulate
the mode shapes by pre-stressing in order to mitigate amplitudes in specified regions. It is felt
that the actuators that pre-exist in adaptive structures could be utilised for this endeavour.
Ultimately the desire is to coincide nodes with critical regions, but the authors appreciate that
this is not possible to achieve with a considerable number of modes. Baycan et al. [16] set forth
the theory of pre-stressing to control the frequencies of frameworks. If such works are thought
of as forward problems in the sense of force prescription for dynamic-based requirements,
then the work presented in this paper is the inverse problem of force determination with
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dynamic constraints, that is to say the dynamic characteristics of the physical framework
in question.
The determination of axial force in single struts via inference from observed natural frequencies

has been outlined by Stephens [17] and, exacting this, Lurie [18], who also sought to determine the
degree of end fixity. Sundararajan [19] has also contributed by proposing a simple secant method
of approximating the fundamental frequency of an axially loaded beam, or other simple structure,
by using a reference structure of the same stiffness distribution. Such means of force identification
are appealing in that they are passive and effective, but they do not analogise in an obvious way to
assemblies of members in frameworks.
With much work done in the field of evaluating eigenpair derivatives, gradient-based search

algorithms are available for the task of system identification through the dynamic eigenproblem
and Newton’s method. That is to say, given an eigenproblem dependent upon a parameter, the
root parameter value—that of the physical structure—might be converged upon iteratively from
some arbitrary parameter value nominated for the eigenproblem. Newton’s method is a powerful
gradient method in which the function value and derivative are used to make an affine model of
the function to evaluate an excursion to the proceeding iterate, hopefully progressing to the
problem root. Presently, the functions of force are chosen to be the eigenvalues or natural
frequencies. The study of eigenpair derivatives is vast in the literature, but those works of present
interest owe to Wittrick [20], Fox and Kapoor [21], Nelson [22], Ojalvo [23], Mills-Curran [24] and
Dailey [25]. Essentially, in the present paper, computation of eigenvalue derivatives is based on
the equation of Fox and Kapoor [21] and that of Ojalvo [23] is used to compute the eigenvector
derivatives where they are needed.
Identification of framework loading through Newton’s method has previously been

documented by Greening and Lieven [26], who employ sensitivity analysis to determine in turn
each of the six-member forces of their previous planar frame without consideration of an
equilibrium constraint. Present attention is turned to space frames—frames occupying space, in
opposition to plane frames, which are confined to a plane. In the axially loaded space frame
context, Newton’s method is presented with a number of difficulties. The phenomenon of
eigenvalue coalescence, in which eigenvalues transitorily coalesce and permute the arbitrary
ordering of eigenpairs, is seen to define non-smooth eigenvalue functions and hence encumber
Newton’s method. A number of mode-tracing strategies have been suggested to overcome this and
retain the physically pertinent, smooth eigenpair functions of force. These include the
computationally expensive perturbation expansions of the eigenproblem—as discussed by Eldred
et al. [27]—and those utilising the consistency of the eigenvectors across points of eigenvalue
coalescence, which include the works of Ting et al. [28], Gibson [29], Eldred et al. [30,31] and Kim
and Kim [32]. The non-smooth, numerically ordered eigenvalue functions will have many abrupt
changes in gradient sign, which increase the number of ambiguous roots, and therefore if
convergence is achieved at all with untraced modes the likelihood of discovering the true root is
greatly lessened. And so mode tracing is seen to be a necessary measure if correct convergence is
to ensue. Overcoming eigenvalue coalescence necessitates that not only the eigenvalues at the root,
that is to say those of the physical frame, be measured, but also the mode shapes, for it is these
that will form the reference by which all eigenvalue functions are traced.
Eigenvalue coalescence can be thought of as a special, limiting case of the general phenomenon

of eigenvalue loci veering, which is discussed by Leissa [33], Petyt and Fleischer [34], Kuttler and
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Sigilitto [35], Perkins and Mote [36], Pierre [37], Natsiavas [38] and Liu [39] amongst others. Here,
the eigenvalues do not intersect but their loci rapidly veer away from one another. The narrow
region in the vicinity of the veering, where two separate dynamic systems couple, displays abrupt
variations of the eigenvectors of the respective loci, making mode tracing problematic. A routine
to overcome this is suggested in a paper by Bahra and Greening [40] and is employed here where
appropriate; Ting et al. [28] also have suggestions. The routine in reference [40] augments the
assurance with which modes can be traced by forward and backward casting the eigenvector
freedoms, based on knowledge of their values and derivatives. This also serves to extend the
permissible parameter perturbation suggested by an iterative excursion that preserves eigenvector
consistency. Other considerations highlighted by Bahra and Greening [40] in the tracing of modes
in permanently degenerate eigensystems, as arise in the axial loading of cyclically symmetric space
frames, are noted.
If the degree of frame static redundancy is greater than one and there exist a number of linearly

independent force distributions, then the required numerical iteration is a multidimensional
Newton method. It is seen that the greater the dimensionality of the iteration, the more
problematic is the employment of Newton’s method. Emphasis is therefore placed on minimising
this dimensionality, and this is done through arguments based on satisfying equilibrium
constraints.
A fundamental aspect of the proposed method of force identification is that it utilises the

physics of space frames. Typically, strain gauges are used to monitor force. These require that
the forces are known at the instant of gauge application and so it is sensible to apply them when
the structure is in a zero load state. Problems would arise if the strain gauges were to delaminate
with the structure experiencing some degree of loading, as the datum to which to reset them would
be unknown. Provided that an accurate eigenproblem for a given space frame can be formulated,
force identification through minimising the difference between mathematical and physically
observed eigenvalues circumvents this problem.
2. Axial force dependency of frame dynamics

Upon the axial loading of an isolated member, all of its natural frequencies will experience a
mutual modification to their magnitudes. If the load is tensile, this modification will be an
increase; if compressive, a decrease, with progressive loading eventually leading to the vanishing
of the fundamental dynamic mode at static buckling, where the dynamic and static deflection
modes coalesce. Further, the frequency–load relationship is parabolic for a simply supported
beam, whose fundamental vibration and buckling modes are identical, and near-parabolic for
other support conditions (Fig. 1). Consequently, the eigenvalues, which by Eq. (3) are seen to
be directly proportional to the squares of the frequencies, are linear or quasi-linear functions of
axial force.
While the eigenvalues can exhibit significant variations with respect to load, for an isolated

member, the eigenvectors or mode shapes, notwithstanding amplitude, are stationary or quasi-
stationary. The modes shapes, as the frequencies, will be affected by the degree of end fixity of the
member—in terms of the degree of curvature. The classic results for the frequencies of an axially
loaded beam with various end fixity conditions are shown in Fig. 1. The fundamental frequencies
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Fig. 1. Frequency–force relationships for single, axially loaded, prismatic beams with various degrees of end fixity

(______ free–free; � .� .� fixed–fixed; ���� simple–simple); frequency and load, respectively, non-dimensionalised as

$ ¼ o ml4E�1I�1
� �1=2

and r ¼ pl2E�1I�1, where m, l, E, I, o and p are, respectively, mass per unit length, length,

Young’s modulus, second area moment, frequency and axial force (compression positive).
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and axial forces presented are, respectively, non-dimensionalised as

$ ¼ o ml4E�1I�1
� �1=2

and

r ¼ pl2E�1I�1,

where m, l, E, I, o and p are, respectively, mass per unit length, length, Young’s modulus, second
area moment, frequency and axial force. For detailed analysis of the dynamics of axially loaded
beams, the reader is referred to Shaker [2] and Bokaian [3,4].
In space frames, a number of members exist to form a global, coupled system, the response of

which is dependent upon the relative stiffnesses of the members and their connectivity at the
joints. Consequently, the eigenvalues of the global system will not be linear or quasi-linear
functions of some parameter indicative of the distribution of forces and neither will the
eigenvectors exhibit stationarity with respect to load. However, since the global system couples a
number of distinct, local systems, there exists an analogy between the dynamic–load relation-
ship of a framework and those relationships of its constituent members isolated, albeit a non-
intuitive one.
Many single-beam dynamic systems are connected in a framework so that their linear or quasi-

linear eigenvalue–force loci exhibit coupling. Indeed, the analogies that exist between the global
and local systems and similarities would become apparent if the respective loci were
superimposed: the intersection of the independent, single-beam loci would mark the focus for
the veering of the global, coupled system, the loci of which would be asymptotic to the
superimposed single-beam loci. Mead [12] notes that the beam subsystems to which a global,
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Fig. 2. Eigenvalue loci veering and eigenvalue coalescence: (1) weak veering; (2) intermediate veering; (3) strong veering
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fixed–jointed frame system is analogous have end fixity of some degree less that fixed–fixed, since
the beams of a space frame are not held in an absolute sense but only with respect to one another.
Veering can exist in varying degrees and Liu [39] proposes certain measures of this: the

eigenvector derivative and eigenvalue second derivative. Veering is seen to be more pronounced
the closer the eigenvalues. Also, Perkins and Mote [36] suggest measures for distinguishing a
veering from a coalescence. While veering can be an actual phenomenon of a mathematical model,
it can also be caused by model discretisation and unsuitable, (continuous) mathematical
modelling, as indicated by Leissa [33]. The effects of discretisation on veering, as well as geometric
symmetry and system non-adjointness are demonstrated by Perkins and Mote [36]. Since the
intricate global system of a space frame involves couplings of multiple subsystems, the veerings of
loci are not simple. Fig. 2 illustrates a typical series of veering events for a group of space frame
eigenvalue–force loci; it is possible for certain global systems to be completely uncoupled, and
these have their eigenvalue loci intersecting in a smooth coalescence.
3. Theoretical development

Of interest are the distributions of axial force that arise in redundant, free–free space frames,
induced by member strains. If the degree and nature of the static redundancy is such that a
number of linearly independent axial force distributions exist, then any state of frame equilibrium
can be described by a set of scalar force parameters, factors upon each of the superimposed
distributions known a priori. This automatically enforces an equilibrium constraint and minimises
the dimensionality of the Newton iteration. The approach of Greening and Lieven [26] required
that there be as many updating parameters as frame members and made no use of an equilibrium
constraint; since the number of linearly independent force distributions can never exceed the
number of frame members, such an approach is more computationally prohibitive than that here
suggested.
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Newton’s second law of motion for the displacement x(t) can be expressed for the free vibration
of an undamped, axially loaded frame in terms of its distributions of mass M, structural stiffness
K and geometric stiffness G as

M
q2xðtÞ
qt2
þ KxðtÞ þGxðtÞ ¼ 0. (1)

The geometric stiffness is a function of the distribution of axial forces as all of its entries are linear
functions of some scalar parameter characterising an entire force distribution. The geometric
stiffness matrix presently used accounts for the interaction of axial force and torsion and further
the geometric interaction of axial force and both bending in the principal directions and flexural
shear. The structural and geometric stiffness matrices are consistent in the sense that for every
first-order term in the former, there is a corresponding second-order term in the latter.
Assuming the frame is capable of oscillating in simple harmonic motion at any particular

frequency, substitution of the displacement solution into the differential equation (1) leads to the
general eigenproblem, which is dependent upon a parameter since the geometric stiffness is a
function of axial force

KþGð Þ � lrMð Þfr ¼ 0; r ¼ 1; 2; . . . ; N, (2)

where the rth natural frequency

or ¼

ffiffiffiffi
lr

p

2p
. (3)

The eigenvectors are indicative of the modes of vibration and are assumed to be mass-orthogonal
and further normalised such that

UTMU ¼ I, (4)

where U is the complete set of eigenvectors.
Presently, only free–free space frames are considered so that the total stiffness matrix (K+G) is

singular. Consequently, the characteristic polynomial of Eq. (2) has a zero at its origin of
multiplicity equal to the defect in the total stiffness matrix. That is to say, there are six zero
eigenvalues that relate to the six rigid body modes of a free–free structure; these are presently
ignored so that modal designation commences with the initial strain mode.

3.1. Eigenpair derivatives

The expression for the eigenvalue derivative is taken from Fox and Kapoor [21] and can be seen
to derive as follows. Differentiation of the eigenproblem (2) leads to

KþGð Þ � lrMð Þ
qfr

qp
¼Mfr

qlr

qp
�

q
qp

KþGð Þ � lr

q
qp

M

� �
fr, (5)

whence an expression for the eigenvalue derivative is obtained upon pre-multiplication by fT
r ,

noting the orthogonality conditions, as

qlr

qp
¼ fT

r

q
qp

KþGð Þ � lr

q
qp

M

� �
fr. (6)
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Further noting that both the mass and structural stiffness of a frame are stationary with respect to
the scalar force parameter p, and that all entries, zero or otherwise, of the geometric stiffness
matrix G are linear functions of p,

qli

qp
¼ fT

i Ĝfi, (7)

where Ĝ can be defined as

Ĝ ¼
G

p
; pa0. (8)

The matrix Ĝ can be thought of as the geometric stiffness shell, independent of, and therefore
stationary with respect to, p. It is apparent then from Eq. (7) that the evaluation of the eigenvalue
derivative involves only the evaluation of the eigenvectors associated with the eigenvalue, and is
therefore computationally inexpensive.
If a space frame exhibits cyclic symmetry, there will exist a permanent, two-fold degeneracy of

certain eigenvalues with respect to loading and the associated eigenvectors will not necessarily be
orthogonal to one another. Degeneracy is typically two-fold since all of the eigenvectors are
accountable as linear sums of the eigenvector pair associated with the degenerate eigenvalues.
Indeed, any linear combination of theses eigenvectors is itself a nullspace of Eq. (2). The
eigenvectors associated with degenerate eigenvalues will not necessarily be orthogonal to one
another and consequently, condition (4) will not hold. There will exist a pair of orthogonal
eigenvectors at degeneracy, and these may be found through a transformation matrix, which is the
set of eigenvectors of the auxiliary eigenproblem introduced by Ojalvo [23],

fr frþ1

� �T
Ĝ fr frþ1

� �� 	
C ¼ C

qK
qp

� �
. (9)

Orthogonality of the eigenvectors is then achieved through post-multiplication by C; mass-
orthonormality needs to be reinforced thereafter. In the case of transitory coalescence, this also
serves to orientate the eigenvectors at degeneracy to the adjacent eigenvectors immediately
following separation of the eigenvalues. With permanent degeneracy, such orientation is non-
sensical and so an orthogonal set of eigenvectors can also be found through Gram–Schmidt
orthogonalisation.
Nelson [22] gives an efficient direct method to compute the eigenvector derivatives; the direct

evaluation of the eigenvector derivative in the case of permanent eigenvalue degeneracy is given
by Ojalvo [23] in an extension to this work. Summaries are presented by Bahra and Greening [40],
along with further considerations for mode tracing in degenerate eigensystems. Essentially, this
latter point involves vector alignment of the arbitrarily orientated eigenvector bases. Alignment is
also important for differentiability of the eigenvectors to be defined, since it enforces continuity.
In the transitory case of degeneracy, where the eigenvalues become numerically very similar

near coalescence, the computation for the eigenvalue derivatives only fails if the eigenvectors of
Eq. (7) do not form an orthogonal set—it is assumed that an orthogonal set of vectors is always
enforceable through the transformation matrix C. Computation of the eigenvector derivatives at
eigenvalue coalescence, however, requires further treatment. In the present context, the event of
an iterate settling upon such a point is a highly improbable event, and so is not anticipated. For
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the sake of interest, work extending the method of evaluating eigenvector derivatives owing to
Nelson [22] has been done by Mills-Curran [24] and Dailey [25] to account for this coalescence;
Irwanto et al. [41] develop a method for cyclic structures which utilises the symmetry
characteristics to provide a more efficient alternative.

3.2. Newton’s method

Assuming that the geometric stiffness matrix is continuously dependent upon some force-
indicative scalar parameter p, a factor upon a distribution of axial forces, and that the eigenvalues
are likewise continuous functions of the extent of loading of a force distribution, Newton’s
fundamental theorem of calculus states that, for l : Rn ! Rm; m � n;

k pk þ Dp
� �

¼ k pk
� �
þ

Z pkþDp

pk
J pð Þdp. (10)

The multidimensional case is taken as general, in which J 2 Rm�n is the Jacobian of eigenvalue
derivatives and the order is governed by the n linearly independent force distributions existent in a
space frame and indicated by the n-tuple p; k is an m-tuple of eigenvalue functions such that

k pk
� �
¼ k pk

� �
� k pR
� �

, (11)

where k pk
� �

and k pR
� �

are, respectively, the eigenvalues at the current iterate and at the root. In a
first-order approximation of the indefinite integral in Eq. (10), an affine model n of the eigenvalue
functions can be expressed as

n pk þ Dp
� �

¼ k pk
� �
þ J pk
� �
� Dp. (12)

Solving for the root of the affine model leads to the evaluation of the Newton excursion

Dp ¼ �Jþ pk
� �
� k pk
� �

, (13)

Dp ¼ �VRUT � k pk
� �

, (14)

where R is the n�m diagonal matrix of the reciprocals of singular values and U and V are,
respectively, the left and right singular vector matrices of the Jacobian. The (k+1)th iterate is then

pkþ1 ¼ pk þ Dp. (15)

The inverse of the Jacobian is necessarily the Moore–Penrose pseudoinverse if the system of linear
equations (13) is overdetermined. Note that in that instance, the fixed points of the Newton
operator do not necessarily correspond to the zeros of k, but to a least-squares minimised
solution. Overdetermination is a key measure in defining root uniqueness by overcoming
ambiguity (repeated system roots).
Whether the root of the affine model approximates the root of the eigenvalue function depends

upon the suitability of the approximation—whether the current iterate is in the neighbourhood of
the sought root. A higher-order approximation may of course be made of the indefinite integral in
Eq. (10). Brandon [42,43] has explored the significance of making a second-order approximation
in the context of modal design and has duly compared such an iteration to Newton’s method; the
indications are that in certain instances, the second-order derivatives are beneficial to the rate of
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iteration. The computational effort of function modelling may, however be unjustified if an affine
modelling is adequate. Indeed, within the neighbourhood of a root, Newton’s method can exhibit
quotient quadratic convergence for a determined system of nonlinear equations and there are
means for upholding convergence away from the root.

3.3. Force identification

Let p* be the well-converged solution approximating the root pR to some specified tolerance—
root uniqueness is discussed ahead. Given the number of frame members f, let L 2 Rf�f be the
square equilibrium matrix established by a set of column vectors giving each member force in a
specific distribution; these distributions are arbitrarily chosen to have a maximum absolute frame
force of positive unity; present convention takes axial tension as a positive force. Owing to frame
topology and the number of static redundancies, L is likely to be rank deficient. This rank n

governs the order of the system of nonlinear equations and hence the number of linearly
independent force distributions that need to be sought. The form of L is readily known for simple
frames; for more complex frameworks, a static finite element analysis may be necessary and one is
suggested in Section 3.5. Once the rank of L is determined, the full rank matrix L̂ can be
established by deleting suitable columns of L. In cyclically symmetric frames, there will exist in L

sets of identical columns which require deleting. Upon convergence, the solution to the member
forces can be expressed as

f� ¼ L̂p�. (16)

The full rank of this force distribution matrix means that the solution to the force parameters

p� ¼ L̂
þ
f� (17)

is unique for a given state of frame equilibrium f*. Thus, a unique solution to the set of nonlinear
eigenvalues functions can be expected in the sense that there is not more than one p* leading to the
solution f* and it is this that must be sought.

3.4. Geometries exhibiting cyclic symmetry

If the matrix L is rank deficient and is not suitably reduced, then the Jacobian matrix of
eigenvalue derivatives will be singular and its inverse will not exist. The Moore–Penrose
pseudoinverse of the Jacobian in Eq. (14) could be taken with truncation of the zero singular
values of the Jacobian, that is to say forcing their reciprocals to zero in the matrix R, in order for
the Newton excursion to be determined. However, there would then exist an infinite number of
solutions to the force parameters, a cluster of which would exist within the pre-buckled region of
the iteration space. There would be no guarantee of discovering the true root, although
beneficially any of such a family of roots would lead to the correct solution to the member forces.
However, the dimensionality of the iteration space would be unnecessarily large, encumbering
iteration on more counts than just iterative adversity—see the end of the current subsection. It is
therefore advisable to always seek the full rank equilibrium matrix L̂.
It was earlier stated that the event of an iterate encountering a point of transitory eigenvalue

coalescence is not anticipated. In the case of symmetric space frames with multiple axes of spatial
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periodicity, the hypersurfaces representing the eigenvalue functions of the n force parameters p

have an n-dimensional focus of symmetry defined as the hyperplane where all of the parameters p
are equal. This owes to the spatial ambiguity; certain force distributions will be identical in every
sense but orientation and will therefore be interchangeable independent variables with respect to
the eigenvalue functions. At the symmetry focus, the eigenvalue functions are transitorily
coalesced. The coalescence is not simple and may involve combinations of distinct and two-fold
degenerate eigenvalue curves intersecting. The equation computing the Fréchet eigenvalue
derivative (7) then no longer holds. Gâteaux (directional) derivatives would be computable by
finite difference schemes, but would pose computational expense. If one of the eigenvalues at the
focus separates immediately away from it, then an orthogonal set of eigenvectors can be found
through Gram–Schmidt orthogonalisation taking the associated eigenvector as datum. However,
it is an easy matter and simpler to avoid this focus of symmetry by ensuring that the vector p0 at
which iteration commences has non-repeated values pi, i ¼ 1,y, n; the event of encountering it
subsequently is immensely improbable.
Further for frames possessing more than one axis of spatial periodicity—for example

those based on platonic solids—there exist roots to the set of nonlinear eigenvalue functions
which, although not leading to the correct solution to the member forces, give a solution
that describes the actual sought force distribution at some different spatial orientation. This
owes to the spatial ambiguity of the geometries of such frames in that they are identical
from multiple spatial aspects. There are then a number of roots pR

prm at which the eigenvalue
constraints are exactly satisfied. These ambiguous roots are informative in that they identify
the member forces but it is the designation of each member force that remains uncertain.
One would not be able to confidently ascribe the found member forces. This issue
would jeopardise the uniqueness of the solution pR were it not for mode tracing discerning
the eigenvalue functions upon which the unique solution lies. If mode tracing is not employed,
then the roots pR

prm and p
R, which conform to the same hyperplane—since they give rise to the

same frame eigenvalues and are symmetric through the symmetric focus—lie on the same
eigenvalue function as defined by numerical ordering, introducing ambiguity. The above is
diagrammatically described in Fig. 3, where for a frame whose eigenvalues are dependent upon
two force parameters, modes 1 and 4 (numerical designations) are chosen at the root for the
iteration. Since the starting surfaces are nominated according to the consistency with the root
eigenvectors, stagnation at the pR

prm roots is avoided and convergence to p
R ensues. Thus the

modes at the point at which iteration commences are 2 and 3 (numerical designations),
respectively, corresponding to those at the root. The physical interpretation of why mode tracing
overcomes this ambiguity is that, although the force distributions are spatially ambiguous, the
eigenvector–force distribution relationships are unique, and so the eigenvector-based mode
tracing is afforded a discernment of the unique root. The solution is well converged after three
iterations.
Note that if the dimensionality of the iteration space is unnecessarily large because of

incomplete reduction of the equilibrium matrix, as just discussed, then even mode tracing cannot
prevent convergence to an erroneous root. This is because of the potential of discovering a pR

prm

root, which, because of their abundance and locations on the eigenvalue hypersurfaces would not
allow the type of discernment depicted in Fig. 3. This is the main thrust for reducing the
dimensionality of Newton’s method.
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Fig. 3. Mode tracing overcoming root ambiguity in the force identification of a cyclically symmetric frame possessing

two axes of spatial periodicity; functions are labelled according to default numerical ordering.
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3.5. Geometries deviated from cyclic symmetry

If the geometry of a space frame is such that it marks a deviation from some regular, cyclic form
to generate an irregular frame, then particularities of symmetric frames do not hold (for example,
the symmetrical focus wanders into less readily defined space)—however, they are not wholly
alleviated. Although the force distribution matrix L will have developed distinct columns, it will
still be rank deficient and therefore, again, a full rank matrix L̂ needs to be developed. That is to
say, particular force distributions will be expressible as linear combinations of other distributions,
and therefore present surplus force parameters, wherefore they should be disregarded. The
number of linearly independent force distributions in an irregular frame will be equal to that for
its regular counterpart due to topology conservation.
The geometries of such frames may mean that the force distributions are not immediately

apparent. In this case, a static analysis can be employed in which successive members are
removed, one end restrained in 6 dof to alleviate singularity of the stiffness matrix, and a force
parallel to the removed member applied at the other end. The global solution vector of
displacements would then simply be the inverse of the constant stiffness matrix multiplied by the
applied force vector. This would allow evaluation of member forces resulting from a particular
member strain. If the equilibrium matrix for the frame, L, is developed through such a static
analysis, computational inaccuracy may be introduced and a further, inspective process needs to
be employed to establish the full rank matrix L̂.
If s1 and sk are, respectively, the first and last significant singular values of the equilibrium

matrix, then L̂ should contain select columns of, for example, the conditioned matrix

L ¼ Ui;1 � � � Ui;k

h i s1

. .
.

sk

2
664

3
775 Vi;1 � � � Vi;k

h iT
i ¼ 1; . . . ; f . (18)
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Failure to do so will result in the solution, in the hypothetical absence of dynamic measurement
and modelling errors, converging to inaccurate member forces.

3.6. Mode tracing

The ordering of eigenpairs is arbitrary. Typically, eigenpairs are ordered according to the
magnitudes of the eigenvalues. If this is done, then transitory eigenvalue coalescence with respect
to some independent variable defines non-smooth eigenvalue functions of that variable.
However, while the eigenvalues exhibit considerable variation with respect to a parameter, the

eigenvectors may experience quite small changes over particular ranges of parameter. Indeed, of
relevance to the present context, Mead [12] notes that the mode shapes of fixed–jointed frames
change little if at all with respect to loading. Previous work has exploited the steadfastness of
eigenvectors in correlating modes, preceding and proceeding parameter perturbation. An
assessment of how the mode shapes actually vary in such frames and how much confidence can
be placed in them for the purpose of tracing modes is given by Bahra and Greening [45]. Ting
et al. [28] have used the Modal Assurance Criterion [44] (MAC) to develop a Boolean operator,
operating upon the nominated subset of eigenvectors of a current iterate and permuting them to
concur in a physical sense with those of the preceding iterate. Kim and Kim [32] have utilised the
MAC similarly in structural topology optimisation. Analogously, cross-mass-orthogonality
(XOR) has been implemented to the same end with good effect by Gibson [29] and Eldred et al.
[30]. Other methods include those that deal with perturbation expansions of the eigenproblem—
Eldred et al. [27], but these are deemed computationally expensive and not as suitable for the
present task of mode tracing in frame force identification.
Mode tracing here uses the root as a reference so that not only are the frequencies to be

determined from the investigated physical frame, but also the mode shapes. It is desirable that the
detail to which a mode shape has to be defined be minimal. Experience has shown that good
consistency holds between mathematical eigenvectors and simulated mode shapes defined at a
very limited number of freedoms; this is a subject for further investigation. Presently, the MAC
suffices in tracing modes and is implemented as follows—note also that since the mass matrix is
stationary with respect to the force parameters, XOR could also be used as an efficient mode
tracer.
Let there be 1,y, s modes in the root subset S, which are those modes observed in the physical

structure, and let there be 1,y, t modes in a subset T at the current iterate, k. Generally, t should
be greater than s in order that T encompasses all of the modes in S. Further, let

MACij fk
i ;f

R
j

� 	
¼

fk
i

� 	T
fR

j

� 	









2

fk
i

��� ���2
2
fR

j

��� ���2
2

2 0; 1½ � i ¼ 1; 2; . . . ; s; i ¼ 1; 2; . . . ; t, (19)

be the elements of the MAC matrix of dimension s� t connoting vector consistency between the
ith eigenvector in S and the jth eigenvector in T. Over-bars stipulate that eigenvector bases be
aligned to the root eigenvector bases prior to evaluation of consistency. For degenerate
eigensystems, this alignment may be necessary and is the subject of the study by Bahra and
Greening [40]; it is briefly discussed ahead. If the sets exist in t-column matrices, the permutation
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of modes in T may be expressed as

fk
1 � � � f

k
t

n o
! fk

1 � � � f
k
t

n o
HT (20)

and consistently

lk
1 � � � l

k
t

� 

! lk

1 � � � l
k
t

� 

HT, (21)

where the s� t Boolean operator H is a binary matrix whose rows contain exclusive units
corresponding to the row maxima of the matrixMAC. By Eqs. (20) and (21), with the assumption
that there is no ambiguity in vector correlation, there are always s modes with physically
consistent permutations in consideration.
If the Newton excursion is large, or if a region of loci veering—where there is coupling of

eigenvectors—is encountered, the assurance with which modes can be traced may be inadequate.
Bahra and Greening [40] propose a potential augmentation to assurance generally, where affine
models of the freedoms of the eigenvectors at the kth iterate are made from knowledge of their
derivatives and the amount by which the parameter has been perturbed by an iterative excursion;
this allows a forward casting of the eigenvector freedoms, and a potential heightening of mode
tracing assurance. This augmenting is recommended only for eigenvalue problems dependent
upon a single parameter, since the eigenvectors may not be analytic functions of multiple
parameters.
As stated, for axially loaded, cyclically symmetric space frames, there exists a two-fold

permanent degeneracy of certain eigenvalues and the bases of the associated eigenvectors are
arbitrary and non-unique. If mode tracing is to be performed on these degenerate modes, then the
eigenvector bases need to be consistently aligned, and this is now briefly outlined. Note that what
follows is essentially of relevance to once-redundant frames, since the degeneracy of eigenvalues in
frames with multiple force distributions exists only in confined regions of the iteration space. For
example, degeneracy exists in a multiply redundant frame when it is loaded in a single-force
distribution. Permanent degeneracy is really only of concern in once-redundant space frames,
where the single-force distribution can only alter the eigenvectors in a consistent manner.
Since mode tracing is performed with the modes at the root, that is to say those modes

physically observed, as those to which the modes of the iteration are referenced, let the
permanently degenerate mode eigenvectors at the root be considered as the datum set; all other
bases can be aligned to these vector bases by defining the transformation

C ¼ fr frþ1

h ik
� �T

fr frþ1

h ik

 !�1
fr frþ1

h ik
� �T

fr frþ1

h iR

 !
, (22)

which serves to perform the least squares minimisation

min tr fr frþ1

h ik

C� fr frþ1

h iR
� �T

  

� fr frþ1

h ik

C� fr frþ1

h iR
� �!!

. ð23Þ
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The aligned eigenvectors at iterate k are given as

fr frþ1

h ik

¼ fr frþ1

h ik

C �
w
�1=2
1 0

0 w
�1=2
2

2
4

3
5, (24)

where the vector of modal masses preserving mass-orthonormality is defined as

w ¼ diag C
T fr frþ1

h ik
� �T

M fr frþ1

h ik
� �

C

 !
. (25)

Such vector alignment has been used in the reconciliation of mathematical and observed
oscillatory modes in the presence of repeated frequencies by Lallement and Kosanek [46] and
Pešek [47]. Presently, it is used in ensuring continuity of eigenvector bases for the purposes of
mode tracing. Since it is not known which degenerate pair at the root should form the reference to
which the degenerate modes at the kth iterate are aligned, all of the possible consistency matrices,
equal in number to the number of degenerate modes in set T, need to be evaluated. The row units
of the binary matrix H in this instance are positioned in correspondence to the locations of the
global row maxima of the set of consistency matrices.
For a more comprehensive account, the reader is referred to Bahra and Greening [40]. Other

works of possible interest are those of D’Ambrogio and Fregolent [48], regarding consistency
computation between an eigenvector and a subspace of degenerate mode eigenvectors, and
Walther et al. [49], concerning consistency evaluation between mathematical and degenerate,
disorientated and coupled physical modes.

3.7. Global convergence

Newton’s method, although highly efficient in the neighbourhood of a root, is notorious
for failing to converge in certain circumstances away from a root. The study of ensuring
global convergence for Newton’s method is well established. Such methods limit the lengths
of wayward Newton excursions and seek to minimise some relevantly defined objective
function. The literature on global methods of iterative convergence is readily available: pertinent
texts include Ortega and Rheinboldt [50] and Dennis and Schnabel [51]. The topic is not
here covered, the focus being on treating the particularities of Newton’s method in the present
context.
To confine iteration to the pre-buckled region, monitoring of the numerically designated

fundamental eigenvalue may be utilised, since this goes to zero with the onset of buckling,
marking the change from a strain mode to a zero frequency, rigid body mode.
4. Numerical simulations

Three numerical simulations demonstrating the concepts outlined in Section 3 are now given.
General concepts, such as mode tracing and overdetermination, are demonstrated in the case of a
frame with one distribution of axial force and hence force parameter. Frames of regular and
irregular geometries are then used as illustrators of multidimensional force determination. The
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nominated geometries offer bases from which issues for more general space frames can be
extrapolated. Effects of noise are included in the simulations to indicate the bounds upon errors
that may be expected.
It is not the intention to provide high order, correlated models as illustrators. The intention is

that the issues raised be made evident, so that if Newton’s method is employed in space frame
force identification, these are made apparent and therefore treatable. The models used in the
numerical simulations suffice to do so. Note that there is an assumption of constant geometry
with respect to frame loading. Of course, in practice, deviations in geometry would accompany the
approach to buckling, and this second-order effect may need to be taken into account in the
mathematical modelling.
For consistency, all distributions of axial force are normalised such that the maximum absolute

member force is positive unity when tensile, so that the force parameters p, which are factors upon
these force sets, are effectively the maximum absolute frame forces. All member discretisation for
dynamic modelling is six elements. Modal designation is stated according to the ordering at the
root and notwithstanding the ordering at any other loaded state, so that mode r is not necessarily
the rth mode at a particular value of p. All member material properties are as follow: Young’s
modulus, 2.1� 1011Nm�2; density, 7.85� 103 kgm�3.
Without being stated, mode tracing is in all places used as default. Lastly, the modes used in the

force identification are in all places the initial, consecutive modes at the root, since it is felt that
these would be the most readily measurable in a modal test.
4.1. Bi-tetrahedral frame

The bi-tetrahedral frame comprises two skeletal, regular tetrahedra having three mutual
members; an internal spar joins the opposing apices to introduce static redundancy. The
redundancy entails frame loading following member strain—a statically determinate frame would
not be loaded but would deform geometrically. The frame can be seen in Fig. 4. The length of the
external frame member is nominated as 0.5m and the members are of circular section and
diameter 0.01m. The member centre-lines are concurrent at the joints so that the transfer of axial
force alone is possible.
From a simple static arguments the frame member forces can be determined and these can be

expressed as follows: internal member, 1; hemispherical members, �ð3 sin aÞ�1; equatorial

members, 2ð9 sin aÞ�1; a ¼ arccos 3�1=2
� 	

.

The variations of the frame eigenvalues up to 1� 106 with respect to the scalar parameter p are
shown in Fig. 5 between the buckling limits at which the fundamental frequency—whatever mode
that may be in that load region—vanishes. The curves are seen to be exceedingly nonlinear, with
the eigenvalue coalescence and loci veering phenomena clearly visible. As acknowledged,
Newton’s method can be encumbered if the functions are non-smooth.
For the once-redundant, bi-tetrahedral frame, the eigenvector–force distribution relative

orientation is at all loads conserved. In the mathematical model therefore, certain pairs of
eigenvalues will be permanently degenerate in that they will not separate upon parameter
perturbation. Indeed, many of the eigenvalue loci in Fig. 5 are two loci, one superimposing the
other. The mode tracing of these types of mode needs special attention and it proves necessary to
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Fig. 4. Bi-tetrahedral frame geometry; complete relative fixity exists between the members at the joints.
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Fig. 5. Pre-buckled eigenvalue–force parameter loci for the bi-tetrahedral frame showing eigenvalue coalescences and

various degrees of veering; p(N) is the maximum absolute frame force, positive when tensile.
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align the arbitrary eigenvalue bases between iterates before employing consistency evaluation. The
existence of multiple force distributions in the frame of subsequent examples means that the frame
eigenvalues are generally distinct, and so it is only in the once-redundant case that this special
treatment of vector bases is required.
Convergence will be very rapid if the eigenvalue function nominated for use in the iteration is

near linear between the root and the point at which iteration commences. This is simply a result of
the apt linear modelling of the indefinite integral in Eq. (10) in Newton’s method. If such modes
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are utilised, then convergence even across the extreme buckling limits can be achieved
practically after a single iteration. It is of course a matter of chance whether a linear eigenvalue
function is nominated for the identification or not and is not a matter of choice, unless second
derivatives and higher are inspected. This, however, may prove computationally expensive.
Certainly eigenvalues with small first derivatives should be avoided as these will give instability to
Newton’s method. No general method can be suggested for the selection of eigenvalues to use in
iteration, but given a set of m eigenvalues, with preferably m4n, it is likely that there will be a
sufficient number of assistive eigenvalue functions to overcome antagonising ones—see Bahra and
Greening [52].
The curvature of the coupled loci in Fig. 5 potentially give rise to root multiplicity, since

for a given eigenvalue there can be two roots on a given, veered curve. This is important to
know since convergence upon an erroneous root is misleading. The advantage of the
present context of structural dynamics is that, within reason, there are many modes available
as functions of the force parameter, and hence the system of equations (13) can be
overdetermined, as is common practice, to alleviate the ambiguity of multiple roots. Fig. 6
shows convergence upon the negative buckling load, and as a harsh test, iteration is chosen
to commence at the positive buckling load. For this task, all combinations of the three modes 3, 8
and 9 are used. For interest, these are represented by the three loci in Fig. 5 whose stationarity
is in the vicinity of p ¼ �500. Respectively, each of these modes used independently is seen
to converge to its erroneous root since the true root is in each instance ‘over hill’ of the former.
In combination, correct convergence is seen to result since mutuality between the modes must be
met in convergence. One exception is the combination of modes 3 and 8: here, the Newton
excursion at the erroneous root is near zero, and hence the iteration stagnates there. This is a rare
occurrence and, nevertheless, overdetermination is a steadfast means for overcoming root
ambiguity.
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Fig. 6. Buckling-to-buckling, true and erroneous, convergences resulting from all combinations of three ambiguous

eigenvalue loci (cf. those loci having their points of stationarity in the vicinity of p ¼ �500N in Fig. 5).
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Fig. 7. Iteration past a veering event: (a) progression with respect to iteration number and (b) progression along

eigenvalue loci with iteration transcending loci.
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All of these curves were such that the iterates conformed to a single locus throughout the
iteration. In loci veering however, it is possible for iterates to transcend curves when mode tracing
is employed, as has been discussed. Fig. 7 shows how iteration transcends curves at the veering
around p ¼ 2500; the root is just passed the veering point at pR ¼ 2700 and iteration commences
from p0 ¼ 0. Correct convergence ensues using mode 8, illustrating that the purpose of employing
mode tracing is to conserve function smoothness for the benefit of the iteration; the definition of
the functions between the initial parameter value and root is otherwise not of importance. Note
that this is completely analogous to what happens in the limiting case of mode tracing passed an
eigenvalue coalescence point.

4.2. Regular octahedral frame

The second frame to be analysed is octahedral. The opposing apices of the bi-tetrahedral frame
make it possible to insert an internal redundancy; the octahedral frame has the potential to
accommodate three internal members, introducing a degree of redundancy three. Again, the
length of the external frame member is nominated as 0.5m and the members are of circular section
and diameter 0.01m. The octahedral frame is depicted in Fig. 8.
From a simple compatibility analysis, it is found that about any single axis of the frame, there

exist two classes of force distribution. These classes may be distinguished by the type of member
that needs to be strained to produce them: external (class I) or internal (class II). However, since
the frame possesses three axes of spatial periodicity and is identical from the aspect of each, the
total number of distinct force distributions is six. These are given in the equilibrium matrix as
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Fig. 8. Octahedral frame geometry; complete relative fixity exists between the members at the joints.
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follows (member numbers correspond to those in Fig. 8):
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The first three matrices comprise vectors that relate to force distributions resulting from the
straining of an external frame member and therefore represent class I. They are four-fold multiple
because of the symmetry of the regular octahedral frame—this can be appreciated by seeing that
the external frame is formed of three orthogonal, square, plane frames and that straining of any
one member of these is the same as straining any other. The last three, distinct vectors of the
equilibrium matrix relate to straining of an internal frame member, and therefore represent class
II distributions. Of course, the three distributions of the respective classes amongst themselves
represent the same force distribution orientated according to the three different axes of spatial
periodicity, so that variations of eigenvalues are three times identical. With p1, p2 and p3 being
defined as factors upon the class I distribution, and p4, p5 and p6 those upon the class II
distribution, Fig. 9 shows how the frame eigenvalues vary with respect to loading between the
buckling limits.
It is found that the equilibrium matrix has rank three, and further that a reduced, full rank

matrix can be established with the three distributions of class I alone, for example. The physical
interpretation is that any possible state of equilibrium of the octahedral frame can be expressed as
a linear combination of these three linearly independent force distributions. Therefore, let the
force parameters governing the iteration space be factors upon the first three types of force
distribution, p1, p2 and p3.
The point made in Section 3.4 regarding root uniqueness is well demonstrated by seeking a root

pR ¼ 1000 3000 5000
� �T

and initiating iteration at a set p at which there exists a pR
prm root:

p0 ¼ pR
prm ¼ 3000 5000 1000

� �T
. This coordinate simply represents the distribution of force in

the frame as at the true root but at a different spatial orientation. Without mode tracing, the
iteration would not make an excursion from this starting value since the eigenvalue hypersurface
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Fig. 9. Pre-buckled eigenvalue–force parameter loci for the octahedral frame showing various orders of eigenvalue

coalescence and degrees of veering with fairly densely distributed loci: (a) distribution class I and (b) distribution class

II; pn(N) is the maximum absolute frame force in distribution n, positive when tensile.
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Fig. 10. Mode tracing overcoming root ambiguity in the force identification of the octahedral frame: (a) iteration

progression (� .� .� p1; ���� p2;
______ p3); Monte Carlo noise simulations with varying degrees of overdeterminacy

for (b) p3, (c) p2 and (d) p1.
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upon which the false root lies is a reflection through the three-dimensional focus of symmetry of
the hypersurface upon which the true root lies, and therefore the eigenvalue constraint would
automatically be satisfied. Fig. 10(a) shows that with mode tracing employed on the first three
root modes, the correct eigenvalue curve is discerned so that the true root is discovered. The
reason that the curve of the pR

prm root is not traced with the curve of the true root p
R, and

that curve consistency is maintained, can be appreciated from seeing that the eigenvectors of
these respective roots used in the mode tracing have a unique relation to their force distributions,
which are further spatially orthogonal and therefore on a global level mode tracing does not pair
them.
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Noise is simulated by Monte Carlo runs in which the nominated random noise is at most 75%
of the root fundamental frequency, for any given frequency used in the identification. For each
degree of overdeterminacy, one hundred runs were performed and the ranges of the results can be
seen in Fig. 10. Expectedly, overdetermination helps to improve the precision of identification.
4.3. Irregular octahedral frame

A topologically similar frame is now considered. If the spatial locations of the five apices of the
regular octahedral frame are described by the matrix

C0 ¼

1
2 � 1

2 � 1
2

1
2 0 0

� 1
2 � 1

2
1
2

1
2 0 0

0 0 0 0 1ffiffi
2
p � 1ffiffi

2
p

2
664

3
775
T

,

the geometry of the irregular octahedral frame is described by C0 þ I I
� �T

. All other properties
are conserved in the transformation from the regular frame. Owing to the more complex
geometry, force distributions are determined from the static matrix analysis outlined in Section
3.5. The irregular octahedral frame is shown in Fig. 11 with member numbering consistent with
that in Fig. 8.
Following conditioning of the equilibrium matrix L and the establishment of the reduced

matrix L̂, it is found that the number of linearly independent force distributions—that is to say,
the minimum number whose linear superposition is suffices in describing any possible equilibrium
state—is conserved following the breaking of symmetry. This must hold since the topology is
conserved. Physically, the member-joint relations remain identical and therefore the irregular
frame cannot posses any further linearly independent force distributions in comparison to the
regular frame from which it is developed. Although the present technique suffices to determine the
number of linearly independent force distributions, it would be useful to posses a direct means for
evaluating this number. The well-known Maxwell formula for computing the number of
structural redundancies is not beneficial in that it does not hold universally; this remains a matter
of further work.
(5) 
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Fig. 11. Irregular octahedral frame geometry; complete relative fixity exists between the members at the joints.
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The eigenvalue–force parameter loci for three particular distributions are given in Fig. 12.
These distributions are those that arise from the straining of members 1, 2 and 3—refer to Fig. 11.
Of immediate note is the increased erratic characteristic of the functions, potentially posing
difficulty to the iteration. Upon closer inspection it is found that there is no coalescence in the loci,
but only veerings. This is most probably ascribable to discretisation problems but as previously
seen will not pose a problem if mode tracing is employed. Another point to note is that, owing to
the increased slenderness of some of the members of the irregular frame, the frequencies are in
general lower. Consequently, the irregular frame cannot withstand as much loading as its regular
counterpart.
A target root of pR ¼ 200 200 200

� �T
is nominated and convergence using the initial four

root modes from an unloaded state is shown in Fig. 13(a). Four modes are used since a degree of
overdeterminacy one is the minimum required for convergence to result at all. Again simulated
noise is included in the manner as previously described and is found to have decreasing impact
with respect to increasing overdetermination.
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5. Conclusions

Following the outlining of several issues concerning the use of Newton’s method in the axial
force determination of redundant space frames, three illustrative numerical simulations are given.
While it is not the intention to provide high order, correlated models as illustrators, it is intended
that certain issues be made evident, so that if such a method is employed, these are anticipated and
treated. The models used in the numerical simulations suffice to raise these issues. Indeed, the
methodology of force determination here presented relies upon good model-to-structure
correlation, and minimal noise in the modal data. It is hoped that both of these are achievable
with the simple structural nature of space frames.
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Since Newton’s method extends readily and in a natural way to multiple dimensions, the one-
dimensional problem has been used to illustrate the utility of overdetermination and mode
tracing. The former is helpful in distinguishing between ambiguous roots and for reducing the
error range due to noise; the latter helps to overcome the phenomena of eigenvalue coalescence
and loci veering by defining smooth eigenvalue functions for the benefit of Newton’s method. In
fact, both eigenvalue coalescence and loci veering are overcome in the same manner, so that at
veering iterates transcend loci. In all of the simulations, including one- and three-dimensional
Newton’s methods, absence of mode tracing and therefore the definition of non-smooth
eigenvalue functions is known to have potentially detrimental consequences, such as divergence
and, worse, convergence to erroneous roots. It is therefore found to be an imperative measure.
Erroneous convergence can also occur with traced modes if the eigenvalue function curvature is
such that root ambiguity is introduced. Overdetermination is here an aid to establishing root
uniqueness, and so the two strategies should necessarily be used in conjunction. Mode tracing is
seen to overcome a special problem of root ambiguity in the case of frames with multiple axes of
spatial symmetry. Here, the unique root is isolated by virtue of the uniqueness of the
eigenvector–force distribution relative orientation, and so the eigenvector-based mode tracing is
afforded the discernment of the true solution.
Emphasis is placed upon minimising the number of force distributions needed to account for

any state of frame equilibrium, and hence the dimensionality of Newton’s method. The basis for
doing so is the argument of equilibrium constraints. This progression from previous schemes of
force identification is necessary in terms of easing the progression of iteration. Further, in cases of
frames with multiple axes of spatial periodicity, this prevents a solution that, while discerning the
correct forces, would imply incorrect member designations.
As is seen from the irregular octahedral frame, the slenderness of frame members governs the

magnitudes of the frame frequencies. The low frequencies of slender frames may be of concern in
terms of noise dependent errors in modal measurement. Further effects of excessive transverse,
static deflection on vibration would need to be assessed.
Provided an eigenproblem accurately describing the dynamics of a space frame can be

formulated, the method of force identification proposed in this paper provides an alternative to
direct force measurement using strain gauges. The latter inconveniently requires that the forces be
known at the instant of gauge application, which is not possible unless it is known that the frame
is in a zero load state.
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