
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 291 (2006) 1041–1060
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Analytical approach to free and forced vibrations of axially
loaded cracked Timoshenko beams

C. Meia,�, Y. Karpenkob, S. Moodyb, D. Allenb

aDepartment of Mechanical Engineering, The University of Michigan—Dearborn, 4901 Evergreen Road,

Dearborn, MI 48128, USA
bBrake NVH, Ford Motor Company, 14661 Rotunda Drive, Dearborn, MI 48120, USA

Received 20 September 2004; received in revised form 8 April 2005; accepted 7 July 2005

Available online 6 September 2005
Abstract

Wave vibration analysis of an axially loaded cracked Timoshenko beam is presented in this paper. It
includes the effects of axial loading, shear deformation and rotary inertia. From wave standpoint,
vibrations propagate, reflect and transmit in a structure. The transmission and reflection matrices for
various discontinuities on an axially loaded Timoshenko beam are derived. Such discontinuities include
cracks, boundaries and changes in section. The matrix relations between the injected waves and externally
applied forces and moments are also derived. These matrices are combined to provide a concise and
systematic approach to both free and forced vibration analyses of complex axially loaded Timoshenko
beams with discontinuities such as cracks and sectional changes. The systematic approach is illustrated
using several numerical examples.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of cracked structural members, especially beams, has been the subject of many
research works mainly due to the growing interests in non-destructive damage evaluation of
engineering structures using modal responses (natural frequencies and modeshapes) of a structure
in the past two decades. The presence of a crack in a structural member introduces a local
see front matter r 2005 Elsevier Ltd. All rights reserved.
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flexibility that affects its dynamic response. Numerous attempts to quantify local defects are
reported to the literature. In general, there exist three basic crack models, namely the equivalent
reduced section model, the local flexibility model from fracture mechanics and the continuous
crack flexibility model [1].
Various approaches have been applied in vibration analysis, mostly free vibration analysis, of

cracked beams. Such approaches include finite element approach [2–4], Galerkin and local Ritz
approach [5], approximate analytical approach [6], transfer matrix approach [7] and dynamic
stiffness matrix approach [8].
In this paper, both free and forced vibrations are studied for an axially loaded cracked

Timoshenko beam from wave standpoint, in which the vibrations are described in terms of wave
propagation, transmission and reflection in waveguides [9–11]. The reflection and transmission
characteristics of flexural vibration waves have been studied by a number of researchers [12–15].
In this study, the transmission and reflection matrices for various discontinuities on an axially
loaded cracked Timoshenko beam are derived. Such discontinuities include cracks, boundaries
and change in sections. The matrix relations between the injected waves and externally applied
forces and moments are also derived. These matrices can be combined to provide a concise and
systematic approach to both free and forced vibration analyses of axially loaded cracked
Timoshenko beams or complex structures consisting of such beam components. The effects of
cracks (including crack size and crack location), axial loads and step sectional changes on the
modes of vibrations are studied.
This paper is organized as follows. In the next section, the equation of motion for axially loaded

Timoshenko beams is presented and expressions for the propagation of waves derived. In Section
3, the reflection and transmission matrices at discontinuities caused by cracks, boundaries and
change in sections are derived. In Section 4, the vectors of wave amplitudes for waves generated
by externally applied point forces and moments in a Timoshenko beam are derived. In Section 5,
these matrices are combined to provide a concise and systematic approach for vibration analysis
of cracked Timoshenko beams or structures consisting of Timoshenko beam components. The
approach is illustrated through several numerical examples, including free and forced vibration
analyses of a cracked uniform and a cracked stepped Timoshenko beam with axial loading.
Concluding remarks are given in Section 6.
2. Equation of motion and wave propagation

The equations of motion of an axially loaded beam with the effects of both shear deformation
and rotary inertia taken into account are [9]

GAk
@cðx; tÞ
@x

�
@2yðx; tÞ

@x2

� �
þ F

@2y

@x2
þ rA

@2yðx; tÞ

@t2
¼ qðx; tÞ (1a)

EI
@2cðx; tÞ
@x2

þ GAk
@yðx; tÞ

@x
� cðx; tÞ

� �
� rI

@2cðx; tÞ
@t2

¼ 0 (1b)

where x is the position along the beam axis, t is the time, y(x,t) is the transverse deflection of the
center line of the beam, q(x,t) is the external force, E, G and r are the Young’s modulus, shear
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modulus and mass density, respectively. I is the area moment of inertia of cross section, A is the
cross-sectional area, k is the shear coefficient, c(x,t) is the slope due to bending, qyðx; tÞ=qx is the
slope of the center line of the beam, while qyðx; tÞ=qx� cðx; tÞ is the shear angle. F is the axial
load, compressive load is assumed positive. It can be seen that Eqs. (1a) and (1b) are coupled
through the slope and the transverse deflection of the structure.
The shear force V(x,t) and bending moment M(x,t) at any section of the beam are related to the

transverse deflection y(x,t) and the slope c(x,t) by

Vðx; tÞ ¼ �EI
q2cðx; tÞ

qx2
� rIo2cðx; tÞ � F

qyðx; tÞ

qx
, (2)

Mðx; tÞ ¼ �EI
qcðx; tÞ

qx
. (3)

The coefficients

Cb ¼

ffiffiffiffiffiffiffi
EI

rA

s
; Cs ¼

ffiffiffiffiffiffiffiffiffiffi
GAk
rA

s
; Cr ¼

ffiffiffiffiffiffiffi
rI

rA

s
, (4)

which are related to the bending stiffness, shear stiffness and rotational effects, respectively, are
now introduced. The shear beam model, the Rayleigh beam model and the simple Euler–Bernoulli
beam model can be obtained from the Timoshenko beam model by setting Cr to zero (that is,
ignoring the rotational effect), Cs to infinity (ignoring the shear effect) and setting both Cr to zero
and Cs to infinity, respectively.

2.1. Free wave propagation

Assuming time harmonic motion and using separation of variables, the solutions to Eqs. (1a)
and (1b) can be written in the form yðx; tÞ ¼ y0e

�ikxeiot and cðx; tÞ ¼ c0e
�ikxeiot, where o is the

frequency and k the wavenumber. Substituting these expressions into Eqs. (1a) and (1b) and
rewriting the corresponding free vibrations in matrix form, one has

�ikGAk �EIk2
� GAkþ rIo2

�k2GAkþ rAo2 þ Fk2 ikGAk

" #
y0

c0

" #
¼ 0. (5)

Setting the determinant of Eq. (5) to zero gives a second-order polynomial in k2—the dispersion
equation:

a0k
4
þ b0k

2
þ c0 ¼ 0. (6)

The solution to the dispersion equation gives a set of wavenumbers that are functions of the
frequency o as well as the properties of the structure, namely

k1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
0 � 4a0c0

q
2a0

vuut
; k2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
0 � 4a0c0

q
2a0

vuut
,
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where

a0 ¼ 1�
F

GAk
; b0 ¼ �k2

b1 � k2
b2 � F

GAk� rIo2

GAkEI
; c0 ¼ k2

b1k
2
b2,

and kb1 and kb2 are the wavenumbers of the beam without axial loading, that are given by

kb1 ¼ �
1

2

1

Cs

� �2

þ
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Cb

� �2
" #

o2 þ
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,
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1

2

1
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þ
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� �2
" #

o2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

C2
b

þ
1

4

1

Cs

� �2

�
Cr

Cb

� �2
" #2

o4

vuut
8<
:

9=
;

1=2

.

Waves in the beam travel in both the positive and negative directions, as the 7 sign outside
the brackets indicates. It is well known that for flexurally vibrating Timoshenko beam without
axial loading, there exists a wave-mode transition at a cut-off frequency oc, which is given by
oc ¼ Cs/Cr. The axial loading is found to have no effect on the cut-off frequency. This finding is
confirmed by solving the cut-off frequency oc directly by substituting k ¼ 0 into Eq. (5) and
setting the determinant to zero, which gives the same cut-off frequency as that of flexurally
vibrating Timoshenko beam without axial loading.
With the time dependence eiot suppressed, the solution to Eq. (5) can be written as

yðxÞ ¼ aþ1 e
�ik1x þ aþ2 e

�k2x þ a�1 e
ik1x þ a�2 e

k2x, (7a)

cðxÞ ¼ aþ1 e
�ik1x þ aþ2 e

�k2x þ a�1 e
ik1x þ a�2 e

k2x, (7b)

Clearly, the wave amplitudes a of y(x) and a of c(x) are related to each other. The relation can be
found from Eq. (5) as

c
y
¼ i

rAo2 � k2GAkþ Fk2

kGAk
. (8)

Thus, the relations between the coefficients of y(x) and those of c(x) are as follows:

aþ1
aþ1
¼ �iP;

a�1
a�1
¼ iP;

aþ2
aþ2
¼ �N;

a�2
a�2
¼ N, (9)

where

P ¼ k1 1�
o2

k2
1C

2
s

�
F

GAk

 !
; N ¼ k2 1þ

o2

k2
2C

2
s

�
F

GAk

 !
. (9a)
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3. The propagation, reflection and transmission of waves in axially loaded Timoshenko beams

From wave standpoint, vibrations propagating along a beam component are reflected and
transmitted upon discontinuities and boundaries. The propagation is governed by the so-called
propagation matrix. Consider two points A and B on a flexually vibrating uniform beam at
distance x apart; denoting the positive- and negative-going wave vectors at points A and B as a+

and a
�, and b

+ and b
�, respectively, they are related by

a� ¼ fðxÞb�; bþ ¼ fðxÞaþ, (10)

where

aþ ¼
aþ1

aþ2

( )
; a� ¼

a�1

a�2

( )
; bþ ¼

bþ1

bþ2

( )
; b� ¼

b�1

b�2

( )
(10a)

and

fðxÞ ¼
e�ik1x 0

0 e�k2x

" #
(10b)

is known as the propagation matrix for a distance x.
The reflection and transmission characteristics are governed by the reflection and transmission

matrices. The following derives the reflection and transmission matrices at discontinuities such as
boundaries, cracks and cross-sectional changes.

3.1. Reflections at boundaries

A general boundary is shown in Fig. 1. The incident waves a+ give rise to reflected waves a�,
which are related by

a� ¼ raþ. (11)

The reflection matrix r can be determined by considering equilibrium at the boundary, that is

�EI
qc
qx
¼ KRc�,
Incident wave
a+

Reflected wave 
a-

Springs

x = 0 

Fig. 1. A general boundary.
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EI
q2c
qx2
þ rIo2cþ F

qy

qx
¼ KT y�, (12)

where KT and KR are the translational and rotational stiffnesses of the support, respectively, and

y ¼ aþ1 e
�ik1x þ aþ2 e

�k2x þ a�1 e
ik1x þ a�2 e

k2x, (13a)

c ¼ �iPaþ1 e
�ik1x �Naþ2 e

�k2x þ iPa�1 e
ik1x þNa�2 e

k2x. (13b)

If the boundary is at x ¼ 0, then the equilibrium conditions become

a11a
� � a12a

þ ¼ 0, (14)

where

a11 ¼
�EIPk1 þ iPKR EINk2 þNKR

iPEIk2
1 � iPrIo2 � iFk1 þ KT �NEIk2

2 �NrIo2 � Fk2 þ KT

" #
,

a12 ¼
EIPk1 þ iPKR �EINk2 þNKR

iPEIk2
1 � iPrIo2 � iFk1 � KT �NEIk2

2 �NrIo2 � Fk2 � KT

" #
.

From Eqs. (11) and (14), it follows that

r ¼ a�112 a11. (15)

Three common boundary conditions of interest are simply supported, clamped and free
boundaries. Corresponding to these boundary conditions, KT and KR are either zero or infinite.
The reflection matrices for simply supported, clamped and free boundary conditions are found as
the following, respectively:

rs ¼
�1 0

0 �1

� �
,

rc ¼

P�iN
PþiN

�2iN
PþiN

�2P
PþiN

� P�iN
PþiN

" #
, (16)

rf ¼
rf 11 rf 12

rf 21 rf 22

" #
,

where

rf 11 ¼ �rf 22 ¼ �
EIPNk1k2ðk2 þ ik1Þ þ PNrIo2 k1 � ik2ð Þ þ Fk1k2 P� iNð Þ

EIPNk1k2ðk2 � ik1Þ þ PNrIo2 k1 þ ik2ð Þ þ Fk1k2 Pþ iNð Þ
,

rf 12 ¼
2Nk2ðEINk2

2 þ rINo2 þ Fk2Þ

EIPNk1k2ðk2 � ik1Þ þ PNrIo2 k1 þ ik2ð Þ þ Fk1k2 Pþ iNð Þ
,

rf 21 ¼
i2Pk1ð�EIPk2

1 þ rIPo2 þ Fk1Þ

EIPNk1k2ðk2 � ik1Þ þ PNrIo2 k1 þ ik2ð Þ þ Fk1k2 Pþ iNð Þ
.
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Incident wave Transmitted  wave
a+

b+

Reflected wave
a-

x = 0 

Fig. 2. A transverse open crack.
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3.2. Crack

In this study, the local flexibility model from fracture mechanics is adopted, where the
modification of stress field is assumed local. The continuous crack flexibility model distributes the
added flexibility due to the crack over the length of a cracked beam [16]. In terms of modal
response, results obtained from both models are in good agreement with experimental results.
Cracks could be open or breathing (open and close in time), depending on the loading

conditions and vibration amplitudes. The open crack model is valid throughout the paper.
Considering an open crack at x ¼ 0 as shown in Fig. 2, a set of positive-going waves a

+ is
incident upon the crack and gives rise to transmitted and reflected waves b+ and a

�, which are
related to the incident waves through the transmission and reflection matrices t and r by

bþ ¼ taþ; a� ¼ raþ. (17)

Denoting the transverse displacements and the slopes of the beam on the left- and right-hand sides
of the crack as y�, y+, c� and c+, respectively, one has

y� ¼ aþ1 e
�ik1x þ aþ2 e

�k2x þ a�1 e
ik1x þ a�2 e

k2x, (18a)

yþ ¼ bþ1 e
�ik1x þ bþ2 e

�k2x, (18b)

c� ¼ �iPaþ1 e
�ik1x �Naþ2 e

�k2x þ iPa�1 e
ik1x þNa�2 e

k2x, (19a)

cþ ¼ �iPbþ1 e
�ik1x �Nbþ2 e

�k2x. (19b)

Since the beam is continuous, one has

yþ ¼ y�; cþ ¼ c� þ CEI
qc�
qx

. (20)

where the term CEIðqc�=qxÞ represents a jump in the bending slope caused by local flexibility
change at the crack and C is the so-called flexibility coefficient. C is related to crack size m, which
is defined as the ratio between the depth of the crack and the thickness of the beam, as shown by
following [17]:

C ¼
6pð1� n2Þh

EI
f ðmÞ, (21)
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where

f ðmÞ ¼ 0:6272m2 � 1:04533m3 þ 4:5948m4 � 9:973m5 þ 20:2948m6

� 33:0351m7 þ 47:1063m8 � 40:7556m9 þ 19:6m10. ð21aÞ

Writing the continuity conditions in matrix form, one has

b11b
þ þ b12a

� ¼ b13a
þ, (22)

where

b11 ¼
1 1

�iP �N

� �
; b12 ¼

�1 �1

�iPþ CEIPk1 �N � CEINk2

" #
,

b13 ¼
1 1

�iP� CEIPk1 �N þ CEINk2

" #
. (22a)

Furthermore, by considering the equilibrium of the support,

Mþ ¼M�; Vþ ¼ V�, (23)

one has

b21b
þ þ b22a

� ¼ b23a
þ, (24)

where

b21 ¼
�EIPk1 EINk2

GAkð�ik1 þ iPÞ þ iFk1 GAkð�k2 þNÞ þ Fk2

" #
,

b22 ¼
EIPk1 �EINk2

GAkð�ik1 þ iPÞ þ iFk1 GAkð�k2 þNÞ þ Fk2

" #
,

b23 ¼
�EIPk1 EINk2

GAkð�ik1 þ iPÞ þ iFk1 GAkð�k2 þNÞ þ Fk2

" #
. ð24aÞ

Eqs. (17), (22) and (24) can be solved to obtain the reflection and transmission matrices at the
crack discontinuity as

t ¼ b21 � b22b
�1
12 b11

� ��1
b23 � b22b

�1
12 b13

� �
,

r ¼ b22 � b21b
�1
11 b12

� ��1
b23 � b21b

�1
11 b13

� �
. ð25Þ

3.3. Change in section

Let two beams of different properties be joined at x ¼ 0 as shown in Fig. 3. Due to impedance
mismatching, incident waves from one beam give rise to reflected and transmitted waves at the
junction. However, the displacement, slope, bending moment and shear force are all continuous at
the junction. The reflection and transmission matrices can then be obtained from the continuity
and equilibrium conditions.
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Incident wave Transmitted wave
a+ b+

Reflected wavea-

x = 0 

Fig. 3. A step change.
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Denoting the parameters related to the incident and transmitted sides of the junction with
subscripts L and R, respectively, choosing the origin at the point where the section changes, at
x ¼ 0, one has

yL ¼ yR; cL ¼ cR; ML ¼MR; VL ¼ VR. (26)

Considering Eq. (17), Eq. (26) can be put into matrix form in terms of the reflection and the
transmission matrices rLL and tLR:

c11rLL þ c12tLR ¼ c13; c21rLL þ c22tLR ¼ c23, (27)

where

c11 ¼
1 1

iPL NL

" #
; c12 ¼

�1 �1

iPR NR

" #
; c13 ¼

�1 �1

iPL NL

" #
,

c21 ¼
�ðEIÞLPLkL1 ðEIÞLNLkL2

iðEIÞLPLk2
L1 � irIo2PL � iFkL1 �ðEIÞLNLk2

L2 � rIo2NL � FkL2

" #
, (27a)

c22 ¼
ðEIÞRPRkR1 �ðEIÞRNRkR2

iðEIÞRPRk2
R1 � irIo2PR � iFkR1 �ðEIÞRNRk2

R2 � rIo2NR � FkR2

" #
,

c23 ¼
ðEIÞLPLkL1 �ðEIÞLNLkL2

iðEIÞLPLk2
L1 � irIo2PL � iFkL1 �ðEIÞLNLk2

L2 � rIo2NL � FkL2

" #
.

The equations can be solved for the reflection and transmission matrices rLL and tLR, which are
given as

rLL ¼ c�112 c11 � c�122 c21
� ��1

c�112 c13 � c�122 c23
� �

,

tLR ¼ c�111 c12 � c�121 c22
� ��1

c�111 c13 � c�121 c23
� �

. ð28Þ
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a+ b+

a- b-

Q

M

x = 0 

Fig. 4. Force-generated waves.
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4. Waves generated by externally applied point forces and moments

Applied forces and moments have the effect of injecting waves into a structure. Consider the
flexural waves injected into a thin beam by a point force Q and moment M applied at x ¼ 0 as
shown in Fig. 4. At x ¼ 0, there are discontinuities in the shear force and bending moment in the
beam with resulting discontinuities in the waves a and b on either sides of the excitation point. The
relations between the applied forces and the waves are described by the following continuity and
equilibrium conditions:

y� ¼ yþ; c� ¼ cþ;

Q ¼ �EI
@2c�
@x2 � rIo2c� � F

@y�
@x

� 	
� �EI

@2cþ
@x2 � rIo2cþ � F

@yþ
@x

� 	
;

M ¼ EI
@c�
@x
�

@cþ
@x

� 	
;

(29)

where

y� ¼ aþ1 e
�ik1x þ aþ2 e

�k2x þ a�1 e
ik1x þ a�2 e

k2x;

yþ ¼ bþ1 e
�ik1x þ bþ2 e

�k2x þ b�1 e
ik1x þ b�2 e

k2x;

c� ¼ �iPaþ1 e
�ik1x �Naþ2 e

�k2x þ iPa�1 e
ik1x þNa�2 e

k2x;

cþ ¼ �iPbþ1 e
�ik1x �Nbþ2 e

�k2x þ iPb�1 e
ik1x þNb�2 e

k2x:

(29a)

The continuity and the equilibrium conditions can be written in matrix form as

d11b
þ
1 þ d12b

�
1 þ d13a

þ
1 þ d14a

�
1 ¼ 0,

d21b
þ
1 þ d22b

�
1 þ d23a

þ
1 þ d24a

�
1 ¼ q, ð30Þ

where q ¼ M Q
h iT

and

d11 ¼ �d13 ¼
iP N

�1 �1

� �
; d12 ¼ �d14 ¼

�iP �N

�1 �1

� �
,

d21 ¼ �d23 ¼
EIPk1 �EINk2

iEIPk2
1 � irIo2P� iFk1 �EINk2

2 � rIo2N � Fk2

" #
, (30a)

d22 ¼ �d24 ¼
EIPk1 �EINk2

�iEIPk2
1 þ irIo2Pþ iFk1 EINk2

2 þ rIo2N þ Fk2

" #
,
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from which it follows that

bþ � aþ ¼ qþ; b� � a� ¼ q�, (31)

where

qþ ¼ � d�112 d11 � d�122 d21
� �

on; d�122 q,

q� ¼ � d�111 d12 � d�121 d22
� �

on; d�121 q. ð31aÞ
5. Vibration analysis using wave approach

The transmission and reflection matrices for waves incident upon various discontinuities were
derived above. The waves injected by externally applied forces/moments were also found in matrix
form. These matrices can be combined to provide a concise and systematic approach for vibration
analyses of axially loaded Timoshenko beams. The systematic approach is illustrated through free
and forced vibration analyses of two example cantilevered cracked beams, namely, a uniform and
a stepped Timoshenko beam. The physical parameters of the beam are listed in Table 1.
5.1. Free vibration analysis

(i) A uniform beam with a crack
Fig. 5 shows a uniform cracked Timoshenko beam. The geometric discontinuity is at point D.

The incident and reflected waves at the clamped boundary A, free boundary B and the left- and
right-hand sides of D are denoted by a�, b7, d�2 and d

�

3 , respectively. The relationships between
the incident and the reflected waves at the boundaries are described as:

aþ ¼ raa
�; b� ¼ rbb

þ, (32)

At the geometric discontinuity D, the incident, the reflected and the transmitted waves are related
as follows:

d�2 ¼ rdþ2 þ td�3 ; dþ3 ¼ rd�3 þ tdþ2 , (33)

where r and t are the reflection and the transmission matrices of the crack, as discussed in
Section 3.2.
Table 1

Physical parameters of the example beam

Rigidities Polar mass moment of inertia (kgm)

Shear: GAk (N) Bending: EI (Nm2) Torsion: GJ (Nm2)

6343.3 0.2865 0.1891 0.777� 10�6

Mass per unit length (kg/m) Width: b(m) Depth: h(m) Length: L(m) Poisson’s ratio

0.0544 0.0127 0.00318 0.1905 0.29
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Fig. 5. A cracked cantilever beam.
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The propagation relations are

dþ2 ¼ fðL1Þa
þ; a� ¼ fðL1Þd

�
2 ; bþ ¼ fðL2Þd

þ
3 ; d�3 ¼ fðL2Þb

�, (34)

where f(L1) and f(L2) are the propagation matrices between AD and DB, respectively.
Writing Eqs. (32)–(34) in matrix form gives

�I ra 0 0 0 0 0 0

0 0 0 0 0 0 rb �I

0 0 r �I 0 t 0 0

0 0 t 0 �I r 0 0

fðL1Þ 0 �I 0 0 0 0 0

0 �I 0 f L1ð Þ 0 0 0 0

0 0 0 0 f L2ð Þ 0 �I 0

0 0 0 0 0 �I 0 f L2ð Þ

2
666666666666664

3
777777777777775

aþ

a�

dþ2

d�2

dþ3

d�3

bþ

b�

2
66666666666664

3
77777777777775
¼ 0. (35)

For a non-trivial solution, it follows that

�I ra 0 0 0 0 0 0

0 0 0 0 0 0 rb �I

0 0 r �I 0 t 0 0

0 0 t 0 �I r 0 0

fðL1Þ 0 �I 0 0 0 0 0

0 �I 0 f L1ð Þ 0 0 0 0

0 0 0 0 f L2ð Þ 0 �I 0

0 0 0 0 0 �I 0 f L2ð Þ













































¼ 0. (36)

Eq. (36) is the characteristic equation from which the natural frequencies of the uniform cracked
Timoshenko beam can be found.
The natural frequencies of the example beam with and without axial loading and with and

without crack are listed in Table 2. The crack is assumed to be at 0.5L. The values of the natural
frequencies are obtained through a self-written program in Matlab environment by recording
simultaneous sign changes in both real and imaginary responses. The precision of the parameters
can be as high as machine precision. Here the step size is chosen as 0.1Hz. It can be seen from
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Table 2

Natural frequencies (Hz) of the uniform beam under various axial loadings and with varying crack ratios m

Mode number Crack ratio m ¼ 0 Crack ratio m ¼ 0:3 Crack ratio m ¼ 0:5

0N +15N �15N 0N +15N �15N 0N +15N �15N

1 35.3 27.9 46.8 35.2 27.7 46.8 34.9 27.3 46.8

2 217.4 167.7 227.4 214.3 163.6 224.3 207.0 153.8 217.1

3 592.6 520.7 614.5 592.6 520.6 614.4 592.5 520.6 614.3

Table 3

Natural frequencies (Hz) of the uniform beam at various crack locations

Mode

number

Crack ratio m ¼ 0:3
(Crack located at 0.3L)

Crack ratio m ¼ 0:3
(Crack located at 0.5L)

Crack ratio m ¼ 0:3
(Crack located at 0.8L)

0N +15N �15N 0N +15N �15N 0N +15N �15N

1 34.1 25.1 46.0 35.2 27.7 46.8 35.3 28.6 46.8

2 215.2 165.2 225.0 214.3 163.6 224.3 215.4 165.5 226.0

3 571.2 495.8 592.8 592.6 520.6 614.4 572.2 497.0 594.5
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Table 2 that both an axial loading and a crack have the effects of shifting the natural frequencies.
A tensile loading in general increases the natural frequencies, while a compressive loading
decreases the natural frequencies. Regardless of the loading situation, a crack is seen to decrease
the natural frequencies. Thus, it has the effect of ‘‘softening’’ the structure; the deeper the crack,
the softer the structure.
Table 3 lists the natural frequencies of the example beam corresponding to various crack

locations. It shows that the location of a crack affects the free vibration frequencies of a structure.

(ii) A stepped beam with a crack

Fig. 6 shows a cracked stepped Timoshenko beam. The step discontinuity is at point E. The
analysis follows the same procedures as described above, except that there is additional wave
reflection and transmission at the step change. Waves on both sides of the step discontinuity are
related as the following:

e�3 ¼ rLLe
þ
3 þ tRLe

�
4 ; eþ4 ¼ rRRe

�
4 þ tLRe

þ
3 , (37)

The subscripts of r and t identify the incident and transmitted sides of the junction.
The propagation relations are redefined as

dþ2 ¼ fðL1Þa
þ; a� ¼ fðL1Þd

�
2 ; eþ3 ¼ fðL2Þd

þ
3 ,

d�3 ¼ fðL2Þe
�
3 ; bþ ¼ fðL3Þe

þ
4 ; e�4 ¼ fðL3Þb

�, ð38Þ

where f(L1), f(L2) and f(L3) are the propagation matrices between AD, DE and EB, respectively.
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Fig. 6. A cracked stepped cantilever beam.
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Writing Eqs. (32), (37) and (38) in matrix form gives

�I ra 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 rb �I

0 0 r �I 0 t 0 0 0 0 0 0

0 0 t 0 �I r 0 0 0 0 0 0

0 0 0 0 0 0 rLL �I 0 tRL 0 0

0 0 0 0 0 0 tLR 0 �I rRR 0 0

fðL1Þ 0 �I 0 0 0 0 0 0 0 0 0

0 �I 0 fðL1Þ 0 0 0 0 0 0 0 0

0 0 0 0 fðL2Þ 0 �I 0 0 0 0 0

0 0 0 0 0 �I 0 fðL2Þ 0 0 0 0

0 0 0 0 0 0 0 0 fðL3Þ 0 �I 0

0 0 0 0 0 0 0 0 0 �I 0 fðL3Þ

2
6666666666666666666666664

3
7777777777777777777777775

aþ

a�

dþ2

d�2

dþ3

d�3

eþ3

e�3

eþ4

e�4

bþ

b�

2
6666666666666666666666664

3
7777777777777777777777775

¼

0

0

0

0

0

0

0

0

0

0

0

0

2
6666666666666666666666664

3
7777777777777777777777775

.

(39)

For a non-trivial solution, it follows that

�I ra 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 rb �I

0 0 r �I 0 t 0 0 0 0 0 0

0 0 t 0 �I r 0 0 0 0 0 0

0 0 0 0 0 0 rLL �I 0 tRL 0 0

0 0 0 0 0 0 tLR 0 �I rRR 0 0

fðL1Þ 0 �I 0 0 0 0 0 0 0 0 0

0 �I 0 fðL1Þ 0 0 0 0 0 0 0 0

0 0 0 0 fðL2Þ 0 �I 0 0 0 0 0

0 0 0 0 0 �I 0 fðL2Þ 0 0 0 0

0 0 0 0 0 0 0 0 fðL3Þ 0 �I 0

0 0 0 0 0 0 0 0 0 �I 0 fðL3Þ

































































¼ 0. (40)
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Table 4

Natural frequencies (Hz) of the stepped beam under various axial loadings and with varying crack ratios m

Mode number Crack ratio m ¼ 0 Crack ratio m ¼ 0:3 Crack ratio m ¼ 0:5

0N +15N �15N 0N +15N �15N 0N +15N �15N

1 37.7 31.4 50.1 37.6 31.3 50.1 37.3 31.0 50.1

2 209.8 156.3 222.5 207.2 152.9 219.9 201.2 144.3 213.7

3 551.7 471.2 572.1 551.6 470.1 572.0 551.3 470.4 571.8
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Eq. (40) gives the characteristic equation from which the natural frequencies of the cracked
stepped Timoshenko beam can be found.
The natural frequencies of the example beam with and without axial loading and

with and without crack are listed in Table 4. The crack is still assumed to be at 0.5L,
and the step change is assumed at 0.6L. The step is assumed to be a thickness change
of 0.85 (right/left). The values of the natural frequencies are obtained through a self-written
program in Matlab environment by recording simultaneous sign changes in both real and
imaginary responses. The step size is chosen to be 0.1Hz. Again, a tensile loading is seen to
increase the natural frequencies, while a compressive loading decreases the natural frequencies
and a crack has the effect of ‘‘softening’’ the structure, as observed earlier for the uniform
beam.
5.2. Forced vibration analysis

(i) A uniform beam with a crack

Fig. 7 shows the cracked uniform beam with a point force and a moment applied at point C.
The wave amplitudes at the boundaries and the crack discontinuity are the same as described in
Section 5.1(i); the propagation relations are redefined as the following:

cþ1 ¼ fðL11Þa
þ; a� ¼ fðL11Þc

�
1 ; dþ2 ¼ fðL12Þc

þ
2 ,

c�2 ¼ fðL12Þd
�
2 ; bþ ¼ fðL2Þd

þ
3 ; d�3 ¼ fðL2Þb

�, ð41Þ

where f(L11) and f(L12) are the propagation matrices between AC and CD, respectively. Waves
generated by the applied point force and moment are related to each other as described in Section
4, that is,

cþ2 � cþ1 ¼ qþ; c�2 � c�1 ¼ q�. (42)
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Fig. 7. A cracked cantilever beam with applied force and moment.
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Writing Eqs. (32), (33), (41) and (42) in matrix form gives

�I ra 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 rb �I

0 0 0 0 0 0 r �I 0 t 0 0

0 0 0 0 0 0 t 0 �I r 0 0

0 0 �I 0 I 0 0 0 0 0 0 0

0 0 0 �I 0 I 0 0 0 0 0 0

fðL11Þ 0 �I 0 0 0 0 0 0 0 0 0

0 �I 0 fðL11Þ 0 0 0 0 0 0 0 0

0 0 0 0 fðL12Þ 0 �I 0 0 0 0 0

0 0 0 0 0 �I 0 fðL12Þ 0 0 0 0

0 0 0 0 0 0 0 0 fðL2Þ 0 �I 0

0 0 0 0 0 0 0 0 0 �I 0 fðL2Þ

2
6666666666666666666666664

3
7777777777777777777777775

aþ

a�

cþ1

c�1

cþ2

c�2

dþ2

d�2

dþ3

d�3

bþ

b�

2
6666666666666666666666664

3
7777777777777777777777775

¼

0

0

0

0

qþ

q�

0

0

0

0

0

0

2
6666666666666666666666664

3
7777777777777777777777775

,

(43)

from which the magnitudes of the waves can be solved in terms of the external excitations, and the
deflection of any point along the beam can then be found. For example, the deflection of a point
in region 1 that is a distance x from the excitation point is given by

y� ¼ 1 1
� �

fðxÞc�1 þ 1 1
� �

fð�xÞcþ1 ,

yþ ¼ 1 1
� �

fðxÞcþ2 þ 1 1
� �

fð�xÞc�2 . ð44Þ

Fig. 8 shows the frequency responses of the cracked uniform beam due to a point force
excitation at 0.75L, with a disturbance force applied at 0.45L from the clamped end. The
resonances are seen to occur at the natural frequencies as those predicted in Table 2.
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Fig. 8. Frequency responses of the uniform beam with various crack ratios under various axial loadings (—) 0N, (y)

+15N and (-.-.-) �15N; (a) without crack, (b) with crack ratio 0.3, (c) with crack ratio 0.5.
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Fig. 9. A cracked stepped cantilever beam with applied force and moment.
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(ii) A stepped beam with a crack

Fig. 9 shows the cracked stepped beam with a point force and a moment applied at point C. The
wave amplitudes at the boundaries, the crack discontinuity and the step change, as well as waves
generated by the applied point force and moment, are the same as described in Section 5.1(ii). The
propagation relations are redefined as the following:

cþ1 ¼ fðL11Þa
þ; a� ¼ fðL11Þc

�
1 ; dþ2 ¼ fðL12Þc

þ
2 ,

c�2 ¼ fðL12Þd
�
2 ; eþ3 ¼ fðL2Þd

þ
3 ; d�3 ¼ fðL2Þe

�
3 ,

bþ ¼ fðL3Þe
þ
4 ; e�4 ¼ fðL3Þb

�, ð45Þ

where f(L11), f(L12), f(L1), f(L2) and f(L3) are the propagation matrices between AC, CD, DE and
EB, respectively.
Writing Eqs. (32), (37) and (45) in matrix form gives

�I ra 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 rb �I

0 0 �I 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �I 0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 r �I 0 t 0 0 0 0 0 0

0 0 0 0 0 0 t 0 �I r 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 rLL �I 0 tRL 0 0

0 0 0 0 0 0 0 0 0 0 tLR 0 �I rRR 0 0

fðL11Þ 0 �I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �I 0 fðL11Þ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 fðL12Þ 0 �I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �I 0 fðL12Þ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 fðL2Þ 0 �I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 �I 0 fðL2Þ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 fðL3Þ 0 �I 0

0 0 0 0 0 0 0 0 0 0 0 0 0 �I 0 fðL3Þ

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

aþ

a�

cþ1

c�1

cþ2

c�2

dþ2

d�2

dþ3

d�3

eþ3

e�3

eþ4

e�4

bþ

b�

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

¼

0

0

qþ

q�

0

0

0

0

0

0

0

0

0

0

0

0

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

,

(46)

from which the magnitudes of the waves can be solved in terms of the external excitations. The
deflection of any point along the beam can then be found by following the same procedure as
described in Section 5.2(i).
Fig. 10 shows the frequency responses of the stepped beam due to a point force excitation at

0.75L, with the disturbance force applied at 0.45L. The natural frequencies agree well with those
predicted in Table 4.
From the above analyses, it is seen that, with the availability of the reflection and transmission

matrices corresponding to various types of discontinuities, the wave structural vibration analysis
of a complex Timoshenko beam is made simple and concise: it involves only a number of matrix
operations.
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Fig. 10. Frequency responses of the stepped beam with various crack ratio under various axial loading (—) 0N, (y)

+15N and (-.-.-) �15N; (a) without crack, (b) with crack ratio 0.3, (c) with crack ratio 0.5.
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6. Conclusions

In this paper, wave approach is developed in analyzing both free and forced vibrations of
Timoshenko beams under axial loading with various structural discontinuities. Vibration analysis
of structures with such complexity is difficulty to perform using the conventional modal approach.
Numerical approaches are normally used in finding the solutions. However, with the availability
of propagation, reflection and transmission matrices, the exact vibration analysis becomes
systematic and concise, as demonstrated through numerical examples. The effects of a crack
(including both crack size and crack location), an axial load and a step-structural sectional change
on the modes of vibrations are studied in detail.
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