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Abstract

Although an immersed beam with elastic support and fixed support are usually tackled, separately, to
simplify the procedures of analysis, a unified approach will be more convenient for the computer
programming in the computer method. The purpose of this paper is to use a unified approach to determine
the ‘‘exact’’ lowest several natural frequencies and the associated mode shapes of the (partially or fully)
immersed beam in both the elastic- and fixed-support conditions. Furthermore, by modeling the distributed
added mass along the immersed part of the beam with a number of concentrated added masses, a point
added mass method (PAM) incorporated with the mode-superposition approach is also presented to
determine the ‘‘approximate’’ lowest several natural frequencies and the associated mode shapes of the last
two types of immersed beam. It is unlike most of the vibrating systems with their boundary conditions
independent on the eigenvalues that the boundary conditions of the current immersed beam are frequency
dependent due to the existence of frequency-dependent boundary inertial forces and moments. Since the
last frequency-dependent boundary conditions significantly affect the orthogonal condition of the mode
shapes and so do the applicability of the mode-superposition approach for the vibration analysis, the theory
regarding the orthogonal condition for the mode shapes of the current vibrating system will be one of the
key points in this paper. The numerical results have been compared with the existing information or the
results of finite element method and a good agreement is achieved. Furthermore, to check the last
see front matter r 2005 Elsevier Ltd. All rights reserved.
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theoretical results, several model tests are also carried out on the scale models of the fixed and elastically
supported towers and reasonable agreement is obtained.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since the dynamic characteristics of some structures, such as towers, piles, tall buildings and
robot arms, can be predicted with a reasonable accuracy from an elastically (or fixedly) supported
beam carrying a tip mass with (or without) rotary inertia, a lot of researchers devoted themselves
to the study of problems in this aspect. For the free vibration analysis of ‘‘uniform’’ beam with tip
mass, Refs. [1–14] are some of the pertinent literature and for that of ‘‘non-uniform’’ beam with
tip mass, Refs. [15–20] are the associated articles. Refs. [21,22] regarding the forced vibration
responses of tower due to wave excitation and earthquake may be also the pertinent literature for
some researchers. Among the above-mentioned literature, only the most concerned references will
be reviewed here. In Ref. [19], Chang and Liu studied the natural frequencies of immersed
restrained column by means of the transfer matrix method. Their purpose is to study the influence
of the following parameters: taper ratio of the beam, magnitudes of tip mass, eccentricity and
rotary inertia, axial load, and the stiffness of elastic-support translational and rotational springs.
Although most of the problem concerned has been studied in Ref. [19], the approach used is a
conventional ‘‘approximate’’ method. For this reason, Uscilowska and Kolodziej [13] presented
an analytical method to determine the ‘‘exact’’ lowest five natural frequencies and mode shapes of
the uniform cantilever tower carrying an eccentric tip mass with mass moment of inertia.
Recently, in Ref. [14], the same problem as Ref. [13] is studied by Oz. There, the numerical results
of the conventional finite element method (FEM) are used to check the analytical (exact)
solutions.
In reality, the support condition of an offshore tower is elastic rather than completely fixed.

Hence, it will be more reasonable to model the interactions between tower and soil by using a
translational (helical) spring and a rotational spring. In other words, the actual support condition
for the lower end of an offshore tower will be close to the condition between soft-spring support
and fixed support. In such a situation, two types of tower must be considered, one is elastically
supported and the other is fixedly supported. The purpose of this paper is to use a unified
approach to determine the ‘‘exact’’ lowest several natural frequencies and the associated mode
shapes of the last two types of (partially or fully) immersed beam. Furthermore, since
determination of the ‘‘exact’’ natural frequencies and mode shapes of an immersed column with
intermediate (in-span) lumped masses is usually difficult no matter whether the column is uniform
or non-uniform, this paper also presents the point added mass method (PAM) [20] incorporated
with the analytical-and-numerical combined method (ANCM) [7] to solve the title problem. It is
noted that the PAM and the ANCM are available only if the mode shapes of the vibrating system
are orthogonal. One of the main differences between the vibrating system of this paper and those
of Refs. [7,20] is that the boundary conditions of the former are frequency dependent and those of
the latter have nothing to do with the eigenvalues. For this reason, the orthogonal condition of
mode shapes of the current vibrating system is more complicated than those of Refs. [7,20].
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Besides, the analytical (exact) method is available only for the immersed column without carrying
any intermediate (in-span) realistic lumped masses, but both the PAM and the FEM are available
for the immersed column with or without carrying any number of intermediate lumped masses. A
good agreement between the results of analytical (exact) method, PAM and FEM confirms the
reliability of the presented approaches. For convenience, in this paper, the immersed beam (in
contact with water) is also called the ‘‘wet’’ beam, and it is evident that the ‘‘dry’’ beam (without
contact with water) is the special case of the ‘‘wet’’ beam.
2. Natural frequencies and mode shapes of an immersed (wet) beam

For the uniform Euler–Bernoulli beam shown in Fig. 1, the equation of motion of the immersed
part is given by [13,23]

EIy00001 ðx; tÞ þ ðrþ rwÞA €y1ðx; tÞ ¼ 0 for 0pxpL1, (1)
x

y
Rk

e tJ
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L

Fig. 1. A partially immersed beam carrying a tip mass mt with mass moment of inertia Jt and eccentricity e, and

supported by a translational spring kT and a rotational spring kR.
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where E is Young’s modulus, A is cross-sectional area, I is moment of inertia of area A, r is mass
density of beam, rw is mass density of water, x is the axial coordinate with origin at the lower end
of the beam, y1ðx; tÞ is the lateral displacement at x and time t. Besides, in Eq. (1), the primes (0)
refer to the derivatives with respect to (w.r.t.) coordinate x and the over dots ( � ) refer to those
w.r.t. time t.
It is evident that the equation of motion for the emerged part of the beam may be obtained

from Eq. (1) by setting rw ¼ 0, i.e.,

EIy00002 ðx; tÞ þ rA €y2ðx; tÞ ¼ 0 for L1pxpL, (2)

where L1 is the water depth and L is the total length of beam.
For free vibration of the beam, one has

y1ðx; tÞ ¼ Ȳ 1ðxÞe
iōt, (3a)

y2ðx; tÞ ¼ Ȳ 2ðxÞe
iōt, (3b)

where Ȳ 1ðxÞ and Ȳ 2ðxÞ denote the amplitude functions of y1ðx; tÞ and y2ðx; tÞ, respectively, while ō
is the natural frequency of the (partially or fully) immersed beam and i ¼

ffiffiffiffiffiffiffi
�1
p

.
The substitution of Eq. (3) into Eq. (1) gives

Ȳ
0000

1 ðxÞ þ b4wȲ 1ðxÞ ¼ 0, (4)

where

b4w ¼
ðrþ rwÞA

EI
ō2. (5)

or

ō ¼ ðbwLÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

ðrþ rwÞAL4

s
. (6)

The general solution of Eq. (4) takes the form [23]

Ȳ 1ðxÞ ¼ C̄1 sin bwxþ C̄2 cos bwxþ C̄3 sinh bwxþ C̄4 cosh bwx. (7)

Similarly, the mode shape of the emerged part of the beam takes the form

Ȳ 2ðxÞ ¼ C̄5 sin baxþ C̄6 cos baxþ C̄7 sinh baxþ C̄8 cosh bax, (8)

where

b4a ¼
rA

EI
ō2. (9)

It is noted that the subscripts w and a for the parameters bw and ba, respectively, defined by
Eqs. (5) and (9) are used to indicate that the parameter bw is obtained based on the equivalent
mass density of the beam in ‘‘water’’, rþ rw, while the parameter ba is obtained based on the
actual mass density of the beam in ‘‘air’’, r. In other words, corresponding to each natural
frequency ō, one may obtain two frequency parameters, bw and ba. Disagreement between
numerical results may be due to selecting wrong parameters for comparison as one may see from
the section of ‘‘Numerical results and discussions’’ in this paper.
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The eight integration constants, C̄1 � C̄8, appearing in Eqs. (7) and (8), are determined by the
following boundary conditions:

EIȲ
00

1ðxÞ ¼ kRȲ
0

1ðxÞ at x ¼ 0, (10a)

EIȲ
000

1 ðxÞ ¼ �kT Ȳ 1ðxÞ at x ¼ 0, (10b)

Ȳ 1ðxÞ ¼ Ȳ 2ðxÞ; Ȳ
0

1ðxÞ ¼ Ȳ
0

2ðxÞ; Ȳ
00

1ðxÞ ¼ Ȳ
00

2ðxÞ; Ȳ
000

1 ðxÞ ¼ Ȳ
000

2 ðxÞ at x ¼ L1, (11a,b,c,d)

EIȲ
00

2ðxÞ ¼ ō2ðJt þmte
2ÞȲ

0

2ðxÞ þ ō2mteȲ 2ðxÞ at x ¼ L, (12a)

EIȲ
000

2 ðxÞ ¼ �ō
2mtȲ 2ðxÞ � ō2mteȲ

0

2ðxÞ at x ¼ L. (12b)

It is noted that the boundary conditions given by Eqs. (10) and (11) are the classical ones because
they are independent of the natural frequency ō. However, this is not true for those given by
Eqs. (12a) and (12b), because they are frequency dependent. One of the main differences between
this paper and Refs. [7,20] is due to the frequency-dependent boundary conditions.
Substituting Eq. (7) into Eqs. (10a) and (10b), one obtains

kRC̄1 þ EIbwC̄2 þ kRC̄3 � EIbwC̄4 ¼ 0, (13a)

EIb3wC̄1 � kT C̄2 � EIb3wC̄3 � kT C̄4 ¼ 0. (13b)

Similarly, the substitution of Eqs. (7) and (8) into Eqs. (11a)–(11d) leads to

sin bwL1C̄1 þ cos bwL1C̄2 þ sinh bwL1C̄3 þ cosh bwL1C̄4

� sin baL1C̄5 � cos baL1C̄6 � sinh baL1C̄7 � cosh baL1C̄8 ¼ 0, ð14aÞ

bwðcos bwL1C̄1 � sin bwL1C̄2 þ cosh bwL1C̄3 þ sinh bwL1C̄4Þ

þ bað� cos baL1C̄5 þ sin baL1C̄6 � cosh baL1C̄7 � sinh baL1C̄8Þ ¼ 0, ð14bÞ

b2wð� sin bwL1C̄1 � cos bwL1C̄2 þ sinh bwL1C̄3 þ cosh bwL1C̄4Þ

þ b2aðsin baL1C̄5 þ cos baL1C̄6 � sinh baL1C̄7 � cosh baL1C̄8Þ ¼ 0, ð14cÞ

b3wð� cos bwL1C̄1 þ sin bwL1C̄2 þ cosh bwL1C̄3 þ sinh bwL1C̄4Þ

þ b3aðcos baL1C̄5 � sin baL1C̄6 � cosh baL1C̄7 � sinh baL1C̄8Þ ¼ 0. ð14dÞ

Finally, from Eqs. (8) and (12), one obtains

½�ðEIb2a þ ō2mteÞ sin baL� ō2baðJt þmte
2Þ cos baL�C̄5

þ ½�ðEIb2a þ ō2mteÞ cos baLþ ō2baðJt þmte
2Þ sin baL�C̄6

þ ½ðEIb2a � ō2mteÞ sinh baL� ō2baðJt þmte
2Þ cosh baL�C̄7

þ ½ðEIb2a � ō2mteÞ cosh baL� ō2baðJt þmte
2Þ sinh baL�C̄8 ¼ 0, ð15aÞ
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½ð�EIb3a þ ō2bamteÞ cos baLþ ō2mt sin baL�C̄5

þ ½ðEIb3a � ō2bamteÞ sin baLþ ō2mt cos baL�C̄6

þ ½ðEIb3a þ ō2bamteÞ cosh baLþ ō2mt sinh baL�C̄7

þ ½ðEIb3a þ ō2bamteÞ sinh baLþ ō2mt cosh baL�C̄8 ¼ 0. ð15bÞ

To write Eqs. (13)–(15) in matrix form, one has

B̄11 B̄12 B̄13 B̄14 B̄15 B̄16 B̄17 B̄18

B̄21 B̄22 B̄23 B̄24 B̄25 B̄26 B̄27 B̄28

B̄31 B̄32 B̄33 B̄34 B̄35 B̄36 B̄37 B̄38

B̄41 B̄42 B̄43 B̄44 B̄45 B̄46 B̄47 B̄48

B̄51 B̄52 B̄53 B̄54 B̄55 B̄56 B̄57 B̄58

B̄61 B̄62 B̄63 B̄64 B̄65 B̄66 B̄67 B̄68

B̄71 B̄72 B̄73 B̄74 B̄75 B̄76 B̄77 B̄78

B̄81 B̄82 B̄83 B̄84 B̄85 B̄86 B̄87 B̄88

2
666666666666664

3
777777777777775

C̄1

C̄2

C̄3

C̄4

C̄5

C̄6

C̄7

C̄8

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼ 0 (16)

or

½B̄�fC̄g ¼ 0, (17)

where fC̄g is a column vector given by

C̄
� �
¼ fC̄1 C̄2 C̄3 C̄4 C̄5 C̄6 C̄7 C̄8g (18)

and ½B̄� is a 8� 8 square matrix with its coefficients given by

B̄11 ¼ kR; B̄12 ¼ EIbw; B̄13 ¼ kR; B̄14 ¼ �EIbw; B̄1j ¼ 0 ðj ¼ 5� 8Þ, (19)

B̄21 ¼ EIb3w; B̄22 ¼ �kT ; B̄23 ¼ �EIb3w; B̄24 ¼ �kT ; B̄2j ¼ 0 ðj ¼ 5� 8Þ, (20)

B̄31 ¼ sin bwL1; B̄32 ¼ cos bwL1; B̄33 ¼ sinh bwL1; B̄34 ¼ cosh bwL1;

B̄35 ¼ � sin baL1; B̄36 ¼ � cos baL1; B̄37 ¼ � sinh baL1; B̄38 ¼ � cosh baL1, ð21Þ

B̄41 ¼ bw cos bwL1; B̄42 ¼ �bw sin bwL1; B̄43 ¼ bw cosh bwL1; B̄44 ¼ bw sinh bwL1;

B̄45 ¼ � ba cos baL1; B̄46 ¼ ba sin baL1; B̄47 ¼ �ba cosh baL1; B̄48 ¼ �ba sinh baL1, ð22Þ

B̄51 ¼ � b2w sin bwL1; B̄52 ¼ �b
2
w cos bwL1; B̄53 ¼ b2w sinh bwL1; B̄54 ¼ b2w cosh bwL1;

B̄55 ¼ b2a sin baL1; B̄56 ¼ b2a cos baL1; B̄57 ¼ �b
2
a sinh baL1; B̄58 ¼ �b

2
a cosh baL1, ð23Þ

B̄61 ¼ � b3w cos bwL1; B̄62 ¼ b3w sin bwL1; B̄63 ¼ b3w cosh bwL1; B̄64 ¼ b3w sinh bwL1;

B̄65 ¼ b3a cos baL1; B̄66 ¼ �b
3
a sin baL1; B̄67 ¼ �b

3
a cosh baL1; B̄68 ¼ �b

3
a sinh baL1, ð24Þ
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B̄7j ¼ 0 ðj ¼ 1� 4Þ,

B̄75 ¼ �ðEIb2a þ ō2mteÞ sin baL� ō2baðJt þmte
2Þ cos baL,

B̄76 ¼ �ðEIb2a þ ō2mteÞ cos baLþ ō2baðJt þmte
2Þ sin baL,

B̄77 ¼ ðEIb2a � ō2mteÞ sinh baL� ō2baðJt þmte
2Þ cosh baL,

B̄78 ¼ ðEIb2a � ō2mteÞ cosh baL� ō2baðJt þmte
2Þ sinh baL, ð25Þ

B̄8j ¼ 0 ðj ¼ 1� 4Þ,

B̄85 ¼ ð�EIb3a þ ō2bamteÞ cos baLþ ō2mt sin baL,

B̄86 ¼ ðEIb3a � ō2bamteÞ sin baLþ ō2mt cos baL,

B̄87 ¼ ðEIb3a þ ō2bamteÞ cosh baLþ ō2mt sinh baL,

B̄88 ¼ ðEIb3a þ ō2bamteÞ sinh baLþ ō2mt cosh baL. ð26Þ

Eq. (16) or (17) represents a simultaneous equations, non-trivial solution for the integration
constants C̄1 � C̄8 requires that their coefficient determinant is equal to zero, i.e.,

DðōÞ ¼ jB̄j ¼ 0. (27)

Eq. (27) denotes the frequency equation for the elastically supported beam with eccentric
tip mass mt and mass moment of inertia Jt as shown in Fig. 1 from which one may determine
the natural frequencies ōr ðr ¼ 1; 2; 3; . . .Þ together with the associated frequency parameters
bwr and bar defined by Eqs. (5) and (9). Besides, based on the last values of bwr and bar one
may determine the associated integration constants C̄1 � C̄8 from Eq. (16), and the substitution
of the values of C̄1 � C̄8 into Eqs. (7) and (8) one may obtain the corresponding mode
shapes Ȳ rðxÞ. It is evident that Ȳ rðxÞ is a combination of Ȳ 1rðxÞ and Ȳ 2rðxÞ. For the special cases,
one has Ȳ rðxÞ ¼ Ȳ 1rðxÞ if the beam is fully immersed and Ȳ rðxÞ ¼ Ȳ 2rðxÞ if the beam is fully
emerged.
The foregoing formulations are for the elastically supported beam. They are also available for

the fixedly supported beam if the matrix coefficients B̄ij (i ¼ 1� 2 and j ¼ 1� 4) are replaced by

B̄11 ¼ 1; B̄12 ¼ 0; B̄13 ¼ 1; B̄14 ¼ 0, (28)

B̄21 ¼ 0; B̄22 ¼ 1; B̄23 ¼ 0; B̄24 ¼ 1. (29)

The last coefficients are obtained from substituting Eq. (7) into the following boundary conditions
for a clamped beam at its lower end (cf. Fig. 1):

Ȳ
0

1ðxÞ ¼ 0; Ȳ 1ðxÞ ¼ 0. (30a,b)

It is evident that one may obtain the analytical (exact) natural frequencies and mode shapes of
both the elastically and fixedly supported immersed beams from the same formulation and
computer program. This is one of the merits of the presented unified approach.
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3. Natural frequencies and normal mode shapes of a ‘‘dry’’ beam

In addition to the classical analytical method introduced in the last section, the title
problem can also be solved with the approximate PAM presented in this section. To this
end, the ‘‘distributed’’ added mass along the immersed part of the beam is replaced by a number
of ‘‘point’’ (concentrated) added masses so that the dynamical characteristics of an immersed
(wet) beam may be predicted by a fully emerged (dry) beam carrying a number of point
added masses. In general, for an immersed beam carrying a number of in-span lumped
masses other than the point added masses along the beam (located at either the immersed or the
emerged part), the last classical analytical method will suffer much difficulty, but this is not true
for the PAM.
The first step of PAM is to determine the lowest several natural frequencies and the associated

normal mode shapes of the ‘‘dry’’ beam analytically. Next, the mode superposition method is used
to derive the equation of motion of the dry beam carrying a number of point masses (may be point
added masses or the other in-span lumped masses) and then the associated eigenvalue problem is
solved with the conventional numerical method. For this reason, the free vibration analysis of the
‘‘dry’’ beam is performed in this section.
It is similar to Eq. (4) that the characteristic equation for a dry beam is given by

Y 0000ðxÞ � b4Y ðxÞ ¼ 0 (31)

with

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rA

EI
o2

4

r
, (32)

where all symbols have the same meanings as the associated ones for the immersed (wet) beam.
The solution of Eq. (31) takes the form

Y ðxÞ ¼ C1 sin bxþ C2 cos bxþ C3 sinh bxþ C4 cosh bx. (33)

If the lower end of the dry beam is elastically supported as shown in Fig. 1, then the simultaneous
equations for the integration constants C1 � C4 are given by

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

2
6664

3
7775

C1

C2

C3

C4

8>>><
>>>:

9>>>=
>>>;
¼ 0. (34)

In addition to the normal procedures of substituting Eq. (33) into the associated boundary
conditions, such as those given by Eqs. (10) and (12), to arrive at Eq. (34), the last matrix equation
may also be obtained directly from Eq. (16) by eliminating the 3–6 rows, the 5–8 columns in 1–2
rows and 1–4 columns in 7–8 rows from the 8� 8 matrix ½B̄�. Thus,

Bij ¼ B̄ij ði ¼ 1� 2 and j ¼ 1� 4Þ, (35)

Bij ¼ B̄iþ4;jþ4 ði ¼ 3� 4 and j ¼ 1� 4Þ, (36)
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where the associated values of Bij are given by Eqs. (19), (20), (25) and (26) with bw ¼ ba ¼ b. It is
evident that the matrix coefficients Bij appearing in Eq. (35) must be replaced by those given by
Eqs. (28) and (29) if the lower end of the dry beam is clamped.
It is similar to Eq. (27) that the natural frequencies of the dry beam may be obtained from the

following frequency equation:

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

���������

���������
¼ 0. (37)

For a specified natural frequency or (or parameter br) obtained from Eq. (37), one may obtain the
corresponding integration constants C1 � C4 from Eq. (34) and, in turn, the ‘‘natural’’ mode
shape Y rðxÞ of the dry beam from Eq. (33).
The orthogonal condition for the mode shapes of the current vibrating system is to take the

form [23]

drs ¼

Z L

0

Y rðxÞrAY sðxÞdxþ Y rðLÞmtY sðLÞ þ Y rðLÞ2mteY 0sðLÞ þ Y 0rðLÞðJt þmte
2ÞY 0sðLÞ

¼
drr if r ¼ s;

0 if ras:

(
ð38Þ

It is noted that the orthogonal condition given by Ref. [23] is only a simple general form and is not
like that of Eq. (38). If each term on the right side of Eq. (38) is multiplied by the square of the rth
natural frequency of the dry beam, o2

r , then the first term of the resulting expression denotes the
work done by the inertia forces of the dry beam itself and all the other terms denote the works
done by the frequency-dependent boundary forces and moments.
The mode superposition method is available only for the orthogonal ‘‘normal’’ mode shapes,

the latter may be obtained from the ‘‘natural’’ mode shapes by using the normalization factor drr

determined by Eq. (38), i.e.,

Ŷ rðxÞ ¼ Y rðxÞ=
ffiffiffiffiffiffi
drr

p
¼

1ffiffiffiffiffiffi
drr

p ðC1 sin brxþ C2 cos brxþ C3 sinh brxþ C4 cosh brxÞ

r ¼ 1; 2; 3; . . . . ð39Þ

For a general vibrating system with its boundary conditions independent upon its natural
frequencies, such as those in Refs. [7,20], the normalization factor drr is determined by the first
term on the right-hand side of Eq. (38), i.e.,

drr ¼

Z L

0

Y rðxÞrAY rðxÞdx. (40)

However, this is incorrect for the current problem, because the boundary conditions at the top end
of the beam are dependent on the natural frequencies as one may see from Eqs. (12a) and (12b).
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4. Mathematical model for FEM and PAM

In order to determine the natural frequencies and mode shapes of the immersed beam with the
conventional FEM, the whole beam shown in Fig. 1 is subdivided into Ne identical beam elements
bound by Ne þ 1 nodes. The last nodes are used as the P stations for the PAM, at which the point
added masses ~mi (i ¼ 1 to f ) or in-span lumped mass mi (i ¼ 2 to ðP� 1Þ) are located as shown in
Fig. 2, with f denoting the numbering for the station located at the free water surface. Since the
sizes of all beam elements are identical, the total stations P ¼ Ne þ 1 are uniformly distributed
over the whole length L of the beam with first station 1 at the lower end and the final station P at
the upper end of the beam. In Fig. 2, the location of station i is defined by the coordinate xi (i ¼ 1
to P) with its origin at the first station, thus, one has xf ¼ L1, where L1 is the depth of water.
According to the foregoing descriptions one sees that the magnitude of the concentrated mass at
station i is determined by

m̂i ¼ ~mi þmi ði ¼ 1 to PÞ, (41)

where the magnitudes of the point added masses are given by [20]

~mi ¼ C0mrwAL1=ðf � 1Þ for i ¼ 2; 3; . . . ; f � 1, (42a)

~mi ¼
1
2
C0mrwAL1=ðf � 1Þ for i ¼ 1 and f . (42b)

In the last expressions, C0m is the added mass coefficient [24], and for simplicity, it is usually
assumed that C0m ¼ 1:0 [22,24].
x

y

Rk

e tJ

Tk

tm

L

1
~m

2
~m

3
~m

fm~

1P–m

 

2x

Px

1P–x

1Lx f =

3x

1

2

3

f

P

∆

Fig. 2. Mathematical model for FEM and PAM (digits refer to the station numberings.)
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Fig. 2 reveals that, for an immersed beam without any intermediate (in-span) point mass attached,
one has m̂i ¼ ~mi (i ¼ 1 to f) for the immersed part and m̂i ¼ 0 (i ¼ ðf þ 1Þ to P) for the emerged
part. Similarly, for an immersed beam with intermediate point masses attached, one has m̂i ¼

~mi þmi (i ¼ 1 to f) for the immersed part and m̂i ¼ mi (i ¼ ðf þ 1Þ to ðP� 1Þ) for the emerged part.
In other words, Eq. (41) is correct for all possible cases shown in Fig. 2. At station i, if there exists no
point ‘‘added mass’’ one has ~mi ¼ 0, if there exists no intermediate point mass one has mi ¼ 0 and if
there exists neither point ‘‘added mass’’ nor intermediate point mass one has ~mi ¼ mi ¼ 0.
5. Point added mass method (PAM)

If the frequency-dependent boundary inertial forces and moments are neglected, then the
equation of motion for a dry beam carrying P concentrated masses m̂i (i ¼ 1 to P), including the
point added masses ~mi and the intermediate lumped masses mi as shown in Fig. 2, is given by [7]

EIy0000ðx; tÞ þ rA €yðx; tÞ þ
XP

i¼1

m̂i €yðx; tÞ � dðx� xiÞ ¼ 0. (43)

The definitions for the symbols appearing in Eq. (43) are exactly the same as those in Eq. (1)
and dð�Þ denotes the Dirac delta function.
According to the theory of mode-superposition method [25], one may assume the dynamic

response yðx; tÞ satisfying Eq. (43) to take the form

yðx; tÞ ¼
Xn0

s¼1

Ŷ sðxÞqsðtÞ, (44)

where Ŷ sðxÞ denotes the sth normal mode shape of the dry beam given by Eq. (39), qsðtÞ is the sth
generalized coordinate, and n0 is the total number of modes considered.
Substituting Eq. (44) into Eq. (43), pre-multiplying both sides of the resulting equation by

Ŷ rðxÞdx, integrating each term over the beam length (x ¼ 0 to L), considering the influence of
frequency-dependent boundary inertial forces and moments, and applying the orthogonal
condition given by Eq. (38), one obtains

M̂rr €qrðtÞ þ K̂rrqrðtÞ ¼ P̂rðtÞ ðr ¼ 12n0Þ, (45)

where

M̂rr ¼

Z L

0

Ŷ rðxÞrAŶ rðxÞdxþ Ŷ rðLÞmtŶ rðLÞ þ 2mteŶ rðLÞŶ
0

rðLÞ þ Ŷ
0

rðLÞðJt þmte
2ÞŶ

0

rðLÞ,

(46a)

K̂rr ¼

Z L

0

Ŷ rðxÞEIŶ
0000

rr ðxÞdx, (46b)

P̂r ¼ �
Xp

i¼1

Xn0

s¼1

m̂iŶ rðxiÞŶ sðxiÞ

" #
€qrðtÞ (46c)
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represent the generalized mass, generalized stiffness and generalized force, respectively. For the
‘‘normal’’ mode shapes Ŷ rðxÞ given by Eq. (39), one has

M̂rr ¼ 1:0 and K̂rr=M̂rr ¼ o2
r , (47a,b)

where or represents the rth natural frequency of the dry beam.
Eq. (45) is the governing equation for the wet beam. When the wet beam performs free

vibration, the generalized coordinate qrðtÞ in Eq. (45) takes the form

qrðtÞ ¼ q̄re
i ~ot, (48)

where q̄r is the amplitude of qrðtÞ and ~o is the natural frequency of the wet beam.
From Eqs. (45)–(48) one obtains

ðo2
r � ~o2Þq̄r � ~o2

XP

i¼1

Xn0

s¼1

miŶ rðxiÞŶ sðxiÞ

 !
q̄r ¼ 0; r ¼ 1�n0 (49)

or in matrix form

\o2
\

h i
fq̄g � ~o2 \I \

� �
þ ½A�

� �
fq̄g ¼ 0, (50)

where

fŶ ðxÞg ¼ fŶ 1ðxÞ; Ŷ 2ðxÞ; . . . ; Ŷ n0 ðxÞgn0�1; fq̄g ¼ fq̄1; q̄2; . . . ; q̄n0 gn0�1,

\o2
\

h i
¼ do2

1;o
2
2; . . . ;o

2
n0 cn0�n0 ;

\I \
� �
¼ d1; 1; . . . ; 1cn0�n0 ,

½A� ¼
XP

i¼1

mifŶ ðxiÞgfŶ ðxiÞg
T. ð51Þ

In the above expressions, the symbols {}, d c and [ ] represent a column matrix, a diagonal matrix
and a square matrix, respectively.
Eq. (50) is an eigenvalue equation, a lot of techniques [26] may be used to obtain the eigenvalues

~or ðr ¼ 1; . . . ; n0Þ and the corresponding eigenvectors fq̄gr ðr ¼ 1; . . . ; n0Þ. Here ~or is the rth natural
frequency of the ‘‘wet ‘‘beam with the corresponding mode shape ~Y rðxÞ determined by

~Y rðxÞ ¼
Xn0

s¼1

Ŷ sðxÞfq̄gs. (52)

The last formulation of PAM is extended from that of the unified approach without any
difficulty, this is another merit of the presented unified approach.
6. Numerical results and discussions

For comparison, the main dimensions and physical properties of the beam are taken to
be equal to those of Refs. [13,19]: total length L ¼ 15m, diameter d ¼ 0:3m, cross-
sectional area A ¼ pd2=4 ¼ 7:06858� 10�2 m2, moment of inertia of cross-sectional area
I ¼ pd4=64 ¼ 3:9761� 10�4 m4, Young’s modulus E ¼ 2:068� 1011 N=m2 and mass density of
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beam material r ¼ 7850kg=m3. Besides, the mass density of water and added mass coefficient
are taken to be rw ¼ 1000kg=m3 and C0m ¼ 1:0, respectively. For convenience, the following
non-dimensional parameters are introduced: draft ratio L�1 ¼ L1=L ¼ L1=15, rotary-inertia
ratio J�t ¼ Jt=ðrAL3Þ ¼ Jt=ð1:87273191375� 106Þ, tip-mass ratio m�t ¼ mt=ðrALÞ ¼ mt=
ð8:32325295� 103Þ, translational spring stiffness ratio k�t ¼ kt=ðEI=L3Þ ¼ kt=ð2:43631846� 104Þ
and rotational spring stiffness ratio k�R ¼ kR=ðEI=LÞ ¼ kR=ð5:4817165333� 106Þ. Unless parti-
cularly stated, the results of this paper are obtained based on the following values of parameters:
eccentricity e ¼ 0:5m, rotary-inertia ratio J�t ¼ 0:1, tip-mass ratio m�t ¼ 0:1, total number of finite
beam elements Ne ¼ 60, total number of stations P ¼ Ne þ 1 ¼ 61.

6.1. Reliability of the theory and the computer programs

In order to confirm the reliability of the theory and the computer programs developed for this
paper, the influence of rotary-inertia ratio J�t , draft ratio L�1 and tip-mass ratio m�t on the lowest
three frequency parameters of the ‘‘fixed’’ immersed beam with zero eccentricity (i.e., e ¼ 0),
ðbwLÞr and ðbaLÞr for r ¼ 1� 3, are studied and shown in Table 1. It has been mentioned next to
Eq. (9) that corresponding to each natural frequency ō, one may obtain two frequency
parameters, bw and ba, from Eqs. (5) and (9), respectively. However, in Ref. [13] only the
parameter bw is calculated, and in Ref. [19] only the parameter ba is calculated. This is the reason
why, in Table 2 of Ref. [13], the frequency parameters of Ref. [13] are different from
the corresponding ones of Ref. [19] to some degree. From the current Table 1 one sees that the
frequency parameters obtained from this paper (either Exact, PAM or FEM) are very close to the
corresponding ones of Refs. [13,19]. In other words, all the frequency parameters listed in Table 2
of Ref. [13] are correct. It seems that the author of Ref. [14] does not find the last fact yet. It is
noted that the natural frequencies of the immersed beam, ōr ðr ¼ 1; 2; 3; . . .Þ, obtained from
either Ref. [13] or [14] should be very close to the corresponding ones of Ref. [19], because both bw

and ba are determined from the same associated natural frequency ōr as one may see from Eqs. (5)
and (9).
It is believed that the above-mentioned good agreement between the natural frequencies of this

paper and the corresponding ones of the existing literature may be the evidence of reliability of the
theory and the computer programs developed for this paper.

6.2. Influence of spring stiffness (kT ¼ kR) of the elastically supported immersed beam

In this paper, the analytical solutions of natural frequencies and mode shapes for both the
elastically and fixedly supported immersed beams are presented. The main purpose of this
subsection is to show that natural frequencies and mode shapes of a fixedly supported (clamped)
immersed beam may also be obtained from the elastically supported one by simply setting the
stiffness of the elastic-support springs to approach infinity.
For the case of e ¼ 0:5m and J�t ¼ m�t ¼ 0:1, the influence of the stiffness ratios k�T ¼ k�R on the

lowest five natural frequencies of the immersed beam is shown in Table 2 with draft ratios
L�1 ¼ L1=L ¼ 0, 0.5 and 1.0, respectively, where ‘‘Exact’’ refers to the analytical (exact) method
and ‘‘PAM’’ refers to the point added mass method, both of them are presented in this paper. For
the case of k�T ¼ k�R ¼ 1 as shown in Table 2, the associated lowest five natural frequencies are
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Table 1

Influence of draft ratios (L�1 ¼ L1=L), rotary-inertia ratios (J�t ¼ Jt=ðrAL3Þ) and tip-mass ratios (m�t ¼ mt=ðrALÞ) on

the lowest three frequency parameters of the ‘‘fixed’’ immersed beam with eccentricity e ¼ 0 shown in Fig. 1, ðbwLÞr and

ðbaLÞr for r ¼ 1� 3

J�t L�1 m�t Methods ðbwLÞ1 ðbwLÞ2 ðbwLÞ3 ðbaLÞ1 ðbaLÞ2 ðbaLÞ3

0.0 0.0 1.0 Ref. [13] 1.28589 4.15381 7.35123 — — —

Ref. [19] — — — 1.24791 4.03105 7.13373

Exact 1.28589 4.15381 7.35122 1.24792 4.03114 7.13413

PAM 1.28589 4.15381 7.35122 1.24792 4.03114 7.13413

FEM 1.28589 4.15381 7.35122 1.24792 4.03114 7.13413

2.0 Ref. [13] 1.10894 4.10377 7.31879 — — —

Ref. [19] — — — 1.07619 3.98250 7.10227

Exact 1.10894 4.10376 7.31878 1.07619 3.98257 7.10265

PAM 1.10894 4.10376 7.31878 1.07619 3.98257 7.10265

FEM 1.10894 4.10376 7.31878 1.07620 3.98257 7.10265

0.5 1.0 Ref. [13] 1.28553 4.10890 7.23281 — — —

Ref. [19] — — — 1.24755 3.98642 7.01864

Exact 1.28553 4.10890 7.23280 1.24757 3.98756 7.01921

PAM 1.28553 4.10889 7.23284 1.24757 3.98755 7.01925

FEM 1.28553 4.10889 7.23284 1.24757 3.98755 7.01925

2.0 Ref. [13] 1.10878 4.05978 7.20006 — — —

Ref. [19] — — — 1.07602 3.93877 6.98687

Exact 1.10877 4.05978 7.20006 1.07603 3.93989 6.98743

PAM 1.10877 4.05977 7.20010 1.07603 3.93988 6.98747

FEM 1.10878 4.05977 7.20010 1.07603 3.93988 6.98747

1.0 0.0 1.0 Ref. [13] 0.95996 1.89739 5.05001 — — —

Ref. [19] — — — 0.93161 1.84135 4.90076

Exact 0.95996 1.89738 5.05001 0.93161 1.84135 4.90087

PAM 0.95996 1.89738 5.05001 0.93161 1.84135 4.90087

FEM 0.95996 1.89738 5.05001 0.93161 1.84135 4.90087

2.0 Ref. [13] 0.91265 1.74078 4.97632 — — —

Ref. [19] — — — 0.78792 1.59862 4.82488

Exact 0.91265 1.74078 4.97631 0.88570 1.68937 4.82936

PAM 0.91265 1.74078 4.97631 0.88570 1.68937 4.82936

FEM 0.91265 1.74078 4.97631 0.88570 1.68937 4.82936

0.5 1.0 Ref. [13] 0.95991 1.98600 4.97223 — — —

Ref. [19] — — — 0.93156 1.83996 4.82388

Exact 0.95991 1.89600 4.97223 0.93156 1.84001 4.82539

PAM 0.95991 1.89600 4.97224 0.93156 1.84001 4.82540

FEM 0.95991 1.89600 4.97224 0.93156 1.84001 4.82540

2.0 Ref. [13] 0.91261 1.74004 4.89985 — — —

Ref. [19] — — — 0.78789 1.59794 4.74919

Exact 0.91260 1.74004 4.89984 0.88565 1.68865 4.75514

PAM 0.91260 1.74004 4.89985 0.88565 1.68865 4.75515

FEM 0.91261 1.74004 4.89985 0.88565 1.68866 4.75515

Note: bw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþrwÞA

EI
ō24

q
, ba ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rA
EI

ō24

q
.
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Table 2

Influence of spring-stiffness ratios (k�T ¼ k�R) on the lowest five natural frequencies of the elastically supported immersed

beam with eccentricity e ¼ 0:5m and J�t ¼ m�t ¼ 0:1 for the cases of draft ratios L�1 ¼ L1=L ¼ 0, 0.5, 1.0

Draft ratios

L�1 ¼ L1=L

Stiffness ratios

k�T ¼ k�R
a

Methods Natural frequencies, ōr (or ~or) (rad/s)

ō1 (or ~o1)
b ō2 (or ~o2) ō3 (or ~o3) ō4 (or ~o4) ō5 (or ~o5)

0.0 1 Exact 1.35248 3.46108 14.31519 51.59763 122.83709

PAM 1.35219 3.45871 14.29530 51.49903 122.59260

102 Exact 3.77178 10.47159 30.21314 68.10286 143.72022

PAM 3.77178 10.47120 30.18476 68.01004 143.54379

104 Exact 3.85262 11.66778 48.63279 118.12376 217.54473

PAM 3.85262 11.66778 48.63277 118.12289 217.53306

108 Exact 3.85344 11.68087 48.90630 119.83452 223.90719

PAM 3.85344 11.68087 48.90630 119.83452 223.90719

1016 Exact 3.85344 11.68088 48.90633 119.83469 223.90777

PAM 3.85344 11.68088 48.90633 119.83469 223.90777

1 (Fixed) Exact 3.85344 11.68088 48.90633 119.83469 223.90777

0.5 1 Exact 1.32839 3.39042 13.96936 49.91881 119.48084

PAM 1.32839 3.39041 13.96915 49.91681 119.47037

102 Exact 3.76692 10.38251 28.86645 65.96007 139.37345

PAM 3.76691 10.38249 28.86666 65.95963 139.37369

104 Exact 3.84893 11.61686 47.08529 114.87197 210.50292

PAM 3.84892 11.61682 47.08579 114.87030 210.51032

108 Exact 3.84975 11.63030 47.36448 116.60221 217.03449

PAM 3.84975 11.63025 47.36498 116.60058 217.04141

1016 Exact 3.84975 11.63030 47.36451 116.60237 217.03508

PAM 3.84975 11.63026 47.36501 116.60075 217.04200

1 (Fixed) Exact 3.84975 11.63030 47.36451 116.60237 217.03508

1.0 1 Exact 1.28692 3.37885 13.80770 48.98336 116.32190

PAM 1.28691 3.37882 13.80756 48.98130 116.31352

102 Exact 3.68100 10.17484 28.63831 64.53880 136.03870

PAM 3.68097 10.17488 28.63836 64.53883 136.03866

104 Exact 3.76541 11.35052 46.17898 111.86042 205.73221

PAM 3.76538 11.35057 46.17909 111.86070 205.73326

108 Exact 3.76627 11.36336 46.44080 113.49083 211.78095

PAM 3.76624 11.36340 46.44090 113.49107 211.78188

1016 Exact 3.76627 11.36336 46.44083 113.49099 211.78150

PAM 3.76624 11.36341 46.44093 113.49123 211.78243

1(Fixed) Exact 3.76627 11.36336 46.44083 113.49099 211.78150

ak�t ¼ kt=ðEI=L3Þ, k�R ¼ kR=ðEI=LÞ.
bōr and ~or denote the rth natural frequencies obtained from Exact method and PAM, respectively.
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the ‘‘exact’’ values obtained from the formulation of fixedly supported immersed beam with
boundary conditions defined by Eqs. (30a,b) rather than the ‘‘approximate’’ ones obtained from
the elastically supported beam by setting k�T ¼ k�R ¼ 1.
From Table 2 one sees the following: (i) the natural frequencies obtained from the PAM

(denoted by ~or) are very close to the corresponding ones obtained from the Exact method
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(denoted by ōr). (ii) The natural frequencies of the elastically supported immersed beam obtained
either from PAM or Exact method converge to the corresponding ones of the fixedly supported
beam when k�T ¼ k�R ¼ 1016. (iii) The natural frequencies (accurate to the 5th decimal place) of the
elastically supported immersed beam obtained from the Exact method are exactly equal to the
corresponding ones of the fixedly supported beam when k�T ¼ k�R ¼ 1016, but this is not true for
those obtained from PAM. (iv) The natural frequencies of the elastically supported immersed
beam increase with increasing the stiffness ratios k�T ¼ k�R. (v) For any specified stiffness ratios
(k�T ¼ k�R), the natural frequencies of the beam decrease with increasing the draft ratio L�1 ¼ L1=L,
but the effect of draft ratio is much smaller than that of the stiffness ratios.
For the case of L�1 ¼ L1=L ¼ 0:5 (or water depth L1 ¼ 7:5m), the lowest five mode shapes of

the elastically supported immersed beam (with k�Y ¼ k�R ¼ 1) and those of the fixedly supported
one are shown in Figs. 3(a) and (b), respectively, where the dashed curves with symbols, J, +, n,
& and $ denote the 1st, 2nd, 3rd, 4th and 5th mode shapes obtained from the Exact method,
while the solid curves with K, � , m, ’ and % denote those obtained from the PAM. From
the two figures one sees that the mode shapes obtained from the PAM are very close to the
corresponding ones obtained from the Exact method. This is under one’s expectation because the
natural frequencies obtained from the last two methods are very close to each other as one may
see from Table 2. Besides, from Fig. 3(a), one sees that the 1st and 2nd mode shapes of the
elastically supported immersed beam are the modes major in the translational and rotational
rigid-body motions, respectively, and the total numbers of ‘‘nodes’’ for the 3rd, 4th and 5th mode
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Fig. 3. The lowest five mode shapes of the elastically supported immersed beam with L�1 ¼ L1=L ¼ 0:5, e ¼ 0:5m and

J�t ¼ m�t ¼ 0:1 obtained from the Exact method (- - - - - -) and PAM (——) for: (a) k�T ¼ k�R ¼ 1; (b) k�T ¼ k�R ¼ 1016 (or

fixed supported).
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shapes are 1, 2 and 3, respectively. On the other hand, from Fig. 3(b) one sees that all the five
modes are the elastic vibration modes with total numbers of nodes being 0, 0, 1, 2, and 3,
respectively. It is noted that the lower end of the beam is the supporting point and is not
considered as a ‘‘node’’ for each mode shape. Although the 3rd, 4th and 5th mode shapes of either
the elastically supported beam (cf. Fig. 3(a)) or those of the fixedly supported beam (cf. Fig. 3(b))
are the elastic vibration modes and the total numbers of ‘‘nodes’’ are also 1, 2 and 3, respectively,
the profiles of the 3rd, 4th and 5th mode shapes for the elastically supported beam are much
different from those for the fixedly supported beam as one may see from Figs. 3(a) and (b). This is
also expected because the boundary conditions at the supporting (lower) end of the elastically
supported beam are much different from those of the fixedly supported beam, the translational
and rotational degrees of freedom (DOFs) for the latter are completely restrained and this is not
true for the former.

6.3. Influence of eccentricity of tip mass

For the case of J�t ¼ m�t ¼ 0:1, the influence of eccentricity e ( ¼ 0, 0.5, 1.0 and 1.5m) on the
lowest five natural frequencies of the fixed beam is shown in Table 3 with draft ratios
L�1 ¼ L1=L ¼ 0, 0.5 and 1.0, respectively. From Table 3 one sees that the first natural frequencies
ō1 decrease with increasing the eccentricity e, but this trend is reversed for the other four natural
frequencies (ō2 to ō5). Besides, the effect of e decreases with increasing the draft ratio. The last
phenomenon may be due to the fact that the total effective mass (meff ) of the immersed beam
increases with increasing the draft ratio so that the ratio of the tip mass mt to total effective mass
meff decreases with increasing the draft ratio. Besides, the effect of eccentricity e does not seem to
be significant, this may be due to the small tip-mass ratio (m�t ¼ 0:1) for the present example.
From Table 3 one also sees that the natural frequencies obtained from PAM (denoted by ~or) are
very close to those from the Exact method (denoted by ōr).

6.4. Influence of tip-mass ratio and rotary-inertia ratio

According to Eq. (12), the effect of tip mass mt is dependent on its eccentricity e and this is not
true for the rotary inertia Jt, thus, one sets e ¼ 0 in this subsection. For the case of rotary-inertia
ratio J�t ¼ Jt=ðrAL3Þ ¼ 0:1, the influence of tip-mass ratios (m�t ¼ 1, 2, 3 and 4) on the lowest five
natural frequencies of the fixed immersed beam is shown in Table 4 with draft ratios L�1 ¼
L1=L ¼ 0 and 1.0, respectively. Similarly, the influence of rotary-inertia ratios (J�t ¼ 1, 2, 3 and 4)
with m�t ¼ mt=ðrALÞ ¼ 0:1 is shown in Table 5. In Table 4, the percentage differences �r;m�t
are determined by the formula �r;m�t % ¼ ½ðōrÞm�t¼1

� ðōrÞm�t
� � 100%=ðōrÞm�t¼1

for r ¼ 125 and
m�t ¼ 2; 3; 4. While in Table 5, the percentage differences �r;J�t are determined by �r;J�i

% ¼
½ðōrÞJ�t¼1

� ðōrÞJ�t
� � 100%=ðōrÞJ�t¼1

for r ¼ 125 and J�t ¼ 2; 3; 4. In other words, from the value
of �r;m�t (or �r;J�t ) one may realize the reducing rate of the rth natural frequency ōr associated with
the arbitrary tip-mass ratio m�t (or rotary-inertia ratio J�t ) with respect to the value of ōr

associated with m�t ¼ 1 (or J�t ¼ 1). It is evident that the larger the value of �r;m�t (or �r;J�t ), the
larger the effect of the tip-mass ratio m�t (or rotary-inertia ratio J�t ).
The positive values of �r in Tables 4 and 5 indicate that increasing either the tip mass mt or

rotary inertia Jt will result in the decrease of the lowest five natural frequencies of the immersed
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Table 3

Influence of tip-mass eccentricity e on the lowest five natural frequencies of the ‘‘fixed’’ immersed beam with J�t ¼

m�t ¼ 0:1 for the cases of draft ratios L�1 ¼ L1=L ¼ 0, 0.5, 1.0

Draft ratios

L�1 ¼ L1=L

Eccentricity of

tip mass e (m)

Methods Natural frequencies, ōr (or ~or) (rad/s)

ō1 (or ~o1)
a ō2 (or ~o2) ō3 (or ~o3) ō4 (or ~o4) ō5 (or ~o5)

0.0 0 Exact 3.88979 11.62215 48.80593 119.73574 223.81344

PAM 3.88979 11.62215 48.80593 119.73574 223.81344

0.5 Exact 3.85344 11.68088 48.90633 119.83469 223.90777

PAM 3.85344 11.68088 48.90633 119.83469 223.90777

1.0 Exact 3.81619 11.73433 49.01003 119.94414 224.01868

PAM 3.81619 11.73433 49.01003 119.94414 224.01868

1.5 Exact 3.77814 11.78250 49.11646 120.06350 224.14562

PAM 3.77814 11.78250 49.11646 120.06350 224.14562

0.5 0 Exact 3.88599 11.57271 47.26680 116.50361 216.94298

PAM 3.88598 11.57268 47.26729 116.50199 216.94989

0.5 Exact 3.84975 11.63030 47.36451 116.60237 217.03508

PAM 3.84975 11.63026 47.36501 116.60075 217.04200

1.0 Exact 3.81262 11.68262 47.46526 116.71136 217.14301

PAM 3.81262 11.68257 47.46577 116.70973 217.14995

1.5 Exact 3.77469 11.72966 47.56849 116.82997 217.26622

PAM 3.77469 11.72962 47.56900 116.82833 217.27319

1.0 0 Exact 3.80007 11.31248 46.34526 113.39560 211.68967

PAM 3.80004 11.31253 46.34536 113.39584 211.69058

0.5 Exact 3.76627 11.36336 46.44083 113.49099 211.78150

PAM 3.76624 11.36341 46.44093 113.49123 211.78243

1.0 Exact 3.73159 11.40878 46.53894 113.59574 211.88859

PAM 3.73157 11.40882 46.53905 113.59600 211.88955

1.5 Exact 3.69614 11.44876 46.63906 113.70928 212.01037

PAM 3.69611 11.44881 46.63917 113.70955 212.01136

aōr and ~or denote the rth natural frequencies obtained from Exact method and PAM, respectively.
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beam. Besides, it is seen that: (i) the effect of m�t (or J�t ) decreases with increasing the order (r) of
vibration except the second mode (r ¼ 2) of Table 4. (ii) The effect of J�t is greater than that of m�t .
(iii) The influence of m�t on the first natural frequency (r ¼ 1) is very significant and on the fifth
one (r ¼ 5) is very small. Although the influence of J�t on the first natural frequency (r ¼ 1) is also
very significant, that on the fourth and fifth ones (r ¼ 4 and 5) is negligible.

6.5. Free vibration analysis of an immersed beam with in-span lumped masses

The immersed beam studied in this subsection is exactly the same as the one studied in Section
6.2, the only difference is that the current beam carries two identical intermediate (in-span)
lumped masses at stations 53 and 57 (i.e., x53 ¼ 13m and x57 ¼ 14m) with magnitudes
m53 ¼ m57 ¼ 0:5ðrALÞkg and the beam in Section 6.2 does not carry any in-span point masses
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Table 4

Influence of tip-mass ratio m�t on the lowest five natural frequencies of the ‘‘fixed’’ immersed beam with eccentricity

e ¼ 0 and rotary-inertia ratio J�t ¼ Jt=ðrAL3Þ ¼ 0:1 based on the Exact method for the cases of draft ratios

L�1 ¼ L1=L ¼ 0, 1.0

Draft ratios

L�1 ¼ L1=L

Tip-mass ratios

m�t ¼ mt=ðrALÞ

Natural frequencies, ōr (rad/s)

ō1 ō2 ō3 ō4 ō5

0.0 1 2.44591 10.73632 42.34698 109.05790 210.24690

2 1.88748 10.55226 41.23872 107.66600 208.76420

(22.8312%) (1.7144%) (2.6171%) (1.2763%) (0.7052%)

3 1.59225 10.47903 40.81467 107.16000 208.23840

(34.9015%) (2.3964%) (3.6185%) (1.7403%) (0.9553%)

4 1.40270 10.43972 40.59075 106.89840 207.96920

(42.6512%) (2.7626%) (4.1472%) (1.9801%) (1.0833%)

1.0 1 2.42177 10.61239 40.28540 103.08400 198.38150

2 1.87621 10.45681 39.16544 101.64390 196.83510

(22.5273%) (1.4660%) (2.7801%) (1.3970%) (0.7795%)

3 1.58545 10.39380 38.73033 101.11490 196.28260

(34.5334%) (2.0598%) (3.8601%) (1.9102%) (1.0580%)

4 1.39803 10.35971 38.49907 100.84020 195.99890

(42.2724%) (2.3810%) (4.4342%) (2.1766%) (1.2010%)

�r;m�t % ¼ ½ðōrÞm�t¼1
� ðōrÞm�t

� � 100%=ðōrÞm�t¼1
for r ¼ 125 and m�t ¼ 2; 3; 4.

Table 5

Influence of rotary-inertia ratio Jt on the lowest five natural frequencies of the ‘‘fixed’’ immersed beam with eccentricity

e ¼ 0 and tip-mass ratio m�t ¼ mt=ðrALÞ ¼ 0:1 based on the Exact method for the cases of draft ratios L�1 ¼ L1=L ¼ 0,

1.0

Draft ratios

L�1 ¼ L1=L

Tip-mass ratios

J�t ¼ Jt=ðrAL3Þ

Natural frequencies, ōr (rad/s)

ō1 ō2 ō3 ō4 ō5

0.0 1 1.64802 8.85173 48.04049 119.40080 223.62270

2 1.18731 8.69757 47.99856 119.38230 223.61210

(27.9554%) (1.7416%) (0.0873%) (0.0155%) (0.0047%)

3 0.97550 8.64665 47.98460 119.37610 223.60860

(40.8078%) (2.3168%) (0.1163%) (0.0207%) (0.0063%)

4 0.84745 8.62129 47.97762 119.37300 223.60690

(48.5777%) (2.6033%) (0.1309%) (0.0232%) (0.0071%)

1.0 1 1.64278 8.45944 45.55385 113.04990 211.49240

2 1.18541 8.29973 45.51056 113.03080 211.48150

(27.8412%) (1.8879%) (0.0950%) (0.0169%) (0.0052%)

3 0.97447 8.24702 45.49615 113.02440 211.47790

(40.6816%) (2.5110%) (0.1267%) (0.0225%) (0.0069%)

4 0.84678 8.22078 45.48895 113.02120 211.47600

(48.4544%) (2.8212%) (0.1425%) (0.0253%) (0.0077%)

�r;J�i
% ¼ ½ðōrÞJ�t¼1

� ðōrÞJ�t
� � 100%=ðōrÞJ�t¼1

for r ¼ 125 and J�t ¼ 2; 3; 4.
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other than the point added masses. For the present example, the Exact method is not available for
the determination of natural frequencies and the associated mode shapes of the beam, thus, only
the PAM and FEM are used. Table 6(a) and Fig. 4(a), respectively, show the lowest five natural
frequencies and mode shapes of the elastically supported beam with stiffness ratio k�T ¼ k�R ¼ 1
obtained from PAM and FEM, respectively. For comparison, the lowest five natural frequencies
for the beam without any in-span lumped masses obtained from Table 2 are also inserted in
Table 6. Besides, the draft ratio for Fig. 4 is also the same as that for Fig. 3, i.e., L�1 ¼ L1=L ¼ 0:5.
Similarly, Table 6(b) and Fig. 4(b) show the corresponding ones of the fixedly supported beam.
From Tables 6(a) and (b) one sees that the two in-span lumped masses have the effect of

reducing the lowest five natural frequencies of the elastically and fixedly supported beams to some
degree except the second one (ō2) of the elastically supported beam. This phenomenon may be
Table 6

The lowest five natural frequencies of the immersed beam with eccentricity e ¼ 0:5m, tip-mass ratio

m�t ¼ mt=ðrALÞ ¼ 0:1, rotary-inertia ratio J�t ¼ Jt=ðrAL3Þ ¼ 0:1 and carrying two intermediate lumped masses

m53 ¼ m57 ¼ 0:5ðrALÞ kg located at x53 ¼ 13m and x57 ¼ 14m, respectively, for the cases of draft ratios

L�1 ¼ L1=L ¼ 0, 0.5, 1.0: (a) elastically supported with k�T ¼ K�R ¼ 1:0; (b) fixedly supported

Draft ratios

L�1 ¼ L1=L

Methods Natural frequencies, ~or (rad/s)

~o1 (or ō1) ~o2 (or ō2) ~o3 (or ō3) ~o4 (or ō4) ~o5 (or ō5)

(a) Elastically supported with k�T ¼ K�R ¼ 1:0
0.0 PAM 0.89746 3.33669 12.90022 46.17735 115.52633

FEM 0.89746 3.33669 12.89966 46.16287 115.38645

Table 2 (PAM)a 1.35219 3.45871 14.29530 51.49903 122.59260

0.5 PAM 0.89099 3.24742 12.60702 44.71613 112.60415

FEM 0.89099 3.24742 12.60650 44.70220 112.47729

Table 2 (PAM) 1.32839 3.39041 13.96915 49.91681 119.47037

1.0 PAM 0.87808 3.23895 12.58411 43.90325 109.83214

FEM 0.87808 3.23895 12.58361 43.88903 109.72696

Table 2 (PAM) 1.28691 3.37882 13.80756 48.98130 116.31352

(b) Fixedly supported

0.0 PAM 2.59915 10.06158 43.72185 112.83035 200.50225

FEM 2.59913 10.06134 43.71187 112.72485 198.60586

Table 2 (Fixed)b 3.85344 11.68088 48.90633 119.83469 223.90777

0.5 PAM 2.59782 10.04429 42.32532 109.80158 195.74985

FEM 2.59781 10.04406 42.31582 109.70780 194.03493

Table 2 (Fixed) 3.84975 11.63030 47.36451 116.60237 217.03508

1.0 PAM 2.56978 9.98355 41.50510 107.06449 191.94800

FEM 2.56977 9.98334 41.49567 106.97961 190.47930

Table 2 (Fixed) 3.76627 11.36336 46.44083 113.49099 211.78150

aFor the elastically supported immersed beam without in-span lumped masses studied in Table 2.
bFor the fixedly supported immersed beam without in-span lumped masses studied in Table 2.
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(a) (b) 
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Fig. 4. The lowest five mode shapes of the immersed beam with eccentricity e ¼ 0:5m, tip-mass ratio

m�t ¼ mt=ðrALÞ ¼ 0:1, rotary-inertia ratio J�t ¼ Jt=ðrAL3Þ ¼ 0:1, draft ratio L�1 ¼ L1=L ¼ 0:5 and carrying two

intermediate lumped masses m53 ¼ m57 ¼ 0:5ðrALÞkg located at x53 ¼ 13m and x57 ¼ 14m, respectively, obtained

from PAM (- - - - - -) and FEM (——) for (a) elastically supported with k�T ¼ K�R ¼ 1:0; (b) fixedly supported.
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due to the fact that the two in-span lumped mass are located at stations 53 and 57, and these two
stations are near the node of the second mode shape as one may see from Fig. 4(a).
In Figs. 4(a) and (b), the dashed curves with symbols, J, +, n, & and $ denote the 1st, 2nd,

3rd, 4th and 5th mode shapes obtained from the PAM, while the solid curves with K, � , m, ’
and% denote those obtained from the FEM. From the two figures one sees that the mode shapes
obtained from FEM are very close to the corresponding ones obtained from PAM. Because the
two in-span lumped masses reduce the lowest five natural frequencies of the beam of Section 6.2 to
some degree, they also perceptibly change the associated lowest five mode shapes as one may see
from Figs. 3 and 4.
7. Experiments and results

To check the foregoing theoretical results of this paper, several experiments were performed on
the scale models of the fixed and elastically supported towers as shown in Figs. 5(a) and (b),
respectively. The scale model of the fixed supported tower is composed of a uniform beam, a
lumped mass and a rectangular heavy seat (about 60 kg weight). The assembly of the last three
parts constitutes a unit, where the lower end of the uniform beam is fixed on the rectangular seat
and its upper end is attached by the lumped mass (cf. Fig. 5(a)). The whole unit is fixed on the
bottom of a water tank by using the screws on the rectangular seat. The diameter of the uniform
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Fig. 5. Experimental scale models: (a) for fixed supported tower; (b) for elastically supported tower.

J.-S. Wu, S.-H. Hsu / Journal of Sound and Vibration 291 (2006) 1122–1147 1143
beam is d ¼ 0:025m, the total length is L ¼ 0:6m and the total mass is
mb ¼ ð7850� p� 0:0252 � 0:6Þ=4 ¼ 2:3120kg. The dimensions of the lumped mass are 0.08m
(diameter)� 0.046m (height), thus its mass is mt ¼ ð7850� p� 0:082 � 0:046Þ=4 ¼ 1:8151kg,
its eccentricity is e ¼ 0:023m and its rotary inertia is Jt ¼ 1:8151� ð3� 0:042 þ 0:0462Þ=
12 � 1:0461� 10�3 kgm2. The weighted total mass of the beam (mb) and that of the tip mass
(mt) are found to be very close to the last calculated values. The size of the water tank is 1.0m
(length)� 1.0m (width)� 0.7m (depth) (cf. Fig. 6). The dimensions for the model of the
elastically supported tower are the same as those for the model of the fixed supported tower except
the elastic supporting elements and the associated attachments at the lower end of the uniform
beam (cf. Fig. 5(b)). In addition to the translational spring kT on the right side of the lower end of
the uniform beam as shown in Fig. 1, an identical spring on the left side of the lower end is also
added (cf. Fig. 5(b)), so that when the lower end of the tower moves rightwards, the right spring is
in compression and the left spring is in tension. On the contrary, when the lower end of the tower
moves leftwards the last behaviors for the two translational springs are reverse.
If yr denotes the rightward displacement of the lower end of the tower when it is subjected

to a rightward force Fr and y‘ denotes the leftward one due to a leftward force F ‘, then the
combined stiffness for the last two identical translational springs is determined by
kT ¼ 0:5½ðFr=yrÞ þ ðF ‘=y‘Þ� � 16; 800N=m. Similarly, the combined stiffness for the two identical
rotational springs set at the near side and far side of the lower end of the beam (cf. Figs. 1 and
5(b)) is determined by kR ¼ 0:5½ðMc=ycÞ þ ðMcc=yccÞ� � 162:9Nm=rad, where yc denotes the
rotational angle of the uniform beam about its lower end when the beam is subjected to a
clockwise moment Mc and ycc denotes that when the beam is subjected to a counterclockwise
moment Mcc. To assure the motion of the tower to be in the (vertical) xy-plane, a guiding
mechanism is also constructed. The mechanism is composed of two identical curved beams set in
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Table 7

Comparison between the lowest several natural frequencies for the models of ‘‘dry’’ tower obtained from experiments

and those from exact method: (a) fixed supported; (b) elastically supported

Methods Natural frequencies (rad/s)

ō1 ō2 ō3 ō4 ō5

(a)

Experiments 23 202 576 — —

Exact 23.24191 211.96707 631.93665 1238.58971 2041.67399

(b)

Experiments 2.0 23 203 576 —

Exact 2.00787 24.11113 215.98368 632.78805 1239.46669

Fig. 6. The scale tower is tested in a water tank with 1.0m (length)� 1.0m (width)� 0.7m (depth).
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parallel with the xy-plane and with the spacing between them to be slightly greater than the
diameter of the uniform beam (0.025m) so that the uniform beam may slide or rock in the spacing
(cf. Fig. 5(b)). The average radius of each curved beam is 0.5m with its center of curvature at the
lower end of the beam. Furthermore, to assure the smooth translation of the lower end of tower in
the y-direction, two small sheaves are also set at the lower end of the beam. The sheaves are
constrained to roll along a rail on the rectangular seat.
The free vibrations of the scale towers are excited using the impact method and the responses

are measured using an accelerometer. The signals are amplified and analyzed using the modal
testing module of the I-DEAS computer package. For the model of ‘‘dry’’ towers, the lowest
several natural frequencies are shown in Tables 7(a) and (b) for the fixed and elastically supported
conditions, respectively. In either Tables 7(a) or (b), the 3rd row shows the frequencies obtained
from current experiments and the 4th row shows the theoretical values obtained the exact method
of this paper. It is seen that the agreement between the lower natural frequencies is reasonable.
For the model of ‘‘wet’’ towers (with water depth L1 ¼ 0:4m), the lowest several natural
frequencies are shown in Tables 8(a) and (b) for the fixed and elastically supported conditions,



ARTICLE IN PRESS

Table 8

Comparison between the lowest several natural frequencies for the models of ‘‘wet’’ tower (with water depth

L1 ¼ 0:4m) obtained from experiments and those from the exact method: (a) fixed supported; (b) elastically supported

Methods Natural frequencies (rad/s)

ō1 ō2 ō3 ō4 ō5

(a)

Experiments 22.5 195 557 — —

Exact 23.18904 204.19370 612.20640 1194.04910 1975.80194

(b)

Experiments 1.9 22 196 559 —

Exact 1.99658 22.83291 207.56785 613.21454 1194.87726
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respectively. Comparing the natural frequencies obtained from experiments with those from the
exact method, one finds that the agreement between the corresponding lower ones is also
reasonable.
8. Conclusions
1.
 A unified approach for the free vibration analysis of a (partially or fully) immersed uniform
beam with either elastic or fixed support and carrying eccentric tip mass with rotary inertia is
presented, based on which the formulation of the problem and the development of the
computer programs are significantly simplified. Besides, the presented PAM derived from the
unified approach is also practical for achieving the ‘‘approximate’’ solutions no matter whether
or not the immersed beam is attached by a number of intermediate (in-span) realistic lumped
masses in addition to the virtual point added masses due to surrounding water.
2.
 In reality, the lower end of an offshore tower is elastically (rather than fixed) supported.
Therefore, it will be more reasonable to model the interactions between the lower end of the
tower and the seabed (soil) by using a translational spring with stiffness kT and a rotational
spring with stiffness kR. In such a situation, the dynamic characteristics of a fixed supported
tower may be easily obtained from those of the elastically supported tower by setting the values
of kT and kR to be very large (e.g., kT ¼ kR ¼ 1016 N=m or Nm).
3.
 Since the lowest two natural frequencies of an elastically supported tower are, respectively,
associated with the two vibration modes major in the translational and rotational rigid-body
motions of the tower, serious forced vibration responses of an elastically supported tower may
be due to the lower frequency rigid-body motions rather than due to the higher frequency
elastic vibrations of the tower.
4.
 The influences on the free vibration characteristics of an immersed beam of the tip mass mt, the
eccentricity e and the rotary inertia Jt are dependent on each other. The effect of mt (or e) is
dependent on the value of mte (or mte

2). Because the magnitude of e will directly affect the
magnitude of natural frequencies (ōr), it will also indirectly influence the effect of Jt. Without
tip mass (i.e., mt ¼ 0), the effect of eccentricity e is nil.
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5.
 Increasing either the tip mass mt or the rotary inertia Jt will reduce the natural frequencies of
an immersed beam, ōr. The last effect is the most predominant for the first natural frequency
(r ¼ 1) and decreases with increasing the order r of the vibration modes.
6.
 The first natural frequency (ō1) of an immersed beam decreases with increasing the tip-mass
eccentricity e, but this trend is reversed for the other higher natural frequencies ōr ðr ¼ 2� 4Þ.
7.
 The PAM is available for the free vibration analysis of an immersed beam with or without
carrying any intermediate (in-span) lumped masses, but this is not true for the exact method.
This is one of the reasons why the PAM is presented.
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