
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 291 (2006) 1170–1185
0022-460X/$ -

doi:10.1016/j.

$A portion

Traverse City
�Correspon

E-mail add
www.elsevier.com/locate/jsvi
Characterization of an experimental wavenumber fitting
method for loss factor estimation using a viscoelastically

damped structure$

Vikrant Palana, W. Steve Shepard Jr.a,�, J. Gregory McDanielb

aThe University of Alabama, Department of Mechanical Engineering, 290 Hardaway Hall,

Box 870276, Tuscaloosa, AL 35487, USA
bBoston University, Department of Aerospace and Mechanical Engineering,

110 Cummington Street, Boston, MA 02215, USA

Received 19 October 2004; received in revised form 1 July 2005; accepted 13 July 2005

Available online 8 September 2005
Abstract

This study presents the experimental characterization of a relatively new method used to measure the
damping performance of a structure. The method evaluated is the complex wavenumber fitting method in
which an analytical description of the response over the structure surface is adjusted to match experimental
measurements of the response over the same region. In computing the analytical response, a large number
of points on the structure can be considered without much expense. In measuring that response, though,
one must consider both experimental complexity and measurement time when considering the number of
sensor locations. The goal of the present study is to examine the number of measurement points needed in
the complex wavenumber fitting method to obtain a loss factor of sufficient accuracy. To that end, the loss
factor for a viscoelastically damped sandwich beam with intermediate bolts is determined for different
numbers of measurement points. To facilitate this study, a scanning laser vibrometer is used to measure the
response at many points on the structure. Then, the wavenumber is estimated by iteratively fitting an
analytical wave description to the response. For various selected sets of response points, it is shown that this
approach is sensitive to both the number of measurement points as well as the coherence of that data.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Experimental examples are presented to demonstrate those effects. Recommendations for better signal-to-
noise ratio using the scanning laser system are also provided.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Resonant vibrations can be an important problem in structural design. When excited, these
vibrations can lead to large vibration amplitudes that in turn produce excessive noise and
vibrations in any attached equipment. Furthermore, these high vibration amplitudes often reduce
the useful life of a structure due to fatigue. Consequently, there has been much interest in
developing damping methods for reducing vibration. There has also been equal interest in the
development of methods for experimentally characterizing the performance of those damping
applications.
One experimental method recently developed for determining damping performance involves

the iterative refinement of a structural wavenumber such that a wave model can be fitted to
match measured test data [1]. Unlike the half-power method [2], this approach uses
multiple measurements along the length of the wave field or the structure under consideration.
With the half-power method and other conventional approaches, one is usually only able
to measure the damping performance at a few discrete frequencies. With the iterative wavenumber
approach, one can determine the damping performance over a range of frequencies. Previous
research has discussed the positioning of the measurement locations for the wavenumber
approach [1]. However, the minimum number of positions needed to obtain accurate results
with the iterative method has not been addressed in detail. Furthermore, the impact of
measurement coherence on the usefulness of the wavenumber technique has not been studied.
Therefore, the objective of the work presented here is to examine the impact of the number of
measurement locations and data coherence on the damping performance assessment provided by
the iterative refinement technique. By determining the minimum number of positions required, the
speed of experimental data collection can potentially be increased. Furthermore, the computa-
tional time required for this method can potentially be reduced when fewer measurements are
required. More importantly, the accuracy of the method in measuring loss factor may be
improved when a better understanding of the data requirements is obtained. The test specimen
used to evaluate this method, which will be described below, is one that is particularly suited to
this study.
A variety of damping techniques for the dissipation of unwanted acoustical and vibrational

energy have been developed. The approach considered in this work is constrained layer damping
(CLD). CLD provides for the dissipation of vibrational energy by the physical distortion of a
layer of soft viscoelastic material sandwiched between the vibrating structure and a strong
constraining layer. As the entire structure vibrates in flexure, the viscous damping layer is
subjected to a shear deformation between the primary (base) structure and the constraining layer,
as illustrated in Fig. 1. Due to the fact that the viscoelastic material exhibits hysteresis, the shear in
the damping layer creates internal viscous friction that dissipates vibratory energy during each
cycle of oscillation.
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The experimental specimen used for this study is a viscoelastically damped sandwich beam with
intermediate fasteners. An example of a conventional sandwich configuration consisting of two
structural square tubes is illustrated in Fig. 2(a). Note that for this structure the damping layer is
placed at the neutral axis to achieve large shear deformation. This shear deformation has the
potential to provide improved system damping performance. When replacing a conventional
structural member having almost no damping by a viscoelastic shear-damped beam, such as the
one illustrated in the figure, a reduction in static stiffness may be expected. To address this
stiffness issue and provide for improved construction methods, intermediate stiffeners, such as
bolts or rivets, may be used as shown in Fig. 2(b). These fasteners may be placed at various
positions along the length of the beam. With the insertion of these stiffeners, the viscoelastic layer
will still provide damping, while the bolts in the system will impart the desired static rigidity.
The earliest relevant theoretical investigation of constrained layer damping was the work of

Kerwin [3]. They defined the loss factor as the ‘‘normalized imaginary part of complex bending
stiffness of the damping plate.’’ Their work was basically restricted to the simply supported
boundary condition. Later Kerwin and McQuillan [4] accounted for other boundary conditions
by patching a correction factor to the results previously obtained. They concluded that the loss
factor is inversely proportional to frequency and temperature, and is directly proportional to the
thickness of the constraining layer. Studies related to the impact of stiffeners on damping
performance can be found in Refs. [5,6]. Note that these studies considered only the effect of end
stiffeners and required detailed information regarding the boundary conditions. Furthermore,
these studies estimated loss factor at only the resonant frequencies. As mentioned earlier, the
experimental method being analyzed in the present study overcomes some of these limitations.
Constraining
layer

Base
structure

Damping
layer

Shear 
deformation  

Fig. 1. Constrained layer damping treatment.

Fig. 2. Cross-section of the sandwich beam (a) with intermediate stiffeners (b).
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In the following section, the experimental iterative wavenumber fitting method is briefly
reviewed. Then, a description of the test specimen and test set-up is provided. Some important
assumptions are also noted with regard to the application of the experimental method to the
selected structure. Then, the loss factor estimation results for various data subsets will be
examined in order to make an assessment of some of the requirements for the complex
wavenumber measurement technique.
2. Iterative wavenumber fitting method

The measurement of loss factor based on the attenuation of vibrations with distance along the
length of the structure is explained in the text by Cremer and Heckl [7]. Implementation of this
method assumes that one can measure the decay in amplitude along the length of the structure
through the measurement of that structure’s response. Reflections from the ends of a finite length
structure are not specifically addressed in that work. To address these issues, a wavenumber fitting
algorithm was more formalized by McDaniel and Shepard [1]. The latter method requires no prior
knowledge regarding the boundary conditions of the structure. Since that iterative wavenumber
fitting algorithm is the subject of the present research, a brief overview of the technique is
presented in this section.
The method, as described by McDaniel and Shepard, is based on determining the value of the

complex wavenumber k for the wave propagating within the structure. Once this wavenumber is
found, using the methods described below, the loss factor at the particular frequency of interest
can be determined using the relationship

Z ¼
Imfk4

g

Refk4
g
. (1)

To determine the wavenumber, this method requires measuring the vibratory response, Dm, at a
number of positions m, along the length of the structure. The wavenumber is determined at each
frequency by an iterative algorithm. The method essentially finds a complex wavenumber such
that an analytical description of the response at each point, Wm, most closely approximates the
measured response Dm at that same point. Once a purely real valued initial guess is determined for
the wavenumber, the method adjusts the value of both the real and imaginary parts of the
wavenumber until the computed wave field most closely matches the measured response. An
iterative procedure is used to find the complex k. The resulting wavenumber is then used in Eq. (1)
to determine the real-valued loss factor. The relationships used to find the complex wavenumber
for a beam in flexure, which is the structure of interest, are now reviewed.
The flexural wave field Wm in a beam can be analytically described by

W m ¼
XN

n¼1

fFne
iknxm þ Bne

iknðL�xmÞg for m ¼ 1; 2; . . . ;M, (2)

where xm is the location of measurement m, and M is the total number of measurements. The
subscript n represents the number of wave types that are assumed to propagate along the length of
the beam. Since a fourth-order differential equation will be assumed to represent the sandwich
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beam, both flexural and evanescent waves will be considered with N ¼ 2. The wavenumbers of
these two wave types may be related by a factor of i, that is, ke � ikf where ke and kf are the
wavenumbers for the evanescent and flexural waves, respectively. The coefficients Fn and Bn are
the amplitudes of the forward and backward traveling waves, respectively. The effect of the
boundary conditions is included in the coefficients Fn and Bn, while kn represents the complex
wavenumber. Note that either ke or ki may be used in Eq. (1). As a result, the complex
wavenumber can simply be denoted by kn. If the response is measured experimentally, there are
five unknowns in Eq. (2): two forward traveling wave amplitudes Fnðn ¼ 1; 2Þ, two backward
traveling wave amplitudes Bnðn ¼ 1; 2Þ, and the wavenumber. In the curve fitting algorithm, the
complex wavenumber kn is first guessed for a particular frequency, as described later, and the Fn

and Bn are calculated by linear inversion of the equation

½½f�½b��
fFng

fBng

( )
¼ fDg, (3)

where the terms of the propagation matrices [f] and [b] are given by

fmn ¼ eiknxm and bmn ¼ eiknðL�xmÞ, (4)

and Dm is the measured response at the discrete locations along the length of the beam. Of course,
xn must match the lengthwise position of each of the measurement points. Once kn, Fn, and Bn are
estimated at the particular frequency of interest, the wave field W m is reconstructed using Eq. (2)
at various points along the beam. That is, the response can also be computed at locations other
than the measurement location xn. Since the analytical description W m at each point is not
expected to match the corresponding experimental measurement Dm exactly, a normalized mean
square (NMSE) error e is used to compare the accuracy of the model in describing the actual
measured response

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1
jW m �Dmj

2
� �

=
XM

m¼1
jDmj

2
� �r

. (5)

This normalized error will be different depending on the real and imaginary component of the
complex wavenumber. As a result, the above curve fitting process can be iteratively repeated by
adjusting the real and imaginary parts of the complex wavenumber such that the error e is
minimized. A minimized e implies a good estimation of kn, Fn, and Bn for describing the measured
response. The kn corresponding to the minimum e is then used in Eq. (1) to calculate the loss
factor for that particular frequency.
In order to initiate the iteration process, one must have a rough estimate for the complex

wavenumber at the first frequency of interest. The approach used here is to plot the logarithm of
the normalized mean square error (NMSE) versus the real and imaginary parts of the complex
wavenumber. This plot is of an error surface for a certain range of discrete values of the complex
wavenumber. The combination of the real and the imaginary parts corresponding to the minimum
NMSE is the most accurate starting guess for the wavenumber. Once the starting guess for the
wavenumber is known, the iterative process to find the best fit for the vibrational response can be
initiated. This computation method is now discussed.
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Although there are a number of approaches that could be used to find the complex wavenumber
over a range of frequencies, the approach used here starts at the highest frequency, where the
technique is most likely to find an accurate value for the wavenumber. In the first pass of the
technique, therefore, the wavenumber and loss factor at the highest frequency are determined. The
minimization procedure is automated by using the MATLABs function ‘‘fminsearch’’ to
simultaneously adjust the real and imaginary parts of each kn to minimize e. The final complex
valued kn at that frequency is then used as the initial guess at the next lower frequency. The
process then continues down to the lowest frequency using the most recently obtained kn as the
guess at the next lower frequency.
With a review of the iterative wavenumber fitting method complete, it is now beneficial to describe

the test specimen used to evaluate this experimental method. A brief review of the basic equations
used to estimate the loss factor during the design of the structure is also provided. The loss factor
predictions found using these existing analytical formulations provide a basis for evaluating the
results of the present study, which are described after the laboratory set-up is described.
3. Specimen description

For the test specimen, a 4.5 foot (1.4m) long beam is selected where the base layer and the
constraining layer is of the same dimensions. Both the base and constraining layers are 200 (5 cm)
hollow square tubes with 1/800 (3.2mm) thick walls. In order to fasten the two exterior layers
through the viscoelastic layer, seven bolt holes and seven access holes have been drilled through
the walls of each beam. A schematic denoting the location of these holes along the length of the
beam is shown in Fig. 3(a). One wall of each beam contains 3/1600 (4.8mm) diameter holes at each
of the seven fastener location. This wall is the one that mates with the intermediate viscoelastic
layer. The opposite wall of the beam has seven equally located 3/400 (19mm) diameter holes that
are used for tooling access. Accessibility of the bolts and mating nuts via the 3/400 holes is
important during beam assembly and bolt torquing. The damping material used in the
experiments is the elastomer ISODAMPTM C-1002 from EAR Specialty Composites [8]. Of
course, this material has 3/1600 diameter holes at the same locations as the mating holes on the
beam.
The dimensions of the beam were chosen using simple analytical calculations based on the

relationships developed by Ungar [9]. While this formulation applies to an infinite length, simply
supported beam with no intermediate stiffeners, the relative ease of its implementation provides a
starting point for estimating loss factor for a beam that is freely suspended. As a result, the basic
analysis tool is useful in choosing the beam and layer sizes such that the system loss factor can be
expected to be a relatively high value in the frequency range of interest. A brief overview of these
relations is provided below so that one can see how this formulation relates to the measurement of
the loss factor described above.
For an infinitely long or simply supported constrained layer beam without stiffeners, subject to

flexural sinusoidal motion, the system loss factor is given by [9]

Z ¼
bYX

1þ ð2þ Y ÞX þ ð1þ Y Þð1þ b2ÞX 2
. (6)
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Fig. 3. (a) Layout of beam and fastener locations with (b) cross section of one typical section at stiffener location A–A

(enlarged). Stiffeners not shown.
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Note that the system loss factor is a function of only three parameters: the viscoelastic material
loss factor b, the shear parameter X and the geometric parameter Y. The material loss factor b can
be found for a particular frequency using a nomogram or using direct measurements. The
geometric parameter, as the name suggests, depends on the geometry and the physical properties
of the three layers. The parameter is given by

1

Y
¼

E1I1 þ E3I3

H2
13

1

E1A1
þ

1

E3A3

� �
, (7)

where H13 denotes the distance between the neutral axis of the base layer and the constraining
layer, and Ii and Ai are the moment of inertia and the cross sectional area of the ith layer,
respectively. Furthermore, the shear parameter X is given by

X ¼
G2b

k2H2

1

E1A1
þ

1

E3A3

� �
. (8)

Here, EiAi and EiIi represent the extensional stiffness and the flexural rigidity, respectively, of the
ith layer. G2 represents the storage modulus (real part of the shear modulus) of the viscoelastic
layer. The width and thickness are b and H2, respectively, of the viscoelastic layer; and k is the
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wavenumber of the particular flexural vibration being considered, given by

1

k2
¼

l
2p

� �2

¼
1

o

ffiffiffiffi
B

m

s
, (9)

where l is the wavelength. The B term denotes the flexural rigidity and m is the mass per
unit length of the structure. Note that the wavenumber depends on the flexural rigidity, which
depends on the shear parameter. The shear parameter, of course, also depends on the
wavenumber.
In order to estimate the loss factor in the structure design process, an iteration process [9]

coded in MATLABs that quickly yields an accurate prediction of Z was used for a particular
beam wall thickness. Fig. 4 shows a plot of the loss factor over a range of frequencies for
two particular cases. Again, the structure in this analysis is assumed to have no intermediate
stiffeners. The first case is for a sandwich structure containing square tubes with wall thicknesses
of 1/800 (3.2mm). For the other case, the tube sizes are the same with the exception of 1/1600

(1.6mm) thick walls. A viscoelastic layer of 0.0600 (1.5mm) thickness is considered for both of
these cases.
The first resonance values for the two different wall thicknesses were calculated. The

main criterion for selection was to favor the combination that has the first resonance nearest
to the frequency where the viscoelastic material, ISODAMP C-1002, as installed in the structure
has a large loss factor. The case with 200 � 200 cross section, 4.5 foot length and 1/800 wall thickness
was found to be the best choice. This is the configuration described previously in Fig. 3. Fig. 5
shows an end view of the assembled sandwich beam used in the experiments. As mentioned
earlier, the iterative complex wavenumber estimation method will be used to measure the
system loss factor of the sandwich beam. A brief overview of the experimental set-up is provided
next.
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Fig. 4. Composite loss factor for two different beam wall thicknesses; - - - 1/1600, —— 1/800.
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4. Experimental setup

The use of a scanning laser vibrometer system provides relative ease in acquiring a large number
of non-contact vibrational measurements over the span of the beam. The experimental set-up
incorporating such a system is shown in Fig. 6. Note that the sandwich beam is configured so that
the laser beam is normal to the center of the testing surface. This is done to obtain better
Fig. 5. The composite sandwich beam with bolts after assembly.

Fig. 6. Experimental setup with the scanning laser system.
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reflectivity and hence better signal-to-noise ratio (SNR). It has also been observed that the quality
of reflected beam, and hence the SNR, improves substantially when reflective paint is applied on
the beam surface. The beam was excited by a random excitation using an electromagnetic shaker.
An impedance head is used to measure both input force as well as the velocity at the input. The
stinger connecting the shaker to the impedance head is a thin, flexible rod that helps ensure that
only uniaxial force is applied to the test specimen. The bolts used to connect the two layers in the
specimen (refer to Fig. 5) were fastened with a torque of 30 lb-in (3.4Nm) using a torque wrench.
The maximum number of scan-points, which is the same as the number of measurement positions,
was 400. The response magnitude and phase were measured at each of these locations using the
force sensor as the reference. With this large data set, different measurement points, or subsets,
could be selected for the study. Special care was taken to ensure that data were not taken for
locations over the holes or on the bungee cords, which were used to support the beam in a
free–free like condition. Along with the complex response at each location, the coherence at each
point was also stored.
As noted earlier, it will be assumed that the viscoelastically damped beam can be described by a

fourth-order differential equation. Some works have shown that a sixth-order equation is
sometimes required [10]. Under such conditions, the value for N must be increased to 3. For the
assumption of N ¼ 2 to hold, the viscoelastic core has to be very stiff in shear. Since this beam has
intermediate stiffeners, the core is assumed to be sufficiently stiff. Fig. 7 shows a sample of how
well the reconstructed response given by Eq. (2), with kn determined by the algorithm, matches the
measured response for the beam at 1600Hz. Note that this frequency is the highest frequency
considered and is used as the starting point for the analysis. The circles show the measured values
of the real and imaginary parts of the response and the line shows the corresponding computed
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Fig. 7. Comparison of real (a) and imaginary parts (b) of reconstructed response Wm (solid) at 1600Hz to measured

response Dm (circles). Final NMSE for this iteration ¼ 0.18%.
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values. This particular case is for 10 equally spaced measurement positions along the length of the
beam. The normalized mean square error for this particular iteration is 0.18%. Because the data
reconstructed using the wavenumber fitting method matches the experimental results so well for
the highest frequency case, the assumption that N ¼ 2 seems valid. In other words, the frequencies
of interest here appear to be low enough that the assumption of a fourth-order description will be
valid. Furthermore, because the goal of the study focuses primarily on relative differences in the
predicted value, the validity of this assumption may not be so critical. Further study may be
needed with regard to the response of the beam near the boundaries by using a finer grid than
shown in the figure. To further investigate such details with regard to the validity of using N ¼ 2
for other frequencies and other cases, additional research is needed.
With the assumption that a fourth-order system adequately describes the beam response, the

complex wavenumber method can now be used to estimate the loss factor over a range of
frequencies. The ability of the method to estimate that loss factor for different measurement sets is
discussed in the next section.
5. Results and discussion

The measurement of the response consisted of acquiring the response at 400 points over the
length of the beam and over the frequency range of interest. Fig. 8 shows the magnitude of the
measured response over the frequency range of interest for each of those 400 measurement
locations on the beam. This plot shows that the response is continuous over the length of the
measurement aperture. Note that the resonance regions and mode shapes (first three) are clearly
indicated in this plot by the light horizontal lines. These first three resonances occur at
approximately 250, 600 and 1100Hz. Fig. 9 shows a real valued wavenumber spectrum found
using the response data at each frequency. This plot demonstrates the existence and dispersive
nature of flexural waves in the beam. Moreover, resonance frequencies are evidenced by the small
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circular regions of high amplitude. Even though the wavenumbers shown in the plot are purely
real valued, the presence of damping behavior is clear from this plot. The negative wavenumbers,
which are propagating away from the excitation, have higher amplitudes than those of wave
propagating back to the excitation, represented by the positive wavenumbers. Since the reflected
wave amplitude from the opposite end is less than the incident wave amplitude, the behavior
caused by damping is as expected. For a structure with little or no damping, the amplitude of the
waves would be similar for both directions of propagation. Although not very useful in
determining the loss factor for the sandwich beam, this data is very useful in verifying the validity
of the measurement data set.
The next step was to use the complex response at all 400 points in the wavenumber fitting

method to calculate the loss factor. Fig. 10 shows the loss factor and NMSE when using all the
400 points. Note that Fig. 10(b) also shows the loss-factor values for the first three modes
obtained using the half-power method. The loss factor was found to be fairly constant over the
range of frequencies considered. This may be a characteristic of the particular system under
consideration. This may also be due the presence of intermediate stiffeners along the length of
the beam specimen. Further studies of the effect of these stiffeners may give additional insight
into the constant damping phenomenon. The loss factor curve becomes smoother at frequencies
where the NMSE has a lower value. The fluctuations at lower frequencies, such as below the first
resonance, may be due to an insufficient measurement aperture to accurately curve fit the longer
wavelength. This error may also be caused by an insufficient signal-to-noise ratio at these lower
frequencies. Note that the loss factor is obtained for all of the discrete frequencies in this range.
The values in this figure are comparable, at least on an order of magnitude, with the values shown
in Fig. 4, which were estimated using the basic CLD analysis described above.
To examine the effect of the number of data points, smaller sets of evenly spaced measurements

were used while keeping the overall length of the measurement aperture the same. For example,
for the 200 measurement-point case, every alternate data point was selected from the 400-point
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data set. In using this approach, the length of aperture remains the same but the number of scan
points is reduced (the length of the measurement aperture L is kept the same in Eqs. (2) and (4)).
The minimum number of measurement points used was five. The results obtained with this
exercise indicated that the smoothness of the loss factor curves improved at lower frequencies with
increasing number of data points used. When fitting data representing a longer wavelength (lower
frequency), small errors in the fit can result in significant differences in the estimated wavenumber.
This improvement with an increase in the number of points is due to the fact that the longer
wavelength effect is suppressed by using a larger number of data points. Hence, the increased
number of data points tends to help reduce curve fitting errors for the wavenumber. As the
number of measurement points used increases, the measurement time also increases, which will
become clearer in later discussions. As a result, one would like to find a compromise between the
degree of accuracy required and the acquisition time needed.
Since it is apparent that the results can depend on the number of measurements used, the loss

factor value for a few particular frequencies was examined. Considering the 400-point case as the
reference, Table 1 shows the loss factor at each of the first three resonance frequencies. The
Table 1

Loss factor with different number of measurement positions

Mode Number of points

5 10 20 50 100 200 400

Z D% Z D% Z D% Z D% Z D% Z D% Z D%

1 0.07 18.25 0.08 9.47 0.09 6.57 0.09 6.02 0.09 2.81 0.08 7.91 0.09 —

2 0.02 82.14 0.14 31.06 0.14 28.09 0.14 25.14 0.07 33.69 0.11 2.70 0.11 —

3 0.13 36.40 0.10 2.54 0.10 4.98 0.10 6.59 0.10 5.25 0.10 7.62 0.10 —
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Fig. 10. NMSE and loss factor for 400 points. Circles in (b) show half-power values for first three modes.
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percent difference shown in this table (D%) is relative to the 400-point measurement, with the
assumption that the value for 400 points is the correct value. Note that in general the loss factor
converges to a constant value as the number of points used in the analysis increases. Furthermore,
the results for the first and third resonance frequencies tend to be more consistent.
Since the number of points affects the accuracy of this method, a more comprehensive study

can be conducted at the first three resonant frequencies. The percent difference in loss factor
versus the number of data points for these three frequencies is shown in Fig. 11. The figure also
shows the average coherence, which was calculated by taking the average over all the
measurement locations for each frequency. Again, the 400-point case is considered as a reference
upon which the percent difference value is calculated. Note that there are some fluctuations in the
curve as the number of points increases, especially for the second resonance. Generally speaking,
when the average coherence for all the data points decreases, as shown in Fig. 11(b), the loss
factor error increases. Also note that for fewer points (o100), whenever the coherence value
decreases, the percent difference in loss factor increases. As a result, very good results can be
obtained with just a few good measurement points (E10) provided the average coherence for
those points is sufficiently high. Fig. 11(a) also shows the acquisition time required based on the
number of data points used. This acquisition time includes only the time required by the
vibrometer system to take the measurements. While considering time as a factor, one should also
take into account the post-processing time. That time includes the time required to transfer the
measurement data of all the scan points as well as the time for the PC and MATLABs to
calculate the loss factor at each frequency. These times would depend more on the particular
computer used. For the Gateway computer (500MHz, 392 MB RAM) used in this study, the time
for loss factor calculation at all the frequencies varied from 30 s for 10 points to 5min for 400
points. Note that even though there is a substantial time difference (10 times), the time for 400
points is not very significant. Nevertheless, it was found that the initial wavenumber estimation
takes a considerable amount of time. For the somewhat crude approach used here, this time
varied from approximately 8min for 10 points to 12 h for 400 points. Once the initial guess for the
400 points case is calculated, no other guess values are needed as the next frequency uses the result
at the previous frequency as the guess.
It appears that the loss factor errors may be due to the coherence of the measured data. The loss

factor values are very sensitive to coherence when the number of measurements points is smaller.
To verify this inference, the loss factors for three different combinations of 60-data points sets
were analyzed. The first case was for 60 arbitrarily chosen points. The second and third cases were
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for the 60 poorest and best coherence valued data points, respectively. The length of aperture L is
still the same. It was found that the loss factor curve for the 60 best coherence points was
significantly smoother as compared to the other two cases. Generally speaking, there is a benefit
to having fewer points, especially if the average coherence is higher. This finding agrees with the
conclusions made above.
In the discussion above for Fig. 11, it was assumed that the 400 point case provided the best

result and could therefore be used as a reference for the comparison. A better reference would be a
case in which all of the points have a relatively high coherence, such as the 60 best-points case
considered above. It should be reiterated that these 60 points were almost evenly spaced but
selected based purely on coherence levels. By using the loss factors for the 60 ‘‘best’’ data points as
a reference, the difference in the loss factor values for different numbers of evenly spaced data
points was recalculated. Although not shown here, it was observed that the percentage difference
does not necessarily decrease by incorporating more evenly spaced data. This confirms the fact
that using fewer points with higher coherence can be better than using more points with poorer
coherence. Hence, adding more points does not necessarily counteract a low coherence and
guarantee better results. For the first mode, for example, 10 points spanning the aperture with
high coherence was found to be better than 400 points with poor SNR. As the vibration shape of
the beam becomes more complex, such as for the higher modes, more data points may be needed
due to the fact that more points are needed to accurately capture the shape of the structure.
It is also noted from the experimental results that there seems to be no effect on the loss

factor that can specifically be attributed to the intermediate fasteners. This may be because the
stiffness of bolts used may be small as compared to that of the composite beam. Investigation
into the effect of the number of bolts and the magnitude of torquing may give further insight in
future research.
6. Summary

A relatively new damping measurement technique is evaluated in this work. This new technique
estimates the complex wavenumber for a particular frequency by matching the experimental
vibratory response to the analytical response. A viscoelastically damped sandwich beam with its
layers coupled with adhesive as well as fasteners along its length is used for the experiments. It
should be noted that even though a beam bolted with fasteners is used for the present study, this
damping measurement technique might be used as effectively for any beam configuration. By
using subsets from the large data set, the impact of the number of points as well as the coherence
of those data points on the accuracy of the wavenumber method could be examined. The complex
wavenumber iterative method was found to be more sensitive to coherence of the measured data
points than the number of measurement points. However, at higher frequencies, the effect of the
higher number of scan points overwhelms the effect of coherence. Therefore, one should use a
greater number of data points at higher frequencies if the SNR in the measured data is low. It
should be noted that the number of measurement locations needs to be considered only while
using this iterative algorithm. Moreover, when using this method, it is easier to use the vibrometer
system than conventional accelerometers due to the ease provided by this system in acquiring data
at a large number of locations. For the case considered here, an accuracy of 10% can be attained



ARTICLE IN PRESS

V. Palan et al. / Journal of Sound and Vibration 291 (2006) 1170–1185 1185
with the use of at least 10 data points with good coherence. These data points should have very
high coherence values (40.995) and should span the length of the beam. One should use more
points when an accuracy of better than 10% relative to the reference case is desired, or at higher
frequencies.
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