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Abstract

The minimum stiffness of a simple (or point) support that raises a natural frequency of a beam to its upper
limit is investigated for different boundary conditions. The approach produces the closed-form solution for
the minimum stiffness based on the derivative of a natural frequency with respect to the support position. It is
seen that when an intermediate elastic support is positioned properly the effect is similar to a rigid support.
The solution process also provides insight into the dynamics of a beam with an intermediate support for more
general boundary conditions. The resulting solutions can be used to guide the practical design of a support.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The design of structural supports plays a key role in engineering dynamics and therefore close
attention should be paid to their characteristics. Supports are not only expected to hold a
structure firmly, but can also be redesigned to improve the structural performance. Thus far,
numerous papers have been devoted to this problem [1–7]. Akesson and Olhoff [2] pointed out
that there exists a certain minimum stiffness of an additional support when maximizing the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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fundamental frequency of a cantilever beam. Increasing the support stiffness over the minimum
value cannot raise the lowest frequency further due to mode switching. Rao [3] developed the
frequency equation of a beam with an intermediate support by the continuity conditions at the
supported point. Wang [4] numerically evaluated the minimum stiffness of an elastic support for
beams with different end conditions. Wang et al. [5] derived the frequency derivative of a beam-
like structure with regard to the position of a simple (or point) support by the discrete method.
Moreover, they presented a procedure to determine the optimum positions of elastic supports
based on the frequency sensitivity. Albarracı́n et al. [6] calculated the effect of an intermediate
support when the ends of the beam have elastic constraints. Low [8,9] considered the effect of a
discrete mass on the beam natural frequencies for a variety of end conditions.
The minimum stiffness of an additional support required to maximize a natural frequency is of

particular interest in engineering applications since producing a support with infinite stiffness is
virtually impossible. Thus, designing an elastic support at the optimum position that gives a
similar effect to a rigid support has significant advantages. So far, no explicit solution has been
derived to calculate the minimum support stiffness, although numerical solutions are possible
when the support is placed at a node of a higher mode [4]. This study derives the closed-form
solution for the minimum stiffness using the derivatives of a natural frequency with respect to the
support position. The solution process also provides insight into the dynamics of a beam with an
intermediate support for more general boundary conditions. Furthermore, the present procedure
is easily extended to the higher natural frequencies.
2. Dynamics of a vibrating beam

Fig. 1 shows a uniform cantilever Euler–Bernoulli beam with flexural rigidity EI, mass per unit
length m and length L. For convenience the axial location of a cross section is indicated with a
dimensionless coordinate x. Assume an elastic support with stiffness k is located at x ¼ b. The
eigenvalue equation for the vibration of the beam is

w0000ðxÞ � l4wðxÞ ¼ 0, (1)

where

l4 ¼
o2mL4

EI
(2)

and w(x) is the transverse displacement of the beam, o the natural (circular) frequency of
vibration and l the frequency parameter. The prime denotes differentiation with respect to x. The
Fig. 1. A uniform cantilever beam with an intermediate support.
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general solution to Eq. (1) for the cantilever beam is defined separately over those parts of the
beam either side of the support location, denoted by w1(x) and w2(x). For each solution
the general form of the displacement given by Eq. (1) has four unknown parameters. Applying the
clamped boundary condition to w1(x) and the free boundary condition to w2(x) gives the
following general solution:

w1ðxÞ ¼ C1 sinh lx� sin lx½ � þ C2 cosh lx� cos lx½ � for 0pxpb, (3)

w2ðxÞ ¼ C3 sinh lðx� 1Þ þ sin lðx� 1Þ½ �

þ C4 cosh lðx� 1Þ þ cos lðx� 1Þ½ � for bpxp1. ð4Þ

Wang [4] presented detailed solutions for other end conditions. The compatibility conditions for
the deflections and internal forces at the support position will determine the constants Ci in Eqs.
(3) and (4), and also the natural frequencies of the beam [3].
According the Courant’s maximum–minimum principle [1], an additional support can increase the

structural frequency, oi, to between the ith and the (i+1)th natural frequencies of the original system.
Akesson and Olhoff [2] showed that if a support with the minimum stiffness, k0, is located at the
node of the original second mode, and that the first natural frequency of the beam system will reach
its upper limit value of the second natural frequency of the beam without the support. Wang et al. [5]
showed that the derivative of the ith natural frequency with respect to the support position is

qo2
i

qb
¼ 2LkwiðbÞyiðbÞ, (5)

where wi(b) and yi(b) denote the transverse displacement and the slope, respectively, of the ith
vibration mode at the support. Hence, to maximize the first natural frequency, either the displacement
or the slope of the first vibration mode must vanish at the support position. If the support with the
minimum stiffness, k0, is located at the node of the second mode of the original system, then the
displacement of the first mode will be non-zero and hence the slope of the first mode must vanish.
3. Calculating the minimum stiffness

Once the support stiffness is given, Eq. (5) enables us to find both the optimum support position
and the corresponding maximum frequency [5]. Alternatively, if an appropriate support position,
say b, is prescribed as the optimum, which often arises in practice, we can also determine the
support stiffness, k0, required and the corresponding maximum frequency parameter, l.
Moreover, it should be stressed that this stiffness is the minimum value to obtain the frequency
parameter l. In other words, it is impossible to obtain the frequency l with a lower support
stiffness. To fix the idea, we consider two typical sets of end conditions for the beam.

3.1. Cantilever beam

A cantilever beam with an elastic support is shown in Fig. 1. Suppose that the support is located
at b and makes the slope of the first mode equal to zero at b. Then, from Eqs. (3) and (4), we have

w01ðbÞ ¼ C1l cosh lb� cos lb½ � þ C2l sinh lbþ sin lb½ � ¼ 0, (6a)



ARTICLE IN PRESS

D. Wang et al. / Journal of Sound and Vibration 291 (2006) 1229–12381232
w02ðbÞ ¼ C3l½cosh lðb� 1Þ þ cos lðb� 1Þ� þ C4l½sinh lðb� 1Þ þ sin lðb� 1Þ� ¼ 0 (6b)

and thus

C2 ¼ �C1
cosh lb� cos lb

sinh lbþ sin lb
and C4 ¼ �C3

cosh lðb� 1Þ þ cos lðb� 1Þ

sinh lðb� 1Þ � sin lðb� 1Þ
. (7)

The continuity conditions of the displacement and the bending moment (the second derivative of
the displacement) at the support position yield,

C1
2 cosh lb cos lb� 2

sinh lbþ sin lb
¼ �C3

2 cosh lðb� 1Þ cos lðb� 1Þ þ 2

sinh lðb� 1Þ � sin lðb� 1Þ
, (8a)

C1
2 sinh lb sin lb

sinh lbþ sin lb
¼ �C3

2 sinh lðb� 1Þ sin lðb� 1Þ

sinh lðb� 1Þ � sin lðb� 1Þ
. (8b)

The requirement for non-trivial solutions for C1 and C3 in Eqs. (8) produces the characteristic
determinant equation for the maximum fundamental frequency parameter l as

cosh lb cos lb� 1 cosh lðb� 1Þ cos lðb� 1Þ þ 1

sinh lb sin lb sinh lðb� 1Þ sin lðb� 1Þ

�����
����� ¼ 0. (9)

Only three of the four continuity conditions have been used to calculate the maximum frequency
parameter. The continuity of the shear forces at the supported location is used to determine the
minimum support stiffness, k0, as [4]

w0001 ðbÞ � gw1ðbÞ ¼ w0002 ðbÞ, (10)

where g ¼ k0L
3=EI is the normalized or dimensionless minimum stiffness. It follows immediately

that

g ¼
w0001 ðbÞ � w0002 ðbÞ

w1ðbÞ
. (11)

For example, positioning a support at the node of the second mode of the cantilever beam, i.e.,
b ¼ 0:7834, the solution to Eq. (9) is l ¼ 4:6941. That is, the first frequency of the supported beam
is equal to the second natural frequency of the beam without the additional support and then a
repeated fundamental natural frequency occurs in the system. The minimum support stiffness is
obtained from Eq. (11) as g ¼ 266:87. Over that value the first natural frequency cannot be raised
further by increasing the support stiffness, whereas the second natural frequency would be raised.
As a second example suppose that b ¼ 1.0, and then Eq. (9) reduces to

sinh l sin l ¼ 0. (12)

The smallest non-zero solution is

l ¼ p (13a)

and thus

g ¼ 28:44. (13b)

Figs. 2 and 3 plot the minimum support stiffness and the maximum fundamental frequency,
respectively, versus the support position. Only support positions from the node of the second
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mode through to the beam tip are included, since no optimum exists for locations closer to the
clamped end [5]. It is observed that the beam’s fundamental frequency may be changed significantly
by moving the support. When b ¼ 0:8278 the minimum stiffness is g ¼ 133:37, and the maximum
frequency is l ¼ 4:1186, as given by Akesson and Olhoff [2]. Note that if the support stiffness is
above 266.87, the optimum position remains at the node of the second mode of the unsupported
beam, whereas if the stiffness is below 28.44, the optimum position will be at the beam tip [5].

3.2. Simply supported beam

We now consider the case of symmetric end conditions. For a simply supported beam with an
intermediate support the beam displacement may also be written in a similar manner to Eqs. (3)
and (4), where the displacement functions now satisfy the pinned boundary conditions [4]. The
characteristic determinant equation for the frequency parameter is obtained by considering
continuity at the support and the zero slope condition, in a similar way to the clamped beam
example. The resulting equation is

sinh lb cos lb� cosh lb sin lb sinh lðb� 1Þ cos lðb� 1Þ � cosh lðb� 1Þ sin lðb� 1Þ

sinh lb cos lbþ cosh lb sin lb sinh lðb� 1Þ cos lðb� 1Þ þ cosh lðb� 1Þ sin lðb� 1Þ

�����
����� ¼ 0. (14)

If b ¼ 1=2 [4], then the above equation becomes

sinh
l
2
cos

l
2
� sin

l
2
cosh

l
2

sinh
l
2
cos

l
2
� sin

l
2
cosh

l
2

sinh
l
2
cos

l
2
þ sin

l
2
cosh

l
2

sinh
l
2
cos

l
2
þ sin

l
2
cosh

l
2

��������

��������
¼ 0. (15)

This equation is satisfied for all values of l, which implies that for any support stiffness the
optimum position is always at the mid-span of the beam. Thus the beam center is the only
optimum support position for the simply supported beam, which is obvious for beams with
symmetric end conditions. In this case, the first natural frequency is then a function of the
deflection of the beam at the support location. If the first natural frequency is increased to that for
the second mode of the unsupported structure, then l ¼ 2p [4], and

g ¼
1

w1ð1=2Þ
½w0001 ð1=2Þ � w0002 ð1=2Þ� ¼ 32p3

coshðpÞ
sinhðpÞ

¼ 995:91: (16)

Suppose that the support is at position b ¼ 0:75, then a solution to Eq. (14) is l ¼ 2p. However,
the required stiffness of the support is then computed to be g ¼ 0, which is unreasonable.

3.3. Other end conditions

The lowest natural frequency of a uniform beam may be maximized for different sets of end
conditions. The resulting characteristic equations and the minimum support stiffnesses are
tabulated in the Appendix. The free–free case is not included since such a beam with a point
support will still have a rigid body mode. Also shown are some special cases where the support is
located at the node of the second mode of the unsupported beam to verify the numerical results of
Wang [4].
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4. Minimum stiffness for higher natural frequencies

In addition to raising the first natural frequency of a beam to its upper limit with an elastic
support, we can also increase any of the higher natural frequencies to its upper limit with a flexible
support. The optimum position for this support is at the nodes of the next higher frequency modes
and the minimum stiffness may be evaluated using the method described previously. For example,
placing the lateral support at b ¼ 0:8677, which is one of the nodes of the third mode of the
cantilever beam [2], the second smallest solution to Eq. (9) is l ¼ 7:8548, which is the third natural
frequency of the unsupported structure. Consequently, Eq. (11) may be used to calculate the
minimum support stiffness as g ¼ 1307:5 and this support stiffness will raise the second natural
frequency to equal the third. If the support is placed at another node of the third mode shape,
b ¼ 0:5035, then we obtain solutions l ¼ 7:8548 and g ¼ 1942:5. It is seen that the required
minimum stiffness is quite different at each of the nodes of the third mode. For the simply
supported beam, taking b ¼ 1=3 or 2/3, the solution to Eq. (14) is l ¼ 3p and then Eq. (11) is
g ¼ 3354:9, for both positions. Tables 1 and 2 give the optimum position and the minimum
Table 1

Optimal support position, minimum stiffness and maximum frequency for raising the higher natural frequencies of a

cantilever beam

Mode no. Original

frequency (li)

Optimum

position (b)

Maximum

frequency (lu)

Minimum

stiffness (g)
Stiffness at other mode

nodes

1 1.8751 0.7834 4.6941 266.87

2 4.6941 0.8677 7.8548 1307.5 g(0.5035) ¼ 1942.5

3 7.8548 0.9055 10.996 3584.1 g(0.6440) ¼ 5487.3

g(0.3583) ¼ 5164.3

4 10.996 0.9265 14.137 7612.5 g(0.7232) ¼ 11631

g(0.4999) ¼ 11301

g(0.2788) ¼ 10999

Table 2

Optimal support position, minimum stiffness and maximum frequency for raising the higher natural frequencies of a

simply supported beam

Mode no. Original

frequency (li)

Optimum

position (b)

Maximum

frequency (lu)

Minimum

stiffness (g)
Stiffness at other mode

nodes

1 3.1416 0.5000 6.2832 995.91

2 6.2832 0.3333 9.4248 3354.9

0.6667

3 9.4248 0.5000 12.566 7937.7 g(0.25) ¼ 7952.5

g(0.75) ¼ 7952.5

4 12.566 0.4000 15.708 15503 g(0.2) ¼ 15532

0.6000 g(0.8) ¼ 15532
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stiffness of a support to increase the first four natural frequencies for cantilever and simply
supported beams, respectively. In each case the natural frequency of the mode of interest is raised
to equal the next higher natural frequency. The results show that the minimum support stiffness
required increases rapidly for the higher natural frequencies.
5. Conclusions

Once the optimum position of an additional support is prescribed properly, a natural frequency
of a beam can be raised to its upper limit with a minimum requirement on the support stiffness. By
calculating the natural frequency derivatives, the problem of finding the minimum stiffness
reduces to determination of the zero slope of the related mode shape. In this study, the analytical
formulation of the minimum support stiffness is developed for different types of beam-end
conditions in a systematic manner based on the continuity conditions at the support point.
Furthermore, it is illustrated that a stiffer intermediate support is needed to raise a higher order
frequency to its maximum. The resulting solutions can be used in the design of practical supports.
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Appendix

The characteristic determinant equation and the minimum support stiffness for various sets of
beam end conditions are given in Table 3.
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