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Dipartimento di Ingegneria Industriale, Università di Parma, Parco Area delle Scienze 181/A, Parma, 43100 Italy

Received 30 March 2005; received in revised form 16 June 2005; accepted 16 June 2005

Available online 6 September 2005
Abstract

Large-amplitude vibrations of rectangular plates subjected to harmonic excitation are investigated. The
von Kármán nonlinear strain–displacement relationships are used to describe the geometric nonlinearity. A
specific boundary condition, with restrained normal displacement at the plate edges and fully free in-plane
displacements, not previously considered, has been introduced as a consequence that it is very close to the
experimental boundary condition. Results for this boundary condition are compared to nonlinear results
previously obtained for: (i) simply supported plates with immovable edges; (ii) simply supported plates with
movable edges, and (iii) fully clamped plates. The nonlinear equations of motion are studied by using a
code based on pseudo-arclength continuation method. A thin rectangular stainless-steel plate has been
inserted in a metal frame; this constraint is approximated with good accuracy by the newly introduced
boundary condition. The plate inserted into the frame has been measured with a 3D laser system in order to
reconstruct the actual geometry and identify geometric imperfections (out-of-planarity). The plate has been
experimentally tested in laboratory for both the first and second vibration modes for several excitation
magnitudes in order to characterize the nonlinearity of the plate with imperfections. Numerical results are
able to follow experimental results with good accuracy for both vibration modes and for different excitation
levels once the geometric imperfection is introduced in the model. Effects of geometric imperfections on the
trend of nonlinearity and on natural frequencies are shown; convergence of the solution with the number of
generalized coordinates is numerically verified.
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1. Introduction

Extensive literature reviews on the nonlinear vibration of plates are given by Chia [1],
Sathyamoorthy [2] and Chia [3]; curved panels and shells are reviewed by Amabili and Paı̈doussis
[4]. The fundamental study in the analysis of large-amplitude vibrations of rectangular plates is
due to Chu and Hermann [5], who were the pioneers in the field. They studied the fundamental
mode of simply supported rectangular plates with immovable edges with different aspect ratios.
The solution was obtained by using a perturbation analysis and shows strong hardening-type
nonlinearity.
A series of interesting papers [6–9] compared the backbone curves of the fundamental mode of

isotropic plates with the results of Chu and Hermann [5]; all of them are in good agreement with
the original results of Chu and Hermann. In particular, Leung and Mao [8] also studied simply
supported rectangular plates with movable edges, which present reduced hardening-type
nonlinearity with respect to simply supported plates with immovable edges.
The effect of geometric imperfection was investigated by Hui [10]. Yasuda and Asano [11]

studied rectangular membranes with internal resonances (one-to-one) both numerically and
experimentally. One-to-one internal resonances and chaos in harmonically excited rectangular
plates were studied numerically by Chang et al. [12].
Recent studies by Han and Petyt [13,14] and Ribeiro and Petyt [15–17] used the hierarchical

finite element method to deeply investigate the nonlinear response of clamped rectangular plates.
A similar approach was used by Ribeiro [18] to investigate the forced response of simply
supported plates with immovable edges. A simplified analytical approach was developed by El
Kadiri and Benamar [19] for the case previously studied by Chu and Hermann.
Recently, Amabili [20] compared results for nonlinear forced vibrations of rectangular plates

with the following boundary conditions: (i) simply supported plates with movable edges;
(ii) simply supported plates with immovable edges, and (iii) fully clamped plates. Results show
that in all the three cases the response is of hardening-type. However, in case (i) there is a mild
nonlinearity, which becomes strong in case (ii) and extremely strong in case (iii) for the clamped
plate. Experimental responses for the fundamental mode of an aluminum rectangular plate
obtained for different excitations are provided and compared with reasonable agreement to
numerical simulations. The effect of geometric imperfections, taken into account in the theory,
was not investigated in both the experimental and numerical results. Even if a large number of
theoretical studies on large-amplitude vibrations of rectangular plates are available in the
scientific literature, experimental results are very scarce and those reported by Amabili [20] seem
to be the most suitable to reconstruct the trend of nonlinearity.
As a consequence of this lack in the literature, a new series of experiments has been designed by

using more sophisticated instrumentation and measurement of the actual surface geometry of the
experimental plate has been carried out. The present paper synthesizes the experimental results,
the theory developed and the numerical simulations. A specific boundary condition, with
restrained normal displacement at the plate edges and fully free in-plane displacements, not
previously considered in Ref. [20], has been introduced as a consequence that it is very close to the
experimental boundary condition. Results for this boundary condition are compared to nonlinear
results previously obtained in Ref. [20] for different boundary conditions. The plate inserted into
the frame has been measured with a 3D laser system in order to reconstruct the actual geometry
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and identify geometric imperfections (out-of-planarity). The plate has been experimentally tested
in laboratory for both the first and second vibration modes for several excitation magnitudes in
order to characterize the nonlinearity of the plate with imperfections. Numerical results are able
to predict experimental results with good accuracy for both vibration modes and for different
excitation levels once the geometric imperfection is introduced in the model. Effects of geometric
imperfections on the trend of nonlinearity and on natural frequencies are shown; convergence of
the solution with the number of generalized coordinates is numerically verified.
2. Elastic strain energy of the plate

A rectangular plate with coordinate system (O; x, y, z), having the origin O at one corner is
considered. The displacements of an arbitrary point of coordinates (x, y) on the middle surface of
the plate are denoted by u, v and w, in the x, y and normal (z) directions, respectively. Initial
geometric imperfections of the rectangular plate associated with zero initial tension are denoted
by normal displacement w0; in-plane initial imperfections are neglected.
The von Kármán nonlinear strain–displacement relationships are used. The strain components

�x, �y and gxy at an arbitrary point of the plate are related to the middle surface strains �x;0, �y;0 and
gxy;0 and to the changes in the curvature and torsion of the middle surface kx, ky and kxy by the
following three relationships

�x ¼ �x;0 þ zkx; �y ¼ �y;0 þ zky; gxy ¼ gxy;0 þ zkxy, (1)

where z is the distance of the arbitrary point of the plate from the middle surface. According to
von Kármán’s theory, the middle surface strain–displacement relationships and changes in the
curvature and torsion are given by [21]
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. (2f)
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The elastic strain energy UP of a plate, neglecting sz under Kirchhoff’s hypotheses, is given by

UP ¼
1

2

Z a

0

Z b

0

Z h=2

�h=2
ðsx�x þ sy�y þ txygxyÞdxdydz; (3)

where h is the plate thickness, a and b are the in-plane dimensions in x and y directions,
respectively, and the stresses sx, sy and txy are related to the strain for homogeneous and isotropic
material (sz ¼ 0, case of plane stress) by

sx ¼
E

1� n2
�x þ n�y
� �

; sy ¼
E

1� n2
�y þ n�x
� �

; txy ¼
E

2 1þ nð Þ
gxy, (4)

where E is the Young’s modulus and n is the Poisson’s ratio. By using Eqs. (1), (3), and (4), the
following expression is obtained
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xy
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Þ, ð5Þ

where O(h4) is a higher-order term in h; the first term is the membrane (also referred to as
stretching) energy and the second one is the bending energy.
3. Boundary conditions, kinetic energy, external loads and mode expansion

The kinetic energy TP of a rectangular plate, by neglecting rotary inertia, is given by

TP ¼
1

2
rPh

Z a

0

Z b

0

ð _u2 þ _v2 þ _w2Þdxdy, (6)

where rP is the mass density of the plate. In Eq. (6) the overdot denotes a time derivative.
The virtual work W done by the external forces is written as

W ¼

Z a

0

Z b

0

qxuþ qyvþ qzw
� �

dxdy, (7)

where qx, qy and qz are the distributed forces per unit area acting in x, y and z directions,
respectively. In the present study, only a single harmonic force orthogonal to the plate is
considered; therefore qx ¼ qy ¼ 0. The external distributed load qz applied to the plate, due to the
concentrated force ~f , is given by

qz ¼
~f dðy� ~yÞdðx� ~xÞ cosðotÞ. (8)

where o is the excitation frequency, t is the time, d is the Dirac delta function, ~f is the force
magnitude positive in z direction; ~x and ~y give the position of the point of application of the force.
In the present study, the excitation point is located at ~x ¼ a=4, ~y ¼ b=4, in order to reproduce
experiments. Eq. (7) can be rewritten in the following form

W ¼ ~f cosðotÞ wð Þx¼a=4; y¼b=4. (9)
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The following boundary condition is introduced in the present study:

Nx ¼ Nx;y ¼ w ¼ w0 ¼Mx ¼ q2w0=qx2 ¼ 0 at x ¼ 0; a, (10a2f)

Ny ¼ Nx;y ¼ w ¼ w0 ¼My ¼ q2w0=qy2 ¼ 0 at y ¼ 0; b, (11a2f)

where M is the bending moment per unit length, Nx and Ny are the normal forces per unit length
on the edges orthogonal to x and y, respectively, and Nx,y is the shear force per unit length. Eqs.
(10) and (11) give fully free in-plane conditions and w is restrained at the plate edges.
In order to reduce the system to finite dimensions, the middle surface displacements u, v and w

are expanded by using the following approximate functions, which satisfy identically the
geometric boundary conditions (10c) and (11c):

wðx; y; tÞ ¼
XM1

m¼1

XN1

n¼1

wm;nðtÞ sinðmpx=aÞ sinðnpy=bÞ, (12)

uðx; y; tÞ ¼
XM2

m¼1

XN2

n¼1

um;nðtÞ cosðmpx=aÞ cosðnpy=bÞ, (13)

vðx; y; tÞ ¼
XM3

m¼1

XN3

n¼1

vm;nðtÞ cosðmpx=aÞ cosðnpy=bÞ, (14)

where m and n are the numbers of half-waves in x and y directions, respectively, and t is the time;
um,n(t), vm,n(t) and wm,n(t) are the generalized coordinates that are unknown functions of t. M and
N indicate the terms necessary in the expansion of the displacements; in general, more in-plane
terms than generalized coordinates wm,n(t) are necessary to describe correctly the trend of
nonlinearity [20].
Initial geometric imperfections of the rectangular plate are considered only in z direction. They

are associated with zero initial stress. The imperfection w0 is expanded in the same form of w, i.e.
in a double Fourier sine series satisfying the boundary conditions (10d,f) and (11d,f) at the plate
edges

w0ðx; yÞ ¼
X~M
m¼1

X~N
n¼1

Am;n sinðmpx=aÞ sinðnpy=bÞ, (15)

where Am;n are the modal amplitudes of imperfections; ~N and ~M are integers indicating the
number of terms in the expansion.
4. Additional terms to satisfy the boundary conditions

The geometric boundary conditions, Eqs. (10c,d,f) and (11c,d,f) are exactly satisfied by
the expansions of u, v, w and w0. On the other hand, Eqs. (10e) and (11e) can be rewritten in the
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following form [21]:

Mx ¼
Eh3

12ð1� n2Þ
kx þ nky

� �
¼ 0 at x ¼ 0; a, (16)

My ¼
Eh3

12ð1� n2Þ
ky þ nkx

� �
¼ 0 at y ¼ 0; b, (17)

Eqs. (16) and (17) are identically satisfied for the expressions of kx and ky given in Eqs. (2d,e).
Moreover, the following constraints must be satisfied [21]:

Nx ¼
Eh

1� n2
�x;0 þ n�y;0
� �

¼ 0 at x ¼ 0; a, (18)

Ny ¼
Eh

1� n2
�y;0 þ n�x;0

� �
¼ 0 at y ¼ 0; b. (19)

Eqs. (18) and (19) are not identically satisfied. Eliminating null terms at the plate edges, Eqs.
(18) and (19) can be rewritten as

qû

qx
þ

1

2

qw

qx

� �2

þ
qw

qx

qw0

qx
þ n

qv̂

qy

" #
x¼0;a

¼ 0, (20)

qv̂

qy
þ

1

2

qw

qy

� �2

þ
qw

qy

qw0

qy
þ n

qû

qx

" #
y¼0;b

¼ 0, (21)

where û and v̂ are terms added to the expansion of u and v, given in Eqs. (13) and (14), in order to
satisfy exactly the boundary conditions Nx ¼ 0 and Ny ¼ 0. As a consequence that û and v̂ are
second-order terms in the plate displacement, they have not been inserted in the second-order
terms that involve u and v in Eqs. (20) and (21). Non-trivial calculations, reported in Ref. [22] for
a different geometry, give

ûðtÞ ¼ �
XN1

n¼1

XM1

m¼1

ðmp=aÞ
1

2
wm;nðtÞ sinðnpy=bÞ

XN1
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� �)
, ð22Þ
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m¼1
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1

2
wm;nðtÞ sinðmpx=aÞ
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Finally boundary conditions (10b) and (11b) must be also satisfied. They give [21]

Nx;y ¼ Ny;x ¼
Eh

2ð1þ nÞ
gx;y ¼ 0; at x ¼ 0; a; and at y ¼ 0; b. (24)

Eliminating null terms at the plate edges, Eq. (24) can be rewritten as

qu

qy
þ

qv

qx

	 

x¼0;a
or

y¼0;b

¼ 0. (25)

Eq. (25) is a linear condition, which is satisfied by using minimization of energy in the Lagrange
equations of motion. Therefore no additional terms in the expansion are introduced. Actually,
also Eqs. (18) and (19) can be satisfied by energy minimization by avoiding to introduce Eqs. (22)
and (23). But in this case the choice of the expansions of u and v become very tricky, i.e. all the
terms involved in Eqs. (22) and (23) must be inserted in the expansion in order to predict the
system behavior with accuracy. This has been verified numerically.
5. Lagrange equations of motion

The non-conservative damping forces are assumed to be of viscous type and are taken into
account by using the Rayleigh’s dissipation function

F ¼
1

2
c

Z a

0

Z b

0

_u2 þ _v2 þ _w2
� �

dxdy, (26)

where c has a different value for each term of the mode expansion. Simple calculations give

F ¼
1

2
ðab=4Þ

XN1

n¼1

XM1

m¼1

cm;n _w
2
m;n þ

XN2

n¼1

XM2

m¼1

cm;n _u
2
m;n þ

XN3

n¼1

XM3

m¼1

cm;n _v
2
m;n

" #
. (27)

The damping coefficient cm,n is related to modal damping ratio (in this case it is a damping ratio of
the generalized coordinate), that can be evaluated from experiments, by Bm;n ¼ cm;n=ð2mm;nom;nÞ,
where om;n is the natural circular frequency of mode (m, n) and mm,n is the mass associated with
this generalized coordinate, given by mm;n ¼ rShðab=4Þ.
The following notation is introduced for brevity:

q ¼ um;n; vm;n;wm;n

� �T
; m ¼ 1; . . .M1 or 2 or 3 and n ¼ 1; . . .N1 or 2 or 3. (28)

The generic element of the time-dependent vector q is referred to as qj, which is the generalized
coordinate; the dimension of q is dofs, which is the number of degrees of freedom used in the
mode expansion.
The generalized forces Qj are obtained by differentiation of the Rayleigh’s dissipation function

and of the virtual work done by external forces

Qj ¼ �
qF

q _qj

þ
qW

qqj

¼ �ðab=4Þcj _qj þ

0 if qj ¼ um;n; vm;n;or wm;n with m or n ¼ 4; 8; . . . ;

a ~f cosðo tÞ if qj ¼ wm;n with m or na4; 8; . . . ;

(

(29)
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where a is a coefficient taking the opportune numerical value (71,7
ffiffiffi
2
p

=2,71=2) according with
the value of (m, n). The Lagrange equations of motion are

d

dt

qTP

q _qj

 !
�

qTP

qqj

þ
qUP

qqj

¼ Qj; j ¼ 1; . . . dofs, (30)

where qTP=qqj ¼ 0. These second-order equations have very long expressions containing
quadratic and cubic nonlinear terms. In particular,

d

dt

qTP

q _qj

 !
¼ rPhðab=4Þ €qj, (31)

which shows that no inertial coupling among the Lagrange equations exists for the plate with the
mode expansion used.
The very complicated term giving quadratic and cubic nonlinearities can be written in the form

qU

qqj

¼
Xdofs
k¼1

qk f k þ
Xdofs
i;k¼1

qiqk f i;k þ
Xdofs

i;k;l¼1

qiqkql f i;k;l , (32)

where coefficients f have long expressions that include also geometric imperfections. Quadratic
nonlinearities of the type q2

i (in particular for qi ¼ wm;n) are never present in the equations of
motion of perfect flat plates. This is a difference with respect to curved panels [22] and it is
physically explained by the fact that no different displacement is observed for flat plates in z and
–z directions, due to the symmetry. Presence of quadratic nonlinearities is the reason for
significant asymmetric displacement in z and –z that is observed in the results of this study
presented in the following sections. Numerical results show that, for very thin plates, geometric
imperfections of the magnitude of the plate thickness give quadratic terms with an effect of the
same order of cubic terms, for vibration amplitude of the order of the plate thickness. Therefore
the classical hardening-type nonlinearity, which is characteristics of flat plates, is transformed by
significant imperfections into softening-type nonlinearity, turning to hardening-type for larger
vibration amplitudes.
The equations of motion have been obtained by using the Mathematica version 4 computer

software [23] in order to perform analytical surface integrals of trigonometric functions (e.g.
integrals in Eq. (5)). The generic jth Lagrange equation is divided by the modal mass associated
with €qj and then is transformed in two first-order equations. A non-dimensionalization of
variables is also performed for computational convenience: the frequencies are divided by the
natural radian frequency om;n of the mode (m, n) investigated, and the vibration amplitudes are
divided by the plate thickness h. The resulting 2� dofs equations are studied by using (i) the
software AUTO 97 [24] for continuation and bifurcation analysis of nonlinear ordinary
differential equations, and (ii) direct integration of the equations of motion by using the DIVPAG
routine of the Fortran library IMSL. The software AUTO 97 is capable of continuation of the
solution, bifurcation analysis and branch switching by using pseudo-arclength continuation and
collocation methods. In particular, the plate response under harmonic excitation has been studied
by using an analysis in two steps: (i) first the excitation frequency has been fixed far enough from
resonance and the magnitude of the excitation has been used as bifurcation parameter; the
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solution has been started at zero force where the solution is the trivial undisturbed configuration
of the plate and has been continued up to reach the desired force magnitude; (ii) when the desired
magnitude of excitation has been reached, the solution has been continued by using the excitation
frequency as bifurcation parameter.
6. Numerical results: effect of boundary conditions on the trend of nonlinearity for perfect plate

Calculations have been initially performed for a rectangular aluminum plate without
imperfections with the following dimensions and material properties: a ¼ 0:515m, b ¼ 0:184m,
h ¼ 0:0003m, E ¼ 69� 109 Pa, r ¼ 2700kg=m3 and n ¼ 0:33. This plate has fundamental mode
(n ¼ 1, m ¼ 1) with radian frequency o1;1 ¼ 24:26� 2p rad/s and it has been previously studied in
Ref. [20] for the following three boundary conditions: (i) simply supported with movable edges;
(ii) simply supported with immovable edges; and (iii) fully clamped. In the present study, the new
boundary conditions introduced in Eqs. (10) and (11), i.e. fully free in-plane displacement, is
considered for harmonic excitation around the fundamental resonance, at the plate center (at
x ¼ a=2 and y ¼ b=2), of magnitude ~f ¼ 0:007 N, assuming modal damping z1;1 ¼ 0:0117 (the
same damping ratio is assumed for all the generalized coordinates). The maximum plate
oscillation at the center of the plate (almost coincident with w1,1 in this case) is presented in Fig. 1
and is compared to results obtained in Ref. [20] for the other three boundary conditions. It is
evident that the new boundary condition gives mild hardening-type nonlinearity, even reduced
Fig. 1. Response of the plate with different boundary conditions; mode (1, 1). ——, present study, plate with fully free

in-plane displacement, ~f ¼ 0:007N, z1;1 ¼ 0:0117, 22 dofs; , simply supported plate with movable edges,
~f ¼ 0:007N, z1;1 ¼ 0:0117, 12 dofs, [20]; - -, simply supported plate with immovable edges, ~f ¼ 0:007N, z1;1 ¼ 0:0147,
16 dofs, [20]; , clamped plate, ~f ¼ 0:0467N, z1;1 ¼ 0:0147, 39 dofs, [20].
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with respect to the one of the simply supported plate with movable edges. In fact, the reduced in-
plane constraint decreases the nonlinearity of the plate. Present results have been obtained by
using a model with 22 dof, i.e. with 22 generalized coordinates. In particular, they are: w1,1, w1,3,
w3,1, w3,3, u1,0, u1,2, u1,4, u3,0, u3,2, u3,4, u5,0, u5,2, u5,4, v0,1, v2,1, v4,1, v0,3, v2,3, v4,3, v0,5, v2,5, v4,5.
7. Experimental set-up and results

Tests have been conducted on an almost squared, stainless steel plate with the following
dimensions and material properties: a ¼ 0:2085m, b ¼ 0:21m, h ¼ 0:0003m, E ¼ 198� 109 Pa,
r ¼ 7850kg=m3 and n ¼ 0:3. The plate was inserted into a heavy rectangular steel frame made of
several thick parts, see Fig. 2, having grooves designed with V shape to hold the plate and avoid
out-of-plane displacements at the edges. Silicon was placed into the grooves to better fill any
possible gap between the grooves and the plate. Practically all the in-plane displacements at the
edges were allowed because the constraint given by silicon on in-plane displacements is small.
Therefore the experimental boundary conditions are close to those given by Eqs. (10) and (11).
The plate has been subjected to (i) burst-random excitation to identify the natural frequencies

and perform a modal analysis by measuring the plate response on a grid of points, (ii) harmonic
excitation, increasing or decreasing by very small steps the excitation frequency in the spectral
neighbourhood of the lowest natural frequencies to characterize nonlinear responses in presence
of large-amplitude vibrations (step-sine excitation). The excitation has been provided by an
electrodynamical exciter (shaker), model B&K 4810. A piezoelectric miniature force transducer
Fig. 2. Photograph of the experimental plate, connected to the shaker by the stinger and the load cell.
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B&K 8203 of the weight of 3.2 g, placed on the plate at x ¼ a/4 and y ¼ b/4 and connected to the
shaker with a stinger, measured the force transmitted. The plate response has been measured by
using a very accurate laser Doppler vibrometer Polytec (sensor head OFV-505 and controller
OFV-5000) in order to have non-contact measurement with no introduction of inertia. The time
responses have been measured by using the Difa Scadas II front-end connected to a HP c3000
workstation and the software CADA-X of LMS for signal processing, data analysis and
excitation control. The same front-end has been used to generate the excitation signal. The
CADA-X closed-loop control has been used to keep constant the value of the excitation force for
any excitation frequency, during the measurement of the nonlinear response.
Geometric imperfections of the plate have been measured by using a 3-D laser scanning system

VI-910 Minolta. The contour plot indicating the deviation from the ideal flat surface is reported in
Fig. 3. This figure shows that the actual shape of the plate is closer to a very shallow spherical
shell; this is probably due to residual stresses of lamination in the steel foil and luser cut.
Geometric imperfections are always present in actual plates, and their introduction in the present
study has practical interest.
7.1. Linear results

The frequency response functions (FRFs) have been measured between 50 response points
(7� 7 points grid plus excitation point) and one single excitation point by using 8 averages and
HV technique. Excitation force and measured responses have been in z direction. The
experimental modal analysis has been performed by using the software CADA-X 3.5b of LMS
and burst-random excitation. The level of excitation was kept low in order to give small amplitude
Fig. 3. Contour plot indicating measured geometric imperfections as deviation from the flat surface. Deviations are in

millimeters.
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Table 1

Natural frequencies of the experimental plate

Mode (m, n) Experimental frequency (Hz) Theoretical frequency without imperfection (Hz)

1, 1 38.7 32.7

1, 2 79.3 81.4

2, 1 90.4 82.1

2, 2 131.5 131

1, 3 162.1 163

3, 1 166.1 165
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vibrations (approximating a linear system). Experimental and theoretical natural frequencies are
given in Table 1; mode shapes are shown in Table 2. The agreement of natural frequencies is
satisfactory, except for modes (1,1) and (2,1). It must be observed here that theoretical natural
frequencies in Table 1 have been computed neglecting initial geometric imperfections, which play
a significant role that will be shown. After introducing geometric imperfections, experimental and
theoretical frequencies will become much closer, as it will be shown in the next sections. It can also
be noticed that modes (1,2) and (2,1), that should have very close frequency because the plate is
almost squared, have significant frequency separation. This suppresses the 1:1 internal resonance
in the nonlinear analysis, and it is due to geometric imperfections.

7.2. Nonlinear results

Fig. 4 shows the measured oscillation (displacement, directly measured by using the Polytec
laser Doppler vibrometer using the Polytec DD-200 displacement decoder (fringe counter for
direct displacement measurement); measurement position at the center of the plate) around the
fundamental frequency (n ¼ 1, m ¼ 1; experimental natural frequency 38.7Hz) versus the
excitation frequency for six different force levels: 0.001, 0.01, 0.02, 0.04, 0.08 and 0.1N. The level
of 0.001N gives a very good evaluation of the natural (linear) frequency. The closed-loop control
used in the experiments keeps the magnitude of the harmonic excitation force constant after
filtering the signal from the load cell in order to use only the harmonic component with the given
excitation frequency. The measured oscillation reported in Fig. 4 has been filtered in order to
eliminate any frequency except the excitation frequency. Experiments have been performed
increasing and decreasing the excitation frequency; the frequency step used in this case is 0.025Hz,
32 periods have been measured with 64 points per period and 50 periods have been waited before
data acquisition every time that the frequency is changed. The hysteresis between the two curves
(up ¼ increasing frequency; down ¼ decreasing frequency) is clearly visible for the two larger
excitation levels (0.08 and 0.1N). Sudden increments (jumps) of the vibration amplitude are
observed when increasing and decreasing the excitation frequency; these are characteristic of
nonlinear behavior, in present case of hardening-type nonlinearity. The graph in Fig. 4 has been
made non-dimensional by dividing the oscillation by the plate thickness h, and the excitation
frequency by the natural circular frequency of mode (1,1).
The extremely interesting characteristics of Fig. 4 is that, for the excitation levels 0.01, 0.02 and

0.04N, the response is of softening-type, turning to hardening-type for larger excitations, i.e. 0.08
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Table 2

Natural mode shapes of the experimental plate
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and 0.1N. Actually this peculiar nonlinear behavior is due to the initial geometric imperfection
(curvature of the plate); a perfectly flat plate present only hardening-type nonlinearity. For
excitation 0.1N, when the vibration amplitude is equal to about 3.2 times the plate thickness, the
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Fig. 4. Experimental non-dimensional oscillatory displacement (peak) versus non-dimensional excitation frequency for

different excitations measured at the center of the plate; fundamental mode (1,1). J, experimental point; - -, connecting

line; , direction of movement along the line.

Fig. 5. Experimental results in time domain. , force excitation; ——, displacement response measured at the center

of the plate. Mode (1,1), excitation frequency 43.97Hz (increasing frequency, ‘‘up’’) and excitation 0.08N.
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peak of the response appears for a frequency higher of about 19% with respect to the linear one
(i.e. the one measured with force 0.001N).
It must be observed that the force input around resonance was extremely distorted with respect

to the imposed pure sinusoidal excitation. Fig. 5 shows the excitation and the measured response
for excitation 0.08N increasing the excitation frequency (‘‘up’’) at 43.97Hz. While the response is
largely filtered by the plate dynamics and it is not significantly distorted, the excitation is not
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Fig. 6. Harmonic components of the excitation force. Mode (1,1); excitation 0.08N up. ¼ first harmonic;
J ¼ second harmonic; & ¼ third harmonic; n ¼ fourth harmonic.

Fig. 7. Harmonic components of the displacement measured at the center of the plate. Mode (1,1); excitation 0.08N up.

¼ first harmonic; J ¼ second harmonic; & ¼ third harmonic; n ¼ fourth harmonic.
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sinusoidal at all. Fig. 6 shows the harmonic components in the excitation signal for this case in the
frequency range investigated. In particular, the second and fourth harmonics of the excitation
signal reaches amplitudes much larger than the first harmonic itself, which is the only one
controlled. Fortunately in this case higher order harmonics do not have a significant effect on
the plate dynamics, as shown by the harmonic components in the response signal shown in
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Fig. 8. Harmonic components of the displacement measured at the center of the plate. Mode (1,1); excitation 0.08N

down. ¼ first harmonic; J ¼ second harmonic; & ¼ third harmonic; n ¼ fourth harmonic.

Fig. 9. Experimental non-dimensional oscillatory displacement (peak) versus non-dimensional excitation frequency for

different excitation measured at x ¼ a=2, y ¼ b=4; mode (1, 2). J, experimental point; - -, connecting line; , direction

of movement along the line.
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Figs. 7 and 8 for excitation of 0.08N ‘‘up’’ and ‘‘down’’, respectively. As verified in a previous
study for circular cylindrical shells [25], if higher harmonics are not directly exciting other modes,
and it is not the case as shown by Figs. 7 and 8, their effect is small and they can be neglected in
the theoretical model.
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The nonlinear response of the plate around the second natural mode (1, 2) at 79.3Hz is shown
in Fig. 9. The response measurement has been effected at x ¼ a/2, y ¼ b/4, where the vibration
amplitude of mode (1, 2) is maximum. Also in this case six different force levels have been used:
0.001, 0.005, 0.01, 0.02, 0.04 and 0.06N. The level of 0.001N gives a very good evaluation of the
natural (linear) frequency. Initially a softening-type nonlinearity, due to geometric imperfections,
is observed for small excitation levels; however, this effect is much smaller than in Fig. 4 for mode
(1,1). Moreover, also internal resonances of type 2:1 with modes w1,3 and w3,1 are observed in
secondary peaks (e.g. for the largest excitation, 0.06N). For the three largest excitations, 0.02,
0.04 and 0.06N, hardening-type nonlinearity is obtained with jumps. For vibration amplitude of
about 1.1 times the plate thickness, the peak of the response appears for a frequency higher of
about 8% with respect to the linear one, for the curve at 0.06N.
8. Comparison of theoretical and experimental results

8.1. Mode (1,1)

A comparison of theoretical (22 dofs model with: w1,1, w1,3, w3,1, w3,3, u1,0, u1,2, u1,4, u3,0, u3,2,
u3,4, u5,0, u5,2, u5,4, v0,1, v2,1, v4,1, v0,3, v2,3, v4,3, v0,5, v2,5, v4,5; in the choice of generalized
coordinates symmetry considerations have been applied and geometric imperfections have been
assumed to be symmetric) and experimental results is shown in Fig. 10(a) for two force levels
(damping z1;1 ¼ 0:0105, forces 0.01 and 0.04N) and in Fig. 10(b) for higher force level (damping
Fig. 10. Comparison of numerical and experimental results for the fundamental mode (1,1) at the center of the

experimental plate; first harmonic only; A1;1 ¼ h, B1;1 ¼ 0:0105; 22 dofs. J, experimental data; ——, stable theoretical

solutions; – – – , unstable theoretical solutions. (a) ~f ¼ 0:01 and 0:04N; (b) ~f ¼ 0:08N.
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z1;1 ¼ 0:0105, force 0.08N); the same damping ratio is assumed for all the generalized coordinates.
Comparison of numerical and experimental results is good for all the three cases; calculations
have been obtained introducing the geometric imperfection A1,1 ¼ h, having the form of mode
(1,1), which is quite in agreement with the measured actual plate surface, as reported in Fig. 3
(measured imperfection at the center around 0.41mm, which would give A1,1 ¼ 1.37 h if the
imperfection had the shape of mode (1,1)). The model with the introduced imperfection is
perfectly capable to reproduce qualitatively and quantitatively the nonlinear behavior of the
imperfect plate, with the initial softening-type behavior, turning to hardening-type for larger
excitations and vibration amplitudes. It must be observed that the in the figures the first harmonic
of oscillation amplitude of the generalized coordinate w1,1 is reported (therefore the mean value is
eliminated), which is practically coincident with the first harmonic vibration amplitude of the
plate at the center.
The six main generalized coordinates associated to the plate response given in Fig. 10(b) are

reported in Fig. 11 for completeness. In particular, w1,3 and w3,1 give a significant quantitative
contribution to the plate response.
The time responses of the generalized coordinates close to the response peak ðo ¼ 1:135 o1;1Þ

are given in Fig. 12 with their frequency spectra. In particular, the generalized coordinate w1,1
Fig. 11. Response of the plate; fundamental mode (1,1), A1;1 ¼ h, ~f ¼ 0:08N and z1;1 ¼ 0:0105; 22 dofs. , stable

periodic response; - -, unstable periodic response. (a) Maximum of the generalized coordinate w1,1; (b) maximum of the

generalized coordinate w1,3; (c) maximum of the generalized coordinate w3,1; (d) maximum of the generalized coordinate

w3,3; (e) maximum of the generalized coordinate u1,0; (f) maximum of the generalized coordinate v0,1.
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Fig. 12. Computed time response and frequency spectrum of the generalized coordinates; mode (1,1), o ¼ 1:135o1;1,

A1;1 ¼ h, ~f ¼ 0:08N and z1;1 ¼ 0:0105; 22 dofs. (a) force excitation; (b) time response of w1,1; (c) time response of w1,3;

(d) time response of w3,1; (e) time response of w3,3; (f) time response of u1,0; (g) time response of v0,1; (h) frequency

spectrum of w1,1; (i) frequency spectrum of w1,3; (j) frequency spectrum of w3,1; (k) frequency spectrum of w3,3; (l)

frequency spectrum of u1,0; (m) frequency spectrum of v0,1.
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shows a large asymmetric displacement of the plate inwards and outwards the curvature created
by the imperfection (a flat plate have symmetric displacement). This asymmetric displacement,
resulting in a movement of the zero with respect to that of a sinusoidal oscillation, see Fig. 12(b),
balance the imperfection around the resonance. In the frequency spectra, this zero harmonic is
shown, as well as the second harmonic; these are due to quadratic nonlinearities in the equations
of motion, introduced by geometric imperfections.
The convergence of the solution, versus the number of generalized coordinates retained in the

expansion, is shown in Fig. 13. While the solution with 13 dofs is quite on the right-hand side,
response computed with 22 and 38 dofs are very close, indicating convergence. The model with 13
dofs has: w1,1, u1,0, u1,2, u1,4, u3,0, u3,2, u3,4, v0,1, v2,1, v4,1, v0,3, v2,3, v4,3. The model with 38 dofs has:
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Fig. 13. Convergence of results; fundamental mode (1,1), A1;1 ¼ 1:25 h, ~f ¼ 0:105N and z1;1 ¼ 0:0105. , 38 dofs;

- -, 22 dofs; , 13 dofs.

M. Amabili / Journal of Sound and Vibration 291 (2006) 539–565558
w1,1, w1,3, w3,1, w3,3, w1,5, w5,1, u1,0, u1,2, u1,4, u1,6, u3,0, u3,2, u3,4, u3,6, u5,0, u5,2, u5,4, u5,6, u7,0, u7,2,
u7,4, u7,6, v0,1, v2,1, v4,1, v6,1, v0,3, v2,3, v4,3, v6,3, v0,5, v2,5, v4,5, v6,5, v0,7, v2,7, v4,7, v6,7.
The effect of the amplitude A1,1 of geometric imperfection having the form of mode (1,1) on the

nonlinear response is shown in Fig. 14. Smaller amplitudes of A1,1 with respect to h do not allow
the peculiar behavior found in the experiments. Fig. 14 shows that, after a while, all the curves for
different initial imperfection become parallel each other. This asymptotic result is of significant
relevance in applications.
The effect of A1,1 on the natural frequency of the fundamental mode (1,1) is shown in Fig. 15.

It is clearly shown that with A1,1 ¼ h the theoretical natural frequency raises from 32.7Hz (see
Table 1) to 38.5Hz, becoming almost coincident to the experimental value of 38.7Hz. Therefore
the imperfection introduced perfectly describes the linear and nonlinear behavior of the
experimental plate.

8.2. Mode (1,2)

A comparison of theoretical (36 dofs model with: w1,2, w1,1, w1,3, w3,1, w3,3, w1,4, u1,1, u1,3, u1,5,
u3,1, u3,3, u3,5, u1,0, u1,2, u1,4, u3,0, u3,2, u3,4, u5,0, u5,2, u5,4, v0,2, v2,2, v4,2, v0,4, v2,4, v4,4, v0,1, v2,1, v4,1,
v0,3, v2,3, v4,3, v0,5, v2,5, v4,5) and experimental results is shown in Fig. 16 (damping z1;2 ¼ 0:0031,
force 0.04N) and in Fig. 17 (damping z1;2 ¼ 0:0035, force 0.06N); the same damping ratio is
assumed for all the generalized coordinates except for w1,3 and w3,1 for which 0.01 is assumed in
order to damp internal resonances. Comparison of numerical and experimental results is good for
both cases; calculations have been obtained introducing the geometric imperfection A1;1 ¼ 1:25 h,
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Fig. 15. Natural frequency of the fundamental mode (1,1) versus the geometric imperfection A1,1.

Fig. 14. Effect of geometric imperfection A1,1 on the nonlinear response of the fundamental mode (1,1); ~f ¼ 0:105N
and z1;1 ¼ 0:0105. , A1;1 ¼ 1:25h; - -, A1;1 ¼ 0:75 h; , A1;1 ¼ 0.
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having the form of mode (1,1), i.e. almost the same used to reproduce the experimental results for
mode (1,1); here it was possible to keep the same imperfections to reproduce both modes (1,1) and
(1,2) introducing more terms in the expansion of the imperfection, as it is actually in the
experimental plate; natural frequency of mode (1,2) with the assumed imperfection is 88.6Hz.
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Fig. 16. Comparison of numerical and experimental results for mode (1, 2) at x ¼ a=2, y ¼ b=4; first harmonic only;

A1;1 ¼ 1:25 h, B1;2 ¼ 0:0031; ~f ¼ 0:04N; 36 dofs. J, experimental data; ——, stable theoretical solutions; – – – , unstable

theoretical solutions.

Fig. 17. Comparison of numerical and experimental results for mode (1, 2) at x ¼ a=2, y ¼ b=4; first harmonic only;

A1;1 ¼ 1:25 h, B1;2 ¼ 0:0035; ~f ¼ 0:06N; 36 dofs. J, experimental data; ——, stable theoretical solutions; – – – , unstable

theoretical solutions.
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Fig. 18. Response of the plate; mode (1, 2), A1;1 ¼ 1:25 h, ~f ¼ 0:004N and z1;2 ¼ 0:0031; 36 dofs. , stable periodic

response; - -, unstable periodic response. (a) maximum of the generalized coordinate w1,2; (b) maximum of the

generalized coordinate w1,1; (c) minimum of the generalized coordinate w1,1; (d) maximum of the generalized coordinate

w1,3; (e) maximum of the generalized coordinate w3,1.
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In Figs. 16 and 17 it is possible to observe secondary peaks associated to internal resonances of
type 2:1 with modes (1,3) and (3,1). Small differences of frequencies of these peaks can be
observed in the figures due to more complex geometric imperfection of the one introduced in the
model, but they are present in both the model and the experiments. Moreover, the left-hand peak
in Fig. 16 is almost perfectly predicted by the theory. Therefore, not only the nonlinear resonance
has been described with good accuracy, but also internal resonances.
The four main generalized coordinates associated to the plate response given in Fig. 16 are

reported in Fig. 18 for completeness. In particular, w1,1, w1,3 and w3,1 give an extremely important
quantitative contribution to the plate response w1,2. The most important contribution w1,1 is
quasi-static, as shown by comparison of Figs. 18(b) and (c), where the maximum and the
minimum displacements of the generalized coordinate w1,1 are reported; this contribution reduces
the amplitude of the geometric imperfection. In this case there is a more significant participation
of generalized coordinates to the plate response than for fundamental mode (1, 1). Therefore, for
mode (1,2) a correct expansion has to take into account more modes.
The time response of the most significant generalized coordinates and the corresponding

spectra for excitation o ¼ 1:04o1;2 (damping z1;2 ¼ 0:0031, force 0.04N, A1;1 ¼ 1:25 h) are given
in Fig. 19 and 20, respectively. The phase relationship and the frequency content of each
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Fig. 19. Computed time response of the plate; mode (1, 2), o ¼ 1:04o1;2, A1;1 ¼ 1:25 h, ~f ¼ 0:004N and z1;2 ¼ 0:0031;
36 dofs. (a) Force excitation; (b) Generalized coordinate w1,2; (c) generalized coordinate w1,1; (d) generalized coordinate

w1,3; (e) generalized coordinate w3,1; (f) generalized coordinate w3,3; (g) generalized coordinate w1,4; (h) generalized

coordinate u1,1; (i) generalized coordinate v0,2.
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generalized coordinate is clearly shown. The quasi-static behavior of w1,1 is confirmed; w1,3 and
w3,1 participate with the second harmonic; w3,3 contributes mainly with the fourth harmonic. It
can be observed that the zero frequency component of w1,1 and the second harmonic of w1,3 and
w3,1 are related to quadratic nonlinearities.
Finally, the effect of the amplitude A1,1 of geometric imperfection with the shape of mode (1,1)

on the natural frequency of the fundamental mode (1,2) is shown in Fig. 21.
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Fig. 20. Frequency spectrum of the response; mode (1, 2), o ¼ 1:04o1;2, A1;1 ¼ 1:25 h, ~f ¼ 0:004N and z1;2 ¼ 0:0031;
36 dofs. (a) Generalized coordinate w1,2; (b) generalized coordinate w1,1; (c) generalized coordinate w1,3; (d) generalized

coordinate w3,1; (e) generalized coordinate w3,3; (f) generalized coordinate w1,4; (g) generalized coordinate u1,1;

(h) generalized coordinate v0,2.

Fig. 21. Natural frequency of mode (1, 2) versus the geometric imperfection A1,1.
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It can be observed that in the 36 dofs model, in case of perfect plate, the following terms give
zero contribution and therefore can be eliminated reducing the model to 20 dofs: w1,1, w1,3, w3,1,
w3,3, u1,1, u1,3, u1,5, u3,1, u3,3, u3,5, v0,2, v2,2, v4,2, v0,4, v2,4, v4,4.
9. Conclusions

Experimental results on nonlinear vibrations of rectangular plates are extremely scarce in
literature. With the present study new reliable results are given, which have been obtained with the
most sophisticated instrumentation available at the moment. Moreover, these results have been
reproduced with good accuracy by a model specifically developed in the present study to simulate
the experimental boundary conditions. In particular, it has been shown that significant geometric
imperfections can be present in actual plates and give an initial softening-type nonlinearity, which
turns to hardening-type for larger amplitudes. Both the first and second modes have been
experimentally and numerically investigated with success. This work partially fills the gap between
existing studies on rectangular and circular plates [26–29], for which comparison of theoretical
and experimental results has been already performed.
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