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Abstract

The nonlinear dynamics of a Duffing–van der Pol oscillator under linear-plus-nonlinear state feedback
control with a time delay are investigated. By means of the averaging method and Taylor expansion, two
slow-flow equations for the amplitude and phase of the primary resonance response are derived, from
which the relations between the amplitude and phase of the primary resonance response and all other
parameters are obtained, respectively. The singularity analysis of the equation governing the amplitude of
the primary resonance response shows that the bifurcation modes are perturbations of the pitchfork
bifurcation. Conditions preventing multiple solutions, corresponding to two different kinds of bifurcation
modes, are given, since cases for which multiple solutions are available should be avoided. The stable
condition for steady-state response is also given by the Routh–Hurwitz criterion. It is also shown that
coupled nonlinear state feedback control can be replaced by uncoupled nonlinear state feedback control.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear systems may exhibit considerably complex dynamic behaviour such as change in
stability of response, quasiperiodic motion and chaotic motion. Both the predictability and
stability of engineering systems are rather important, which explains the reason that research in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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the area of dynamics and its control of nonlinear systems has received a great deal of attention in
the past two decades.
Two classical nonlinear systems, the Duffing oscillator and the van der Pol oscillator can

describe many kinds of practical systems. Therefore, there have been many studies of the
behaviour of these systems and its control. For example, Hiroshi Yabuno [1] studied the
bifurcation control of a parametrically excited Duffing system using combined linear-plus-
nonlinear feedback control. Hu et al. [2] considered the primary resonance and the 1:3
subharmonic resonance of a Duffing oscillator under linear state feedback control with a time
delay. Ji [3] investigated the saddle-node bifurcation control of a forced single degree of freedom
Duffing oscillator with damping for the cases of primary and superharmonic resonances, by
means of feedback control without time delay. In Refs. [4,5], Ji and Leung discussed the primary,
subharmonic and superharmonic resonances of a Duffing system with damping under linear
feedback control with two time-delays and bifurcation control of a parametrically excited Duffing
system, respectively. Xu and Jiangjun [6] examined the global bifurcation characteristics of a
forced van der Pol oscillator. Atay [7] investigated the effect of delayed position feedback on the
response of a van der Pol oscillator. Maccari [8] dealt with the principal parametric resonance of a
van der Pol oscillator with time delay linear state feedback. He also investigated the vibration
control for the primary resonance of a forced van der Pol oscillator using time delay linear state
feedback [9] and concluded that the suppression of quasiperiodic motion can be accomplished by
appropriate choices for feedback gains and time delay.
As the combination of these two classical nonlinear systems, a Duffing–van der Pol oscillator

can be used as a model in physics, engineering, electronics, biology, neurology and many other
disciplines. It is therefore one of the most intensively studied systems in nonlinear dynamics [10].
Tsuda et al. [11] investigated the 1:2 subharmonic resonance of a Duffing–van der Pol system with
a retarded argument under a harmonic excitation force. Zhu et al. [12] applied a new stochastic
averaging method to predict the response of a Duffing–van der Pol oscillator under both external
and parametric excitation of wide-band stationary random processes. Xu and Chung [13]
discussed a Duffing–van der Pol oscillator with time delayed position feedback and found two
routes to chaos, namely period-doubling bifurcation and torus breaking. Kakmeni et al. [10]
studied the strange attractors and chaos control in a Duffing–Van der Pol oscillator with two
external periodic forces.
In this paper, the dynamic analysis of a forced Duffing–van der Pol oscillator under weak

linear-plus-nonlinear state feedback control with a time delay is presented. The governing
equation of motion is

€x� ðm� bx2Þ _xþ o2
0xþ ax3 ¼ uðtÞ þ f cosðOtÞ, (1)

where the dot denotes differentiation with respect to time, o0 is the natural frequency, m, b and a
are positive constants, and f and O are the amplitude and frequency of the external excitation,
respectively. The linear-plus-nonlinear delayed feedback control is of the form

uðtÞ ¼ pxðt� tÞ þ q _xðt� tÞ þ k1x
3ðt� tÞ þ k2 _x

3ðt� tÞ

þ k3 _xðt� tÞx2ðt� tÞ þ k4 _x
2ðt� tÞxðt� tÞ, ð2Þ

where p and q are scalar linear feedback gains, and ki (i ¼ 1,y, 4) are nonlinear feedback gains.
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The focus of this paper is mainly on the nonlinear dynamics of the system considered and its control
by the appropriate choice of gains and time delay of feedback when the amplitude and frequency of
the external excitation vary. The design of feedback control is presented making the assumption that
number of control channels, feedback gains and time delay are three main control measures.
The remainder of this paper is arranged as follows: in Section 2, the modulation equations

governing the amplitudes and phases of the steady-state primary resonance responses, are derived
by the averaging method as well as by a Taylor expansion. Equations determining the amplitudes
and phases of responses are also given. In Section 3, bifurcation analysis and stability analysis are
performed using singularity theory and the Routh–Hurwitz criterion, respectively. Conditions
preventing multiple solutions as well as conditions to determine the stability of a solution are
given, since the cases for which multiple solutions are available should be avoided. In Section 4,
the design of different kinds of feedback control, including linear and nonlinear feedback control,
is discussed and in Section 5, conclusions are summarized.
2. Derivation of the modulation equations by the perturbation technique

Here, small damping, weak nonlinearity, weak feedback and soft excitation are assumed for the
purpose of analysing the primary resonance response using the perturbation technique, namely,
Eq. (1) is rewritten as

€x� �ðm� bx2Þ _xþ o2
0xþ �ax3 ¼ �½uðtÞ þ f cosðOtÞ�, (3)

where e is a small positive parameter. For the case of primary resonance for which OEo0, a
detuning parameter s is introduced, such that

O2 � o2
0ð1þ �sÞ. (4)

According to the averaging method [14,15], the approximate solution of Eq. (1) in the primary
resonant frequency region is assumed to take the following form:

x ¼ a cosðOt� yÞ, (5)

where the amplitude a and phase y are time dependent and given by

_a ¼ � �
1

2p

Z 2p=O

0

sinðOt� yÞF dt,

a _y ¼ �
1

2p

Z 2p=O

0

cosðOt� yÞF dt, ð6Þ

where F denotes all the terms with e in Eq. (3), namely,

F ¼ ðm� bx2Þ _x� ax3 þ uðtÞ þ f cosðOtÞ.

After integrating and using a Taylor expansion for those terms containing a time delay [16], Eq.
(6) can be expressed in the following form, known as slow-flow equations:

8 _a ¼ �ð4f sin yþ af 10 þ a3f 11Þ,

8a_y ¼ �ð4f cos yþ af 20 þ a3f 21Þ, ð7Þ
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where

f 10 ¼ � 4p sinðOtÞ þ 4qO cosðOtÞ þ 4mO; f 20 ¼ 4qO sinðOtÞ þ 4p cosðOtÞ þ 4o2
0s,

f 11 ¼ ðk3 þ 3k2O2ÞO cosðOtÞ � ð3k1 þ k4O2Þ sinðOtÞ � bO

f 21 ¼ ð3k1 þ k4O
2
Þ cosðOtÞ þ ðk3 þ 3k2O

2
ÞO sinðOtÞ � 3a.

Eq. (7) is an autonomous dynamic system, the fixed points of which govern the amplitudes and
phases of the periodic solutions of the original system (3). It can be clearly seen that the structure
of the slow flow equations describing an externally excited controlled and uncontrolled van der
Pol–Duffing oscillator are essentially the same. If all the feedback gains are equal to zero, Eq. (7)
corresponds to the modulation equations for the uncontrolled system. Nevertheless, the addition
of feedback control makes the coefficients in the modulation equations more complex.
Consequently, it is possible to change the nonlinear dynamic characteristics associated with a
system, to perform or avoid some kinds of dynamic behaviour.
By setting _a ¼ _y ¼ 0, the equations determining the amplitude and phase of the steady-state

response are obtained as follows:

a6ðf 2
11 þ f 2

21Þ þ 2a4ðf 10f 11 þ f 20f 21Þ þ a2ðf 2
10 þ f 2

20Þ � 16f 2
¼ 0, (8)

tan y ¼
a2f 11 þ f 10

a2f 21 þ f 20

(9)

from which it can be determined how the amplitude a and phase y of the steady-state primary
resonance response vary as a function of gains, time delay, amplitude and frequency of excitation,
as well as with other coefficients in the original Eq. (1). Thus Eq. (8) is the focus for vibration
control.
3. Singularity and stability analyses

By means of singularity analysis [17], it is possible to gain a comprehensive understanding of all
the possible bifurcations of the response of the system considered; for example, change in number
and stability of solutions. Letting â ¼ a2, Eq. (8) can be rewritten as

â3
þY1â

2
�Y2âþY3 ¼ 0, (10)

where Y1 ¼ 2(f10 f11+f20 f21)/(f11
2 +f21

2 ), Y2 ¼ ðf
2
10 þ f 2

20Þ=ðf
2
11f

2
21Þ, Y3 ¼ �16f 2=ðf 2

11 þ f 2
21Þ.

Regarding Y2 as a bifurcation parameter and Y1, Y2, as unfolding parameters, the transition
sets of Eq. (10) are as follows:

Bifurcation set : Y3 ¼ 0:

Hysteresis set : Y3 ¼ Y3
1=27:

The plane determined by Y3 and Y3 is divided into four regions by transition sets as shown in
Fig. 1 and the corresponding persistent bifurcation diagrams are given in Fig. 2. Our interest is
only in Cases (iii) and (iv) in Fig. 2 considering the fact that Y2 and Y3 are both negative. There
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iii) 

ii)  

i) 

Θ3

Θ1

Fig. 1. Transition sets of Eq. (10).

iii) 

iii)  
â

iv) 

Θ2

Fig. 2. Persistent bifurcation diagrams corresponding to different regions in Fig. 1.
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exists only one solution of â for Case (iii) in Fig. 2 where the following inequality holds:

Y3oY3
1=27. (11)

However, for Case (iv) in Fig. 2 there may exist three solutions of â, which means that there exist
multiple-solution intervals in frequency–amplitude or amplitude–amplitude curves. Therefore,
vibration control is necessary whenY21oY2oY22 to maintain smaller amplitudes. The quantities
Y21 and Y22, the two threshold values of Y2 and also the boundaries of the interval [Y21, Y22] in
which there exists multiple solutions of â, can be computed using the following set of algebraic
equations:

â3 þY1â
2
�Y2âþY3 ¼ 0,

dY2

dâ
¼

3â2
þ 2Y1â�Y2

â
¼ 0. ð12Þ

Or in the form of solutions of an algebraic polynomial determined by Y21 and Y3 considering
âa0, namely

Y2i ¼ Root ofð2Z3 þY1Z
2 �Y3Þð3Root ofð2Z3 þY1Z

2 �Y3Þ þ 2Y1Þ. (13)
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Figs. 3 and 4 are a set of curves of the amplitude of the primary resonance response versus the
excitation frequency, corresponding to different time delays and gains, respectively. Figs. 5 and 6
are a set of curves of the amplitude of the primary resonance response versus the excitation
amplitude. It can be seen that frequency–amplitude curves and amplitude–amplitude curves can
be greatly different when the feedback gains and time delay vary.
Fig. 3 shows that there exist three amplitude solutions when O ¼ 1.2 and t ¼ 3. The

corresponding values of Y1 and Y3 are �3.1 and �0.17, respectively, which confirms that the
corresponding value of Y1 is negative and Y34Y1

3/27. Therefore, (Y3, Y1) is in Region (iv) of
Fig. 1. In addition, the values of Y2, Y21 and Y22 are �2.44, �2.51 and �1.40, which means that
Y2 is between Y21 and Y22.
Fig. 3. Frequency–amplitude relations (b ¼ m ¼ 1, a ¼ 0.5, p ¼ 1, q ¼ 0.1, k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1, p ¼ 1, q ¼ 0.1,

k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1, f ¼ 1, o0 ¼ 1): diamond-line: t ¼ 1, cross-line: t ¼ 2, circle-line: t ¼ 3, bold solid line: t ¼ 4,

dot-line: t ¼ 5, solid line: t ¼ 6.

Fig. 4. Frequency–amplitude relations (f ¼ 1, o0 ¼ 1, t ¼ 3, m ¼ 1, b ¼ 1, a ¼ 0.5): dash-dot-line—p ¼ 1, q ¼ 0.1,

k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1, dot-line—p ¼ 2, q ¼ 0.2, k1 ¼ k2 ¼ k3 ¼ k4 ¼ 0.5, bold solid line—p ¼ 3, q ¼ 0.3,

k1 ¼ k2 ¼ k3 ¼ k4 ¼ 0.3.
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Fig. 5. Response amplitude as a function of excitation amplitude (O ¼ 1.2, o0 ¼ 1.0, p ¼ 2, q ¼ 0.2, m ¼ 2, b ¼ 0.5,

a ¼ 0.25, k1 ¼ k2 ¼ k3 ¼ k4 ¼ 0.5): diamond-line: t ¼ 1, cross-line: t ¼ 2, circle-line: t ¼ 3, bold solid line: t ¼ 4, dot-

line: t ¼ 5, solid line: t ¼ 6.

Fig. 6. Response amplitude as a function of excitation amplitude (O ¼ 1.2, o0 ¼ 1.0, p ¼ 3, q ¼ 0.3, m ¼ 3, b ¼ 0.25,

a ¼ 0.15, k1 ¼ k2 ¼ k3 ¼ k4 ¼ 0.3): diamond-line: t ¼ 1, cross-line: t ¼ 2, circle-line: t ¼ 3, bold solid line: t ¼ 4, dot-

line: t ¼ 5, solid line: t ¼ 6.
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Although the singularity analysis of Eq. (10) can give a prediction of all possible bifurcation
modes, it is more convenient to analyse the stability of the solutions by applying the classical
method of linearization. The eigenvalues of the Jacobian matrix satisfy the following equation:

l2 þ 2mlþ n ¼ 0, (14)

where

m ¼ � f 10 � 2a2f 11,

n ¼ ðf 10 þ a2f 11Þðf 10 þ 3a2f 11Þ þ ðf 20 þ a2f 21Þðf 20 þ 3a2f 21Þ.
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Fig. 7. Steady-state response with the same parameters corresponding to Fig. 3 (t ¼ 3, O ¼ 1.2, initial value

ðx0; _x0Þ ¼ ð0:3; 0Þ).
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From the Routh–Hurwitz criterion [18], the steady-state response is asymptotically stable if and
only if the following two inequalities hold simultaneously, which keep the real parts of the
eigenvalues negative.

m ¼ � f 10 � 2a2f 1140,

n ¼ ðf 10 þ a2f 11Þðf 10 þ 3a2f 11Þ þ ðf 20 þ a2f 21Þðf 20 þ 3a2f 21Þ40. ð15Þ

According to Eq. (8), the three values of the response amplitude corresponding to O ¼ 1.2 and
t ¼ 3 in Fig. 3 are 0.279, 1.108 and 1.340. The values of m and n are (�5.37, 184.81), (6.03, –61.22)
and (11.68, 91.55), respectively, according to Eq. (14). Figs. 7 and 8 are derived using numerical
integration of Eq. (3) with identical parameters as in Fig. 3 and e ¼ 0.1, which demonstrates the
above stability prediction; that is, only the response corresponding to a ¼ 1.340 is stable.
4. The design of feedback control

Singularity analysis can also explain why feedback control is necessary. Considering the case
when feedback control is deleted, then

f 10 ¼ 4mO; f 20 ¼ 4o2
0s,

f 11 ¼ � bO; f 21 ¼ �3a.

Y1 is consequently negative according to its definition.
Substituting f10, f11, f20, f21 into expressions following Eq. (10) for Y1 and Y3, Eq. (15) can be

rewritten as

f 2
ðO2b2 þ 9a2Þ24

32

27
ðmO2bþ 3o2

0saÞ
3. (16)

Eq. (16) ensures that the bifurcation does not occur since Y2 is negative. Otherwise, the
bifurcation corresponding to Case (iv) may take place for some parameters, which means there
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Fig. 8. Steady-state response with the same parameters corresponding to Fig. 3 (t ¼ 3, O ¼ 1.2, initial values

ðx0; _x0Þ ¼ ð1:1; 0Þ).
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exists a multiple-solution phenomenon. It is obvious that not all parameters of the system satisfy
Eq. (16). If feedback control is considered, for example, linear feedback control, the condition
corresponding to Eq. (16) is as follows:

f 2
ðO2b2 þ 9a2Þ24

32

27
bO½mOþ kpq sinðfpq � OtÞ�
n

þ3a½o2
0sþ kpq cosðfpq � OtÞ�

o3

, (17)

where

kpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðqOÞ2

q
; cosfpq ¼

p

kpq

; cosf ¼
qO
kpq

.

Comparing Eqs. (16) and (17), it may be shown that parameters not satisfying Eq. (16) can satisfy
Eq. (17) by adjusting the gains and time delay in feedback. Fig. 9 shows that the multiple-solution
phenomenon can be avoided by using linear feedback control. In other words, the linear feedback
component can delay the occurrence of undesired bifurcation.
Unfortunately there may exist a case when only linear feedback on its own is unable to give a

satisfactory control result. Then nonlinear feedback control should be considered and the
condition corresponding to Eq. (17) becomes more complex and it is likely that Case (iv) instead
of Case (iii) in Fig. 2 takes place.
It is clear that the condition Y2oY21 is desired to suppress the amplitude of the steady-state

response for Case (iv) in Fig. 2. Therefore, the absolute value of Y21 should be as small as
possible, although it is difficult to give an expression for Y21. However, it is easy to verify Eq. (11)
or compute Y21 by using Eq. (12). Fig. 10 demonstrates that the bifurcation does not take place
and the amplitude of response is much smaller when nonlinear feedback is applied.
By examining the conditions in Eq. (15), it may also be confirmed that only the largest of the

three amplitude solutions in Figs. 9 and 10 is stable. However, it is readily found that the shape of
the dot-line curves in Figs. 9 and 10 is different from that of the curves in Figs. 3–5 to some extent.
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Fig. 10. Frequency–amplitude relations (m ¼ 1, b ¼ 1, a ¼ 0.5, f ¼ 1, o0 ¼ 1, p ¼ 1, q ¼ 0.1, t ¼ 5): dot-line: linear

feedback control and solid line: linear-plus-nonlinear feedback control (k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1).

Fig. 9. Frequency—amplitude relations (m ¼ 2, b ¼ 2, a ¼ 1, f ¼ 1, o0 ¼ 1): dot-line: no feedback control: and solid

line: linear feedback control (p ¼ 4, q ¼ 0.4, t ¼ 2).

X. Li et al. / Journal of Sound and Vibration 291 (2006) 644–655 653
From the definitions of f11 and f21 which appear in the slow-flow equation (8), it may be shown
that the linear combination of k1 and k4 as well as the linear combination of k2 and k3 appear as
the coefficients of sin(Ot) and cos (Ot), respectively. In addition, k1 and k2 have coefficients 3 and
3O2, respectively, compared with k3 and k4 having coefficients 1 and O2, respectively. Therefore,
for the case of near primary resonance, k1 and k2 must have a greater effect on the behaviour of
the system considered than k3 and k4 when o0E1. Therefore, the nonlinear feedback gains k4 and
k3 can be removed by enlarging k1 and k2. Fig. 11 shows a comparison of two
frequency–amplitude relations corresponding to two different kinds of nonlinear feedback
control one of which has non-coupled feedback terms.
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Fig. 11. Frequency–amplitude relations (m ¼ 1, b ¼ 1, a ¼ 0.5, f ¼ 1, o0 ¼ 1, p ¼ 1, q ¼ 0.1, t ¼ 5): dot-line:

k1 ¼ k2 ¼ 1.7, k3 ¼ k4 ¼ 0 and solid line: k1 ¼ k2 ¼ 1.7, k3 ¼ k4 ¼ 1.
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5. Discussion and conclusion

In this paper, the primary resonance response of a Duffing–van der Pol oscillator under feedback
control with a time delay has been studied by means of an asymptotic perturbation technique,
singularity theory and the Routh–Hurwitz criterion under the assumption that the amplitude of
excitation is small. Although the structure of the slow-flow equations, governing the amplitude and
phase of the steady-state response, is similar to that of uncontrolled system, the coefficients,
associated with all the feedback gains, time delay and parameters of the system considered, in the
slow-flow equations are much more complex, which imply more abundant dynamic behaviour.
The singularity analysis shows that the bifurcation mode of the algebraic equation determining

the amplitude of the primary resonance response is a perturbation of pitchfork bifurcation, which
means that there may exist three solutions of the response amplitude in some cases. Therefore, it is
necessary to give some critical conditions, which are associated with feedback gains, time delay,
amplitude and frequency of excitation and parameters in the system considered, to perform
vibration control. These conditions are not in a simple form, but they are easy to compute.
Stability analysis is also given with the intention of identifying whether one of the multiple

solutions is stable or not. In contrast to the traditional frequency–amplitude curve, where the
middle of the three solutions is unstable and the smallest and largest ones are stable, it is shown
that only the largest amplitude of response is stable, which is also demonstrated by numerical
integration and found in Ref. [9] as well.
It is well known that, for some feedback gains and time delays, the response amplitude of a

controlled system may be greater than that of an uncontrolled system. In addition, a combination
of linear and nonlinear feedback may be not performed as well as linear feedback control in some
cases. Fortunately it is theoretically easy to choose appropriate gains and time delay of a feedback
controller for a practical system to delay the occurrence of undesired bifurcation and hence
suppress the amplitude of the response.
This paper is mainly focused on the effect of feedback gain and time delay when the amplitude

and frequency of an external excitation vary. Such a problem often arises in a practical
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application. The model is presented under the consideration that, generally speaking, three factors
should be taken into account in the design of an active feedback vibration controller; namely
number of control channels, feedback gains and feedback time delay.
Another conclusion is that coupled nonlinear state feedback can be replaced by uncoupled

nonlinear state feedback.
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