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Abstract

In an attempt to verify the concept of wave-mode duality and to understand the wave-train closure
principle in resonant beam vibration, an elastically supported beam subjected to a swept sinusoidal force is
investigated through a simulation of wave evolution from initial to final steady-state response. Wave
evolution is simulated in the superposition and the degenerate states according to the nature of wave
reflection at the boundaries of the beam. From the results, resonance condition is established, and the
natural frequencies and mode shapes are calculated. Using a simply supported beam and a cantilever beam
as examples, the concept of wave-mode duality at resonance is verified. An examination of the wave-train
closure principle shows that, although the frequency equations obtained by using the principle are identical
to those derived from the wave evolution results, the principle does not describe the realistic process of the
formulation of vibration modes in general. The waves described in the wave-train closure principle are not
physical but ‘‘virtual’’ waves that represent final steady-state waves, which can only be asymptotically
approached in reality. The principle can be used as a convenient technique to obtain vibration modes from
the point of view of wave propagation.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A vibrating system can be studied in terms of either vibration modes or propagating waves. The
former approach (referred to as the mode approach thereafter) has been a standard one in
vibration analysis, normally implemented by the method of modal expansion for simple structures
see front matter r 2005 Elsevier Ltd. All rights reserved.
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and by the finite element method for complex structures. In the mode approach, free vibration is
treated as an eigenvalue problem mathematically, and forced vibration is analyzed as a linear
combination of the eigenfunctions (modes). The latter approach (referred to as the wave approach
thereafter), represented by the method of statistical energy analysis [1,2], is particularly successful
in the field of vibro-acoustics and high-frequency vibration analysis, where the mode approach is
not practical because the density of modes in the frequency domain becomes very large and the
influence of structure uncertainty is significant. The statistical energy analysis technique has also
been applied to treat vibration problems for various built-up structures [3–8].
In principle, the results obtained by the mode approach and the wave approach are consistent.

This is termed the wave-mode duality and is considered to be a fundamental concept for a
comprehensive understanding of sound and vibration problems [9] to be obtained. While the
mode approach is convenient and efficient to use, the wave approach may provide more physical
insight into the vibration phenomenon being investigated. For example, vibration modes of a
beam were shown to be superposed standing waves through a wave mechanics approach [10], and
the physics of the ‘‘second spectrum’’ of beam vibration was elaborated.
In recent years, hybrid methods were developed to combine the advantages of the mode and the

wave approaches, giving rise to a unified approach for vibration analysis in a wider frequency
range. Such an approach is either based on an extension of the statistical energy analysis technique
[11–14], or on the modification of the finite element method, termed as the spectral element method
[15–18] or the continuous element method [19]. On the other hand, relatively little attention has
been paid to a theoretical justification of the wave-mode duality in various dynamic systems.
For a system carrying one type of wave, the wave-mode duality was discussed by Langley [20].

When the system is one-dimensional, free vibration analysis showed that vibration modes of such
a system are equivalent to the addition of traveling waves. At off-resonance, it was shown by
forced vibration analysis that the superposition of traveling waves could be converted to modal
expansion results using the Mittag–Leffler expansion. When the system is two-dimensional,
however, the results of the wave approach were found to be non-unique. This leaves a question for
further investigation. Chen [21] showed that axial vibration of a rod can be expressed as the
addition of either infinite numbers of standing waves or infinite numbers of traveling waves. This
can be regarded as an example of the wave-mode duality.
A one-dimensional system may carry multiple types of wave with different wave number at the

same frequency. One example is the beam. Chan et al. [10] showed that a beam accommodates
two types of flexural waves, known as the ka- and kb-waves, respectively. In general, vibration
modes can only be formulated by superposing the flexural waves, i.e., superposed standing waves.
The wave-mode duality in such a system also has not been addressed.
On the other hand, the wave-train closure principle given by Cremer and Heckl [22] could be

regarded as an expression of wave-mode duality for free vibration analysis, in the sense that it
describes the process of the formulation of a standing wave (vibration mode). The principle states
that, in order to formulate a standing wave, a propagating wave must return to its starting point
after completing one complete circuit of the system with the same amplitude and phase, i.e., it
closes on itself. From the superposed-standing-wave point of view, this principle was applied to
Timoshenko beams by Wang and So [23]. A more complex behavior of wave reflection at the
boundaries of the beam was demonstrated. It was found that one type of incident wave would
produce two types of reflected waves in general. In certain cases, however, one wave leads to only
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one reflected wave of the same type. These two wave-reflection behaviors were called the
superposition and the degenerate states of wave reflection, respectively, which lead to different
types of standing waves (vibration modes).
The objective of the present study is to verify the concept of wave-mode duality in resonant

beam vibration and to elaborate on a physical understanding of the wave-train closure principle
by simulating wave evolution in a beam from initial response due to external excitation to final
steady-state response. A uniform beam with general elastic end supports subjected to a point
excitation at an arbitrary location along the beam is considered. The excitation force is a
continuous sinusoidal one with its frequency varying within the whole spectrum, and may thus be
regarded as a swept sinusoidal excitation. Since wave reflection at the boundary can be in the
superposition or the degenerate state, the process of wave evolution for these two cases is studied
accordingly. The steady-state response of the beam is obtained by adding initial waves and all
reflected waves. The condition of resonance is derived from the expression of steady-state
response, from which natural frequencies and mode shapes can be obtained. A simply supported
beam and a cantilever beam are used as examples to verify the concept of wave-mode duality at
resonance. The wave-train closure principle is then examined. It is shown that the principle does
not describe the realistic process of the formulation of a vibration mode in general. However,
‘‘virtual’’ waves are generated to show that the principle can be served as a technique to determine
natural frequencies and mode shapes from the point of view of wave propagation.
2. Wave evolution in a beam

Consider a uniform beam of length L as shown in Fig. 1. According to the Timoshenko beam
theory, the equation of motion is given by

Dw ¼
F ðz; tÞ

0

� �
, (1)
Fig. 1. A general elastically supported beam subjected to external force at an intermediate position.
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where w is a vector representing Timoshenko beam vibration, and D is the corresponding
operator, and Fðz; tÞ is the excitation force, given here as

F ðz; tÞ ¼
F0e

iot at z ¼ 0;

0 otherwise:

(
(2)

Instead of using the conventional expression

wðz; tÞ ¼
wðz; tÞ

fðz; tÞ

( )
,

a wave representation introduced by Wang and So [23] is used in the present paper. The beam
motion w is expressed as

wðz; tÞ ¼
wfðz; tÞ

wgðz; tÞ

( )
¼

r

1

� �
wgðz; tÞ,

where wf(z, t) and wg(z, t) are transverse displacements due to bending rotation fðz; tÞ ¼
ðqwfðz; tÞÞ

�
qz; and shear angle gðz; tÞ ¼ ðqwgðz; tÞÞ

�
qz; respectively. The conventional expression is

related to the present wave representation by

wðz; tÞ

fðz; tÞ

( )
¼

ð1þ rÞwgðz; tÞ

q ð1þ rÞwgðz; tÞ
� ��

qz

( )
,

where r ¼ ra ¼ c02
�

cpa

� �2
� 1 for the win-wave and r ¼ rb ¼ c02

�
cpb

� �2
� 1 for the wout-wave, cpa ¼

o=ka and cpb ¼ o=kb are phase velocities, and ka and kb are wavenumbers of the win-wave and the
w
out-wave, respectively.
In Wang and So [23], it was shown that the shear deformation is either in-phase or out-of-phase

with respect to the bending deformation, resulting in two types of flexural waves, the former
corresponding to the ka-wave and the latter to the kb-wave as defined in Ref. [10]. These two types
of waves were denoted as the w

in-wave and the w
out-wave, respectively, where ‘‘in’’ means ‘‘in-

phase’’ while ‘‘out’’ means ‘‘out-of-phase’’. This phenomenon was also found to be related to the
entanglement of two standing waves in a Timoshenko beam [24]. At each frequency, win-wave and
w
out-wave co-exist in an infinite beam. These two waves are said to be degenerate and can be

expressed as

wgðz; tÞ ¼ winðz; tÞ woutðz; tÞ
� 	
¼ win

g ðz; tÞ
1

0

 !
wout
g ðz; tÞ

0

1

 !( )
.

In Eq. (1), the operator D is given by

D ¼

m
q2

qt2
m

q2

qt2
� KGA

q2

qz2

EI
q3

qz3
� J

q3

qzqt2
KGA

q
qz

2
6664

3
7775, (3)
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where m ¼ rA and J ¼ rI are the mass and the mass moment of inertia per unit length of the
beam, respectively, r is the density, K is the shear coefficient, I, A, E and G are the second moment
of area and of cross-sectional area, the Young’s modulus and shear modulus, respectively.
The continuous sinusoidal force excitation is assumed to be applied at the origin z ¼ 0, which is

Z0 away from the right boundary of the beam. The excitation, expressed as F ¼ F0e
iot, produces a

forward propagating wave and a backward propagating wave, expressed as

�wgðz; tÞ ¼ �win
g ðz; tÞ

1

0

 !
�wout

g ðz; tÞ
0

1

 !( )
¼ �win

g ðzÞ
1

0

 !
�wout

g ðzÞ
0

1

 !( )
eiot

¼ �W in
g0e
�ikaz

1

0

 !
ð��Wout

g0 Þe
�ikbz

0

1

 ! !
eiot, ð4Þ

where o is the frequency of excitation, and the subscripts ‘+’ and ‘-’ represent forward and
backward propagating waves, respectively. Based on the analysis of Mead [25], the amplitudes of
the initial waves given in Eq. (4) can be obtained. The results are

�W
in
g0 ¼ �W

in
g0 ¼ �

F0

2KGA
�

rb

kaðrb � raÞ
, (5a)

�W
out
g0 ¼ �W

out
g0 ¼ �

F0

2KGA
�

ra

kbðrb � raÞ
. (5b)

From the point of view of wave propagation, the steady-state response is the addition of all
waves in the beam due to reflections at both boundaries, and can be obtained by tracing the
process of wave propagation and reflection. Since wave reflection can be in the superposition or
the degenerate state, the formulation of steady-state response for these two cases should be
analyzed separately. It should be noted that the w

out-wave below the critical frequency is
evanescent. However, it can be treated as a special propagating wave with imaginary phase
velocity.
2.1. Wave evolution in the superposed state

In this section, wave evolution in the superposition state is considered. Initially, a forward
propagating wave and a backward propagating wave at time t ¼ 0 due to the excitation is
assumed. These waves are given by

þwg0 ¼ þwin
g

1

0

 !
þwout

g

0

1

 !( )
0

uðtÞ

¼
þW

in
g0e
�ikaz

1

0

 !
ð�þW

out
g0 Þe

�ikbz
0

1

 ! !
eiotuðtÞ; 0pzpZ0;

0 � ðL� Z0Þpzo0

8>><
>>: ð6aÞ
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and

�wg0 ¼ �win
g

1

0

 !
�wout

g

0

1

 !( )
0

uðtÞ

¼
�W

in
g0e

ikaz
1

0

 !
ð��W

out
g0 Þe

ikbz
0

1

 ! !
eiotuðtÞ; �ðL� Z0Þpzp0;

0 0ozpZ0;

8>><
>>: ð6bÞ

where the subscript ‘0’ indicates initial waves, and u(t) is the step function. The subsequent
behavior of wave reflection at both ends of the beam is illustrated in Fig. 2. Since w

in-wave and
w
out-wave have different phase velocity, they arrive and reflect at the boundary at different time,

as indicated in the figure.
Firstly, consider wave reflection at the right boundary of the beam. The incident +wout-wave is

expressed as

þw
outðz; tÞ ¼ ð�þWout

g0 Þ
0

1


 �
eiðot�kbzÞu t�

z

cpb


 �
. (7)

In general, the reflected wave is the superposition of a �w
in component and a �w

out component,
written as

½�wðz; tÞ�o1 ¼
�win

g

�wout
g

 !
o1

¼

ð�W in
g0Þo1e

iðotþkazÞu t�
Z0

cpb

�
Z0 � z

cpa


 �

ð��Wout
g0 Þo1e

iðotþkbzÞu t�
Z0

cpb

�
Z0 � z

cpb


 �
0
BBB@

1
CCCA, (8)

where the number in the subscript indicates the round of wave reflection, and the alphabet ‘o’
indicates the source of the reflected waves is a w

out-wave. The amplitudes of the reflected waves
can be written as

ð�W in
g0Þo1

ð��Wout
g0 Þo1

 !
¼

~r12R

~r22R

 !
ð�þWout

g0 Þ, (9)

where ~r12R and ~r22R are wave reflection coefficients. For the forward propagating w
in-wave, the

behavior of wave reflection is similar, given by

�wðz; tÞ�i1
�

¼
�win

g

�wout
g

 !
i1

¼

ð�W in
g0Þi1e

iðotþkazÞu t�
Z0

cpa

�
Z0 � z

cpa


 �

ð��Wout
g0 Þi1e

iðotþkbzÞu t�
Z0

cpa

�
Z0 � z

cpb


 �
0
BBB@

1
CCCA. (10)
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The amplitudes of the reflected waves can be written as

ð�W in
g0Þi1

ð��Wout
g0 Þi1

 !
¼

~r11R

~r21R

 !
ðþW in

g0Þ, (11)

where ~r12R and ~r22R are wave reflection coefficients.
In the present wave evolution analysis, the steady-state response is of primary concern, that is,

the waves are considered only after a sufficiently long time, when all step functions in the wave
expressions take the value of unity. The reflected waves can thus be combined and written in the
matrix form as

�wg1 ¼¼
�win

g

�wout
g

 !
1

¼
�W in

g0;1e
iðotþkazÞ

�Wout
g0;1e

iðotþkbzÞ

0
@

1
A. (12)

The amplitudes of the reflected waves are given by

�W in
g0;1

�Wout
g0;1

 !
¼ ½ ~RR�

þW in
g0

ð�þWout
g0 Þ

 !
¼ T0R½RR�T0R

þW in
g0

ð�þWout
g0 Þ

 !
, (13)

where

T0R ¼
e�ikaZ0 0

0 e�ikbZ0

 !
,

RR is the wave reflection matrix given by Wang and So [23], as listed in the appendix.
Similarly, at the left boundary z ¼ �ðL� Z0Þ, the reflected waves can be expressed as

þwg1 ¼¼
þwin

g

þwout
g

 !
1

¼
þW in

g0;1e
iðot�kazÞ

þWout
g0;1e

iðot�kbzÞ

0
@

1
A. (14)

The amplitudes of the reflected waves are given by

þW in
g0;1

þWout
g0;1

 !
¼ ½ ~RL�

�W in
g0

ð��Wout
g0 Þ

 !
¼ T0L½RL�T0L

�W in
g0

ð��Wout
g0 Þ

 !
, (15)

where

T0L ¼
e�ikaðL�Z0Þ 0

0 e�ikbðL�Z0Þ

 !
,

RL is the wave reflection matrix [23] listed in the appendix.
The reflected waves given by Eqs. (12) and (14) will produce more reflected waves in the second

round of wave reflection as shown in Fig. 2. Analogous to the above analysis, the reflected waves
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can be written in the matrix form. At the right boundary z ¼ Z0, they are expressed as

�wg2 ¼
�win

g

�wout
g

 !
2

¼
�W in

g0;2e
iðotþkazÞ

�Wout
g0;2e

iðotþkbzÞ

0
@

1
A, (16)

where

�W in
g0;2

�Wout
g0;2

 !
¼ ½ ~RR�½ ~RL�

�W in
g0

ð��Wout
g0 Þ

 !
.

At the left boundary z ¼ �ðL� Z0Þ, they are expressed as

þwg2 ¼
þwin

g

þwout
g

 !
2

¼
þW in

g0;2e
iðot�kazÞ

þWout
g0;2e

iðot�kbzÞ

0
@

1
A, (17)

where

þW in
g0;2

þWout
g0;2

 !
¼ ½ ~RL�½ ~RR�

þW in
g0

ð�þWout
g0 Þ

 !
.

In order to obtain a compact expression for the reflected waves, the forward and backward
wave units are defined here as

½þwg�unit ¼
þwin

g

þwout
g

 !
unit

¼ ½þwg0� þ ½�wg1� þ ½þwg2�, (18a)

½�wg�unit ¼
�win

g

�wout
g

 !
unit

¼ ½�wg0� þ ½þwg1� þ ½�wg2�. (18b)

It should be noted that the initial waves, +wg0 and �wg0, are defined at one part of the beam only,
as shown by Eqs. (6a) and (6b). Correspondingly, +wg2 and �wg2, are defined at 0ozpZ0 and
�ðL� Z0Þpzo0, respectively. Thus defined, each of the wave units would cover the whole beam
span, as illustrated in Fig. 3.
In terms of the wave units, the response of the beam is obtained by the addition of the initial

propagating waves and all reflected waves, expressed as

win
g

wout
g

 !
¼

XM
m¼0

½ ~RL�½ ~RR�
� �m

" #
½þwg�unit þ

XM
m¼0

½ ~RR�½ ~RL�
� �m

" #
½�wg�unit, (19)

where M is the number of times for the initial wave to be reflected at the left and right boundaries.
The steady state is achieved when M-N, and Eq. (19) becomes

win
g

wout
g

 !
¼¼¼
M!1

I� ½ ~RL�½ ~RR�
� ��1

½þwg�unit þ I� ½ ~RR�½ ~RL�
� ��1

½�wg�unit. (20)



ARTICLE IN PRESS

  

 

 

 

 

 

 

Fig. 3. Illustration of the ‘‘wave units’’.

X.Q. Wang et al. / Journal of Sound and Vibration 291 (2006) 681–705690
At resonance, the amplitude of the steady-state response should be infinity. This is
accomplished if

I� ½ ~RL�½ ~RR�
�� �� ¼ I� ½ ~RR�½ ~RL�

�� �� ¼ 0. (21)

Eq. (21) is the frequency equation from which natural frequencies are calculated.
In order to derive the expression of the associated mode shape, denote

I� ½ ~RL�½ ~RR� ¼
m11 m12

m21 m22

 !
; I� ½ ~RR�½ ~RL� ¼

n11 n12

n21 n22

 !
. (22)

Then

I� ½ ~RL�½ ~RR�
� ��1

¼
1

m11 m12

m21 m22

�����
�����

m22 �m12

�m21 m11

 !
, (23a)

I� ½ ~RR�½ ~RL�
� ��1

¼
1

n11 n12

n21 n22

�����
�����

n22 �n12

�n21 n11

 !
. (23b)
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At resonance, 1

,
m11 m12

m21 m22

�����
����� ¼ 1 and 1

,
n11 n12

n21 n22

�����
����� ¼ 1, the steady-state response is then

given by

win
g

wout
g

 !
¼ 1 �

m22 �m12

�m21 m11

 !
½þwg�unit þ

n22 �n12

�n21 n11

 !
½�wg�unit

" #
. (24)

The mode shape can thus be deduced from Eq. (24) and is given by

win
g ðzÞ

�wout
g ðzÞ

0
@

1
A ¼ m22 �m12

�m21 m11

 !
þwin

g ðzÞ

þwout
g ðzÞ

0
@

1
A

unit

or

win
g ðzÞ

�wout
g ðzÞ

0
@

1
A ¼ n22 �n12

�n21 n11

 !
�win

g ðzÞ

�wout
g ðzÞ

0
@

1
A

unit

, ð25Þ

where
þwin

g ðzÞ

þwout
g ðzÞ

 !
unit

and
�win

g ðzÞ

�wout
g ðzÞ

 !
unit

are spatial parts of the wave units.

At this stage, it would be of interest to compare the frequency equations obtained by the present
analysis and using the wave-train closure principle. The latter frequency equation can be written
in terms of the present nomenclature and is given by

I� ½TL0�½RL�½TRL�½RR�½T0R�
�� �� ¼ 0. (26)

The relations between the wave reflection matrices ~RL, ~RR and RL; RR are expressed as

~RL ¼ ½T0L�½RL�½T0L�, (27a)

~RR ¼ ½T0R�½RR�½T0R�. (27b)

Substituting Eqs. (27a) and (27b) into Eq. (21), the following is obtained:

I� ½T0L�½RL�½T0L�½T0R�½RR�½T0R�
�� �� ¼ 0. (28)

Therefore, noting that ½T0L�½T0R� ¼ ½TRL� and ½T0L� ¼ ½TL0�, Eqs. (28) and (26) become identical.

2.2. Wave evolution in the degenerate state

In the above section, wave evolution in the superposition state is investigated, and the steady-
state response is obtained. It should be noted, however, the two waves can be reflected
independently at a specific frequency

ospe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kz0Tz0

KGA � EI

r
c02

for a general elastically supported boundary or at all frequencies for a simply supported or a
sliding boundary [10,23], that is, the two waves remain degenerate upon reflection.
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In the degenerate state, the process of wave evolution is shown in Fig. 4. The wave reflection
matrices in this state are diagonal, written as

~RL ¼
r11Le

�ikaL 0

0 r22Le
�ikbL

 !
and ~RR ¼

r11Re
�ikaL 0

0 r22Re
�ikbL

 !
, (29)

where

r11L ¼ �e
iyin ; r11R ¼ �e

�iyin ; r22L ¼ �e
iyout ,

r22R ¼ �e
�iyout ; yin ¼ 2arctg

cpa

c022

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tz0 � KGA

EI � Kz0

s !
,

and

yout ¼ 2arctg
cpb

c022

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tz0 � KGA

EI � Kz0

s !
.

The wave units defined in Eqs. (18a) and (18b) become, in the degenerate state,

þwin
g

� �
unit
¼ þwin

g

� �
0
þ �win

g

� �
1
þ þwin

g

� �
2

¼ ðþW in
g0Þ ð1þ e�i2kaLÞe�ikaz � e�iy

in
e�i2kaZ0eikaz

h i
eiot, ð30aÞ

�win
g

� �
unit
¼ �win

g

� �
0
þ þwin

g

� �
1
þ �win

g

� �
2

¼ ð�W in
g0Þ ð1þ ei2kaLÞeikaz � eiy

in
e�i2kaðL�Z0Þe�ikaz

h i
eiot, ð30bÞ
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þwout
g

� �
unit
¼ þwout

g

� �
0
þ �wout

g

� �
1
þ þwout

g

� �
2

¼ ðþWout
g0 Þ ð1þ e�i2kbLÞe�ikbz � e�iy

out
e�i2kbZ0eikbz

h i
eiot, ð30cÞ

�wout
g

� �
unit
¼ �wout

g

� �
0
þ þwout

g

� �
1
þ �wout

g

� �
2

¼ ð�W out
g0 Þ ð1þ ei2kbLÞeikbz � eiy

out
e�i2kbðL�Z0Þe�ikbz

h i
eiot. ð30dÞ

Then

I� ½ ~RL�½ ~RR� ¼ I� ½ ~RR�½ ~RL� ¼
1� e�i2kaL 0

0 1� e�i2kbL

 !
. (31)

The steady-state response in the degenerate state is expressed as

win
g

1

0

 !
wout
g

0

1

 !(
¼¼¼
M!1

I� ½ ~RL�½ ~RR�
� ��1 þwin

g

0

 !
unit

þ I� ½ ~RR�½ ~RL�
� ��1 �win

g

0

 !
unit

(

I� ½ ~RL�½ ~RR�
� ��1 0

þwout
g

0
@

1
A

unit

þ I� ½ ~RR�½ ~RL�
� ��1 0

�wout
g

0
@

1
A

unit

9=
;.

ð32Þ

It can be seen that the win- and the wout-waves formulate vibration modes independently, that is,
they do not interact as in the superposition state. Therefore, they can be written separately as

win
g ¼

1

1� e�i2kaL þwin
g

� �
unit
þ

1

1� e�i2kaL �win
g

� �
unit

¼
1

1� e�i2kaL þwin
g

� �
unit
þ �win

g

� �
unit

h i
, ð33aÞ

and

wout
g ¼

1

1� e�i2kbL þwout
g

� �
unit
þ

1

1� e�i2kbL �wout
g

� �
unit

¼
1

1� e�i2kbL þwout
g

� �
unit
þ �wout

g

� �
unit

h i
. ð33bÞ

At resonance, the amplitude of the steady-state response should be infinity. Referring to
Eqs. (33a) and (33b), this condition of resonance yields

1� e�i2kaL ¼ 0, (34a)

1� e�i2kbL ¼ 0. (34b)

Eqs. (34a) and (34b) lead to

kaL ¼ nap; na ¼ 1; 2; 3; . . . , (35a)

kbL ¼ nbp; nb ¼ 1; 2; 3; . . . . (35b)
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The corresponding mode shapes are given by

win
g ðzÞ ¼ þwin

g ðzÞ
h i

unit
or win

g ðzÞ ¼ �win
g ðzÞ

h i
unit

, (36a)

wout
g ðzÞ ¼ þwout

g ðzÞ
h i

unit
or wout

g ðzÞ ¼ �wout
g ðzÞ

h i
unit

. (36b)

Eqs. (35a) and (35b) give the condition for a mode to exist, while the natural frequency of such
a mode is the specific frequency. At this specific frequency, a standing wave is formulated by the
win- or the wout-wave only, thus termed as single standing wave. If Eqs. (35a) and (35b) are
satisfied simultaneously, a win- and a wout-single standing wave exist at the same specific
frequency, leading to a pair of degenerate standing waves. An additional condition given by

ka=kb ¼ na=nb; na; nb ¼ 1; 2; 3; . . . ; (37)

must be satisfied. This condition is identical to the one obtained by using the wave-train closure
principle [23]. It should be noted that a single standing wave or a pair of degenerate standing
waves require that wave reflections at both boundaries should be in the degenerate state at the
same specific frequency. Otherwise, a superposed standing wave will be formulated. Therefore, the
condition KLTL ¼ KRTR must also be satisfied.
Two classical boundary conditions are worthy of further discussion. These are the simply

supported and the sliding boundary conditions. For these two boundary conditions, wave
reflection is in the degenerate state at all frequencies rather than at the specific frequency only. The
condition of resonance and the mode shapes are still given by Eqs. (34a) and (34b), and (36a) and
(36b), respectively. However, natural frequencies are determined by Eqs. (35a) and (35b) rather
than given by the specific frequency. Consequently, a series of win-single standing waves and a
series of wout-single standing waves are formulated. Under certain conditions, a win- and a wout-
single standing wave is paired, yielding degenerated standing waves. This can be demonstrated by
using the simply supported beam as an example. For such a beam, the reflection coefficients are
written as ~r11L ¼ �1, ~r11R ¼ �1, ~r22L ¼ �1, and ~r22R ¼ �1. The condition of resonance yields

kaL ¼ nap; na ¼ 1; 2; 3; . . . , (38a)

kbL ¼ nbp; nb ¼ 1; 2; 3; . . . . (38b)

Eqs. (38a) and (38b) are different from Eqs. (35a) and (35b) because they are frequency equations
giving natural frequencies of the beam. In general, the modes associated with these natural frequencies
are single standing waves. For a given beam length, there is one group of win-standing waves and one
group of wout-standing waves. Under certain conditions, a w

in-standing wave and a w
out-standing

wave may exist at the same natural frequency to formulate a pair of degenerate standing waves. This is
the same conclusion drawn from the analysis based on the wave-train closure principle.
3. Wave-mode duality in resonant beam vibration

A comparison of natural frequencies and mode shapes obtained by the present wave evolution
analysis and the mode approach is carried out to further understand wave-mode duality in resonant
beam vibration. The comparison is made separately for the degenerate and superposition state.
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3.1. The degenerate state

The simply supported beam is used as an example of the degenerate state. Natural frequencies
are calculated from the frequency Eqs. (38a) and (38b). It can be seen that they are identical to
those derived by the mode approach (the method of modal analysis). Therefore, natural
frequencies obtained by the present wave approach and the mode approach are identical.
The corresponding mode shapes are given by Eqs. (36a) and (36b). In order to compare them to

the results by the mode approach, the mode shapes are expressed here as

win
g ðzÞ ¼ þwin

g ðzÞ
h i

unit
þ �win

g ðzÞ
h i

unit
, (39a)

wout
g ðzÞ ¼ þwout

g ðzÞ
h i

unit
þ �wout

g ðzÞ
h i

unit
. (39b)

Substituting the expressions of the wave units given by Eqs. (30a)–(30d) into Eqs. (39a) and (39b) gives

win
g ðzÞ ¼ ð�2iÞðþW in

g0Þ 2 sin kaðz� Z0Þ½ � cos kaZ0ð Þ
� 	

, (40a)

wout
g ðzÞ ¼ ð�2iÞð�þWout

g0 Þ 2 sin kbðz� Z0Þ½ � cos kbZ0ð Þ
� 	

. (40b)

Normalizing by the maximum value, the mode shapes are given by

win
g ðzÞ ¼ sin kaðz� Z0Þ½ �, (41a)

wout
g ðzÞ ¼ sin kbðz� Z0Þ½ �. (41b)

It can be seen that they are identical to the mode shapes obtained by using the mode approach.
Thus, the wave-mode duality in the degenerate state of resonant beam vibration can be justified.
3.2. The superposition state

In the superposition state, natural frequencies of a beam are obtained by solving the frequency
equation (21), and the associated mode shapes are given by Eq. (25). While the wave-mode duality
in the degenerate state is readily justified analytically, numerical solutions have to be sought in order
to demonstrate the wave-mode duality in the superposition state. A cantilever beam is used as an
example where experimental measurements are also available for comparison. For the cantilever
beam, KL ¼1, TL ¼1, KR ¼ 0, and TR ¼ 0, and the frequency equation (21) can be written as

I� ½ ~RL�½ ~RR�
�� �� ¼ I� ½ ~RR�½ ~RL�

�� �� ¼ 0, (42)

where

½ ~RL� ¼
e�ikaðL�Z0Þ 0

0 e�ikbðL�Z0Þ

 !
½RL�,

½ ~RR� ¼
e�ikaZ0 0

0 e�ikbZ0

 !
½RR�,
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Mode 1 Mode 2 

Mode 3 Mode 4 

Mode 5 Mode 6 

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison of mode shapes of the first six modes of a cantilever beam. Solid and dotted lines are for calculated

results by the present wave approach and the classical mode approach, respectively. Lines with symbol are for

experimental measurements.

X.Q. Wang et al. / Journal of Sound and Vibration 291 (2006) 681–705696
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Table 1

Comparison of natural frequencies (Hz) of a cantilever beam obtained by the present wave approach, the mode

approach [26] and experimental measurements [26]

Mode Present wave approach Mode approach [26] Experimental measurements [26]

1 313.94 313.93 302.16

2 1520.09 1520.08 1473.6

3 3409.34 3409.32 3338.3

4 5376.27 5376.24 5292.0

5 7348.50 7348.46 7139.7

6 8197.93 8197.88 7828.2

X.Q. Wang et al. / Journal of Sound and Vibration 291 (2006) 681–705 697
RL ¼ �
ðra þ 1Þ ðrb þ 1Þ

�raðikaÞ �rbðikbÞ

 !�1
ðra þ 1Þ ðrb þ 1Þ

�rað�ikaÞ �rbð�ikbÞ

 !
,

RR ¼ �
�ika �ikb

�rak2
a �rbk2

b

 !�1
ika ikb

�rak2
a �rbk2

b

 !
. (43)

The cantilever beam has a rectangular cross-section, 300mm in length, 94mm in height, and
18mm in breadth. The material properties are as follows: r, the density is 1192 kg/m3, E, the
Young’s modulus is 4.65GPa, G, shear modulus is 2.32GPa, and the shear coefficient is 5

6
. Further

details of the experiment can be found in Ref. [26].
In Table 1, the natural frequencies calculated using the present wave approach and the mode

approaches are listed, and the measured values are also given for comparison. It can be seen that
the present wave approach and the mode approach yield the same predictions, which are in good
agreement with experimental measurements. A comparison of mode shapes for total transverse
displacement is given in Fig. 5, and good agreement is also obtained.
4. Further examination of the wave-train closure principle

In Section 2, it has been shown that the frequency equations obtained in the present study
are identical to those derived using the wave-train closure principle. The wave-train closure prin-
ciple can be considered as a description of the formulation of a vibration mode from the point of view
of wave propagation. The present wave evolution results make it possible to examine the principle
further on such a description. This is of interest because further physical understanding of the
principle could be obtained. Again, the degenerate and superposition states are considered separately.

4.1. The degenerate state

The steady-state response in the degenerate state can be expressed as

win
g

wout
g

( )
¼¼¼
M!1

1

1� e�i2kaL
0

0
1

1� e�i2kbL

0
BB@

1
CCA þwin

g

þwout
g

 !
unit

þ
�win

g

�wout
g

 !
unit

( )
. (44)
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At resonance, the mode shape is given by

win
g ðzÞ

wout
g ðzÞ

( )
¼

1 0

0 1


 �
þwin

g ðzÞ

þwout
g ðzÞ

 !
unit

þ
�win

g ðzÞ

�wout
g ðzÞ

 !
unit

( )
, (45)

where
þwin

g ðzÞ

þwout
g ðzÞ

 !
unit

and
�win

g ðzÞ

�wout
g ðzÞ

 !
unit

are spatial parts of the wave units. It can be seen that

the mode shape is determined by the wave units only.
According to the statement of the wave-train closure principle, in order to formulate a

superposed standing wave, the wave units, +wg2 and �wg2 should close on +wg0 and �wg0,
respectively. To further examine this statement, analytical expressions of wave units are
considered. According to Eqs. (16) and (17),

�wg2 ¼
�win

g

�wout
g

 !
2

¼
�W in

g0;2e
iðotþkazÞ

�Wout
g0;2e

iðotþkbzÞ

0
@

1
A, (46a)

þwg2 ¼
þwin

g

þwout
g

 !
2

¼
þW in

g0;2e
iðot�kazÞ

þWout
g0;2e

iðot�kbzÞ

0
@

1
A. (46b)

In the degenerate state,

�W in
g0;2

�Wout
g0;2

 !
¼ ½ ~RR�½ ~RL�

�W in
g0

ð��Wout
g0 Þ

 !
¼

�W in
g0

ð��Wout
g0 Þ

 !
,

and

þW in
g0;2

þWout
g0;2

 !
¼ ½ ~RL�½ ~RR�

þW in
g0

ð�þWout
g0 Þ

 !
¼

þW in
g0

ð�þWout
g0 Þ

 !
.

Then,

þwg2 ¼ þwg0, (47a)

�wg2 ¼ �wg0. (47b)

From Eqs. (47a) and (47b), it can be seen that these two returning waves close on their initial
waves, thus showing that the wave-train closure principle describes the realistic process of the
formulation of a standing wave in the degenerate state.

4.2. The superposition state

A similar examination can be carried out for the formulation of a standing wave in the
superposition state. Since analytical solutions are not available in the superposition state, again
the cantilever beam in Section 3 is used as an example.
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The wave units for the third mode of the cantilever beam are shown in Fig. 6. It can be seen
that +wg2 does not close on +wg0 and �wg2 does not close on �wg0, thus showing that the
wave-train closure principle does not hold in the superposition state. However, if ‘‘virtual’’ waves
defined as

½þŵg� ¼
m22 �m12

�m21 m11

 !
½þwg�, (48a)

½�ŵg� ¼
n22 �n12

�n21 n11

 !
½�wg�, (48b)
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Fig. 6. Illustration of the waves in the wave units for the third mode of the cantilever beam: (a) [+w]unit and (b) [�w]unit.
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are introduced, then the corresponding ‘‘virtual’’ wave units are given by

½þŵg�unit ¼
m22 �m12

�m21 m11

 !
½þwg0� þ ½�wg1� þ ½þwg2�
� 	

¼ ½þŵg0� þ ½�ŵg1� þ ½þŵg2�, ð49aÞ

½�ŵg�unit ¼
n22 �n12

�n21 n11

 !
½�wg0� þ ½þwg1� þ ½�wg2�
� 	

¼ ½�ŵg0� þ ½þŵg1� þ ½�ŵg2�. ð49bÞ

Noting that þŵg2 ¼ ½ ~RL�½ ~RR�þŵg0 and �ŵg2 ¼ ½ ~RR�½ ~RL�ð�ŵg0Þ, it is not difficult to derive that

þŵg2 ¼ þŵg0, (50a)

�ŵg2 ¼ �ŵg0. (50b)

From Eqs. (50a) and (50b), it can be seen that þŵg2 closes on þŵg0 and �ŵg2 closes on �ŵg0: In
other words, the wave-train closure principle holds for the ‘‘virtual’’ waves. It should be noted
that the ‘‘virtual’’ waves actually represent the steady-state waves after an infinite number of
reflections at both boundaries. Such a state cannot be reached in reality, but can only be
approached asymptotically. This suggests that the mode shapes measured experimentally are not
perfect but approximate. However, after several rounds of reflections at both ends of the beam,
the result of wave addition is already sufficient to yield a picture of mode shape with enough
accuracy. This can be illustrated by the evolution of wave addition result given by Eq. (19).
From Eq. (19), the amplitude of total transverse displacement can be calculated as

W ðzÞ ¼ ð1þ raÞW
in
g ðzÞ þ ð1þ rbÞW

out
g ðzÞ, (51)

where W in
g ðzÞ and Wout

g ðzÞ are spatial parts of win
g ðz; tÞ and wout

g ðz; tÞ in Eq. (19). The calculated
results at resonant frequencies of the third and the fourth modes as well as at an off-resonant
frequency between them are plotted in Fig. 7. From the results at resonance, one can see that the
shapes become smoother with the increment of M. At M ¼ 10, the shapes can be said to be
smooth enough. Meanwhile, it is seen that the result at the off-resonant frequency always has a
discontinuity. One also notes that the variation of the shape at off-resonance is fluctuating rather
than increasing monotonically at resonance. This is further studied by calculating the amplitude
of total transverse displacement at the free end when the evolution continues, and the results are
given in Fig. 8. It can be seen that the amplitude at resonance increases linearly and has a tendency
to approach infinity when M-N. At off-resonance, the amplitude is fluctuating and decreases
gradually and appears to approach a finite value when M-N.
It is noted that the amplitude of the final response is different from that of the initial response,

because the final response is the addition of initial waves and all reflected waves, as shown by the
wave evolution analysis. Hence, in general, the initial response is not equal to the final response.
The evolution from initial response to final steady-state response is a process of energy partition

in the system. In the present study, the energy is continuously fed into the beam by external force.
At resonance, the reflected waves are spatially synchronized with the initial waves; hence the final
response becomes larger and larger, approaching infinity. At off-resonance, the condition of space
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Fig. 7. Evolution of wave addition results: (a) at the resonant frequency of the third mode (3409Hz); (b) at an off-

resonant frequency between the third and the fourth modes (4400Hz); and (c) at the resonant frequency of the fourth

mode (5376Hz).
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(a)

(b)

(c)

Fig. 8. Evolution of the amplitude of transverse displacement at the free end: (a) at the resonant frequency of the third

mode (3409Hz); (b) at an off-resonant frequency between the third and the fourth modes (4400Hz); and (c) at the

resonant frequency of the fourth mode (5376Hz).
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synchronization does not hold; hence the response shows fluctuation and converges to a final
steady state with small amplitude.
An interesting question is how the initial waves evolve to the final response when the input

energy is finite, e.g., the excitation is an impulse force. It is expected that final steady state with
large but finite amplitude is achieved at resonance. However, this needs to be justified by further
wave evolution analysis. The situation would become more complicated when damping is
presented. These would be topics of a subsequent study.
The waves in the degenerate case can be regarded as special cases of Eqs. (48a) and (48b) where

m22 �m12

�m21 m11

 !
¼

1 0

0 1


 �
and

n22 �n12

�n21 n11

 !
¼

1 0

0 1


 �
.

Thus, the wave-train closure principle holds for realistic waves. In general, it could be
concluded that the principle does not describe the realistic formulation process of a standing
wave. It provides a convenient way to obtain vibration modes (resonant frequencies and mode
shapes) from the point of view of wave propagation though.

5. Conclusions

In an attempt to justify the wave-mode duality and to elaborate on the physical understanding of the
wave-train closure principle at resonance, forced beam vibration is simulated by a wave evolution
approach. The beam is excited by external swept sinusoidal force at a location along the beam span. The
expression of steady-state response is obtained by tracing the process of wave evolution starting from
initial response. Since wave reflection at the boundaries of the beam can be classified as superposition
and degenerate states, wave evolutions in these two states are traced separately. The condition of
resonance is then derived from the expression of steady-state response, from which natural frequencies
and mode shapes of vibration modes of a beam can be calculated. A simply supported beam and a
cantilever beam are used as examples of the degenerate state and the superposition state, respectively, to
justify the wave-mode duality at resonance. In the former case, analytical results are available, while in
the latter case, numerical results are presented along with experimental measurements.
The wave-train closure principle is also examined. For both the superposition and the

degenerate states, it is shown that the frequency equations obtained by using the wave-train
closure principle are identical to those derived from the present wave evolution results. However,
further examination shows that the principle does not describe the realistic process of the
formulation of vibration modes in general. The waves described in the wave-train closure
principle are generally not physical but ‘‘virtual’’ waves that represent final steady-state waves,
which can only be asymptotically approached in reality. The principle can thus be used as a
convenient technique to obtain vibration modes from the point of view of wave propagation.
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