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Abstract

The governing equations for two-dimensional generalized thermoelastic diffusion in an elastic solid are
solved. There exist three compressional waves and a shear vertical (SV) wave. The reflection phenomena of
SV wave from the free surface of an elastic solid with generalized thermoelastic diffusion is considered. The
closed-form expressions for the reflection coefficients for various reflected waves are obtained. These
reflection coefficients are found to depend upon the angle of incidence of SV wave, thermoelastic diffusion
parameter and other material constants. The numerical values of modulus of the reflection coefficients are
presented graphically for different thermal and diffusion parameters.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Duhamel [1] and Neumann [2] introduced the theory of uncoupled thermoelasticity. There are
two shortcomings of this theory. First, the fact that the mechanical state of the elastic body has no
effect on the temperature, is not in accordance with true physical experiments. Second, the heat
equation being parabolic predicts an infinite speed of propagation for the temperature, which is
not physically admissible.
Biot [3] developed the coupled theory of thermoelasticity which eliminates the first defect, but

shares the second defect of uncoupled theory. In the classical theory of thermoelasticity, when an
see front matter r 2005 Elsevier Ltd. All rights reserved.
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elastic solid is subjected to a thermal disturbance, the effect is felt at a location far from the
source, instantaneously. This implies that the thermal wave propagates with infinite speed, a
physically impossible result. In contrast to conventional thermoelasticity, non-classical theories
came into existence during the last part of 20th century. These theories, referred to as generalized
thermoelasticity, were introduced in the literature in an attempt to eliminate the shortcomings of
the classical dynamical thermoelasticity. For example, Lord and Shulman [4], by incorporating a
flux-rate term into Fourier’s law of heat conduction, formulated a generalized theory which
involves a hyperbolic heat transport equation admitting finite speed for thermal signals. Green
and Lindsay [5], by including temperature rate among the constitutive variables, developed a
temperature-rate-dependent thermoelasticity that does not violate the classical Fourier law of heat
conduction, when body under consideration has center of symmetry and this theory also predicts
a finite speed for heat propagation. Chandresekharaiah [6] referred to this wavelike thermal
disturbance as ‘‘second sound’’. The Lord and Shulman theory of generalized thermoelasticity
was further extended by Sherief [7] and Dhaliwal and Sherief [8] to include the anisotropic case. A
survey article of representative theories in the range of generalized thermoelasticity is due to
Hetnarski and Ignaczak [9].
Sinha and Sinha [10] and Sinha and Elsibai [11,12] studied the reflection of thermoelastic waves

from the free surface of a solid half-space and at the interface of two semi-infinite media in welded
contact, in the context of generalized thermoelasticity. Abd-Alla and Al-Dawy [13] studied the
reflection phenomena of SV waves in a generalized thermoelastic medium. Recently, Sharma et al.
[14] investigated the problem of thermoelastic wave reflection from the insulated and isothermal
stress-free as well as rigidly fixed boundaries of a solid half-space in the context of different
theories of generalized thermoelasticity.
Diffusion may be defined as the random walk, of an ensemble of particles, from regions of high

concentration to regions of lower concentration. The study of this phenomenon is of great
concern due to its many geophysical and industrial applications. In integrated circuit fabrication,
diffusion is used to introduce ‘‘dopants’’ in controlled amounts into the semiconductor substrate.
In particular, diffusion is used to form the base and emitter in bipolar transistors, form integrated
resistors, form the source/drain regions in metal oxide semiconductor (MOS) transistors and dope
poly-silicon gates in MOS transistors. The phenomenon of diffusion is used to improve the
conditions of oil extractions (seeking ways of more efficiently recovering oil from oil deposits).
These days, oil companies are interested in the process of thermoelastic diffusion for more
efficient extraction of oil from oil deposits.
Using the coupled thermoelastic model, Nowacki [15–17] developed the theory of thermoelastic

diffusion. Using Lord–Shulman (L-S) model, Sherief et al. [18] generalized the theory of
thermoelastic diffusion, which allows the finite speeds of propagation of waves. The present study
is motivated by the importance of thermoelastic diffusion process in the field of oil extraction.
Also, the development of generalized theory of thermoelastic diffusion by Sherief et al. [18]
provide a chance to study the wave propagation in such an interesting media. The paper is
organized as follows: in Section 2, the wave propagation in an isotropic, homogeneous model of
elastic solid with generalized thermoelastic diffusion is studied for Lord–Shulman (L-S) as well as
for Green–Lindsay (G-L) model. The governing equations for L-S and G-L models are solved in
x–z plane to show the existence of three compressional waves and a SV wave. In Section 3, the
closed-form expressions for reflection coefficients are obtained for the incidence of SV wave at a
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thermally insulated free surface. In the last section, a numerical example is given to discuss the
dependence of reflection coefficients upon thermal relaxation times, diffusion relaxation times,
angle of incidence of SV wave and other thermal and diffusion parameters. This dependence is
shown graphically.
2. Governing equations and solution

Following, Lord and Shulman [4], Green and Lindsay [5] and Sherief et al. [18], the governing
equations for an isotropic, homogeneous elastic solid with generalized thermoelastic diffusion
with reference temperature T0 in the absence of body forces are:
(i)
 the constitutive equations

sij ¼ 2meij þ dij½lekk � b1ðYþ t1 _YÞ � b2ðC þ t1 _CÞ�, (1)

rT0S ¼ rcEðYþ a _YÞ þ b1T0ekk þ aT0ðC þ b _CÞ, (2)

P ¼ �b2ekk þ bðC þ t1 _CÞ � aðYþ t1 _YÞ. (3)

Here a ¼ b ¼ t1 ¼ t1 ¼ 0 for L-S model and a ¼ t0; b ¼ t0 for G-L model.

(ii)
 the equation of motion

mui;jj þ ðlþ mÞuj;ij � b1ðYþ t1 _YÞ;i � b2ðC þ t1 _CÞ;i ¼ r €ui, (4)
(iii)
 the equation of heat conduction

rcEð _Yþ t0 €YÞ þ b1T0ð_eþ Ot0 €eÞ þ aT0ð _C þ g €CÞ ¼ KY;ii, (5)
(iv)
 the equation of mass diffusion

Db2e;ii þDaðYþ t1 _YÞ;ii þ ð _C þ Ot0 €CÞ �DbðC þ t1 _CÞ;ii ¼ 0, (6)

where b1 ¼ ð3lþ 2mÞat and b2 ¼ ð3lþ 2mÞac, l;m are Lame’s constants, at is the coefficient of
linear thermal expansion and ac is the coefficient of linear diffusion expansion. Y ¼
T � T0;T0 is the temperature of the medium in its natural state assumed to be such that
jY=T0j51. sij are the components of the stress tensor, ui are the components of the
displacement vector, r is the density assumed independent of time, eij are the components of
the strain tensor, e ¼ ekk, T is the absolute temperature, S is the entropy per unit mass, P is
the chemical potential per unit mass, C is the concentration, cE is the specific heat at constant
strain, K is the coefficient of thermal conductivity, D is thermoelastic diffusion constant. t0 is
the thermal relaxation time, which will ensure that the heat conduction equation, satisfied by
the temperature Y will predict finite speeds of heat propagation. t is the diffusion relaxation
time, which will ensure that the equation, satisfied by the concentration C will also predict
finite speeds of propagation of matter from one medium to the other. The constants a and b
are the measures of thermoelastic diffusion effects and diffusive effects, respectively. The
superposed dots denote derivative with respect to time.
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For the L-S model, t1 ¼ 0; t ¼ 0; O ¼ 1; g ¼ t0. The governing equations in L-S model are
same as given by Sherief et al. [18].
1

For G-L model, t140; t140; O ¼ 0; g ¼ t0. The thermal relaxation times t0 and t1 satisfy the
inequality t1Xt0X0 for G-L model. The diffusion relaxation times t0 and t1 also satisfy the
inequality t1Xt0X0 for G-L model.
For two-dimensional motion in x–z plane, Eqs. (4)–(6) are written as

ðlþ 2mÞu1;11 þ ðmþ lÞu3;13 þ mu1;33 � b1t
1
yY;1 � b2t

1
cC;1 ¼ r €u1, (7)

mu3;11 þ ðmþ lÞu1;13 þ ðlþ 2mÞu3;33 � b1t
1
yY;3 � b2t

1
cC;3 ¼ r €u3, (8)

Kr2Y ¼ rcEt0y _Yþ b1T0t0e _eþ aT0t0c _C, (9)

Db2r
2eþDat1yr

2Y�Dbt1cr
2C þ t0f _C ¼ 0, (10)

where

t1y ¼ 1þ t1
q
qt
; t0y ¼ 1þ t0

q
qt
; t1c ¼ 1þ t1

q
qt
,

t0c ¼ 1þ g
q
qt
; t0e ¼ 1þ Ot0

q
qt
; t0f ¼ 1þ Ot0

q
qt
; r2 ¼

q2

qx2
þ

q2

qz2
.

The displacement components u1 and u3 may be written in terms of potential functions f and c as

u1 ¼
qf
qx
�

qc
qz
; u3 ¼

qf
qz
þ
qc
qx

. (11)

Using Eq. (11) into Eqs. (7)–(10), we obtain

mr2c ¼ r
q2c
qt2

, (12)

ðlþ 2mÞr2f� b1t
1
yY� b2t

1
cC ¼ r

q2f
qt2

, (13)

Kr2Y ¼ rcEt0y
qY
qt
þ b1T0t0e

q
qt
r2fþ aT0t0c

qC

qt
, (14)

Db2r
4fþDat1yr

2Y�Dbt1cr
2C þ t0f

qC

qt
¼ 0. (15)

Eq. (12) is uncoupled, whereas Eqs. (13)–(15) are coupled in f, Y and C. From Eqs. (12)–(15), we
see that while the P-wave is affected due to the presence of thermal and diffusion fields, the SV
remains unaffected. The solution of Eq. (12) corresponds to the propagation of SV wave with
velocity v0 ¼

ffiffiffiffiffiffiffiffi
m=r

p
.

Solutions of Eqs. (13)–(15) are now sought in the form of the harmonic travelling wave

ff;Y;Cg ¼ ff0;Y0;C0ge
ikðx sin yþz cos y�vtÞ, (16)

where v is the phase speed, k is the wavenumber and ðsin y; cos yÞ denotes the projection of the
wave normal onto x–z plane.
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The homogeneous system of equations in f0;Y0; and C0, obtained by inserting Eq. (16) into
Eqs. (13)–(15), admits non-trivial solutions and enables to conclude that x satisfies the cubic
equation

x3 þ Lx2 þMxþN ¼ 0, (17)

where

x ¼ rv2,

L ¼ �ð�þ ��1�2�3 þ d1 þ d2 þ lþ 2mÞ,

M ¼ ðlþ 2mÞðd1 þ d2 þ ��1�2�3Þ þ d1d2 þ d2�� ��2ð�1 þ �3Þ � �2,

N ¼ �d1d2ðlþ 2mÞ þ �2d1,

d1 ¼
K

cEty
; d2 ¼

rDbt11c

tf

,

� ¼
b21T0tet11y
rcEty

; �1 ¼ �
a

b1b2
; �2 ¼

rDb22t
11
c

tf

; �3 ¼ �
atc

b1b2tet11c

,

ty ¼ t0 þ
i
o
; tc ¼ gþ

i
o
; te ¼ Ot0 þ

i
o
; tf ¼ Ot0 þ

i
o
,

t11y ¼ 1� iot1; t11c ¼ 1� iot1.

Eq. (17) is cubic in x. The roots of this equation give three values of x. Each value of x corresponds
to a wave if v2 is real and positive. Hence, three positive values of v will be the velocities of
propagation of three possible waves. Cardan’s method is used to solve Eq. (17). Using Cardan’s
method, Eq. (17) is written as

L3 þ 3HLþ G ¼ 0, (18)

where

L ¼ xþ
L

3
; H ¼

3M � L2

9
; G ¼

27N � 9LM þ 2L3

27
. (19)

For all the three roots of Eq. (18) to be real, D0ð¼ G2 þ 4H3Þ should be negative. Assuming the D0

to be negative, we obtain the three roots of Eq. (18) as

Ln ¼ 2
ffiffiffiffiffiffiffiffiffi
�H
p

cos
fþ 2pðn� 1Þ

3

� �
ðn ¼ 1; 2; 3Þ, (20)

where

f ¼ tan�1
ffiffiffiffiffiffiffiffi
jD0j
p

�G

� �
. (21)
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Hence,

vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln �

L

3

� ��
r

s
ðn ¼ 1; 2; 3Þ (22)

are velocities of propagation of the three possible coupled dilatational waves. The waves with
velocities v1; v2 and v3 correspond to P wave, mass diffusion (MD) wave and thermal (T) wave,
respectively. This fact may be verified, when we solve Eq. (17), using a computer program of
Cardan’s method. If we neglect thermal effects, i.e. for � ¼ 0; d1 ¼ 0, the cubic equation (17)
reduces to a quadratic equation whose roots are as

2rv2 ¼ ½d2 þ ðlþ 2mÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½d2 � ðlþ 2mÞ�2 þ 4�2

q
, (23)

where the positive and negative signs correspond to P wave and MD wave, respectively.
Moreover, the MD wave exists if b22obðlþ 2mÞ. Similarly, if we neglect the diffusion effects, i.e.
for �1 ¼ �2 ¼ d2 ¼ 0, Eq. (17) reduces to a quadratic equation whose roots are as

2rv2 ¼ ½fd1 þ ðlþ 2mÞg þ �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½fd1 � ðlþ 2mÞg � ��2 þ 4�d1

q
, (24)

where the positive and negative signs correspond to P wave and T waves, respectively. The T wave
exists, if d140, which is true. These two-dimensional roots are in agreement with the non-
dimensional roots obtained by Abd-Alla and Al-Dawy [13] for Lord and Shulman theory. In
absence of thermoelastic diffusion effects, Eq. (17) corresponds to P wave with velocity
v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
.

3. Reflection coefficients

In previous section, it has been discussed that there exists three compressional waves and a SV
wave in an isotropic elastic solid with generalized thermoelastic diffusion. Any incident wave at
the interface of two elastic solid bodies, in general, produce compressional and distortional waves
in both media (see for example, Refs. [19,20]). Let us consider an incident SV wave (Fig. 1). The
boundary conditions at the free surface z ¼ 0 are satisfied, if the incident SV wave gives rise to a
reflected SV and three reflected compressional waves (i.e. P, MD and T waves). The surface z ¼ 0
is assumed to be traction free and thermally insulated so that there is no variation of temperature
and concentration on it. Therefore, the boundary conditions on z ¼ 0 are written as

szz ¼ 0; szx ¼ 0;
qY
qz
¼ 0;

qC

qz
¼ 0; on z ¼ 0. (25)

The appropriate displacement potentials f and c, temperature Y and concentration C are taken
in the form

c ¼ B0 exp½ik0ðx sin y0 þ z cos y0Þ � iotÞ� þ B1 exp½ik0ðx sin y0 � z cos y0Þ � iotÞ�, (26)

f ¼ A1 exp½ik1ðx sin y1 � z cos y1Þ � iotÞ� þ A2 exp½ik2ðx sin y2 � z cos y2Þ � iotÞ�

þ A3 exp½ik3ðx sin y3 � z cos y3Þ � iot�, ð27Þ
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Fig. 1. Schematic diagram for the problem.
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Y ¼ z1A1 exp½ik1ðx sin y1 � z cos y1Þ � iotÞ� þ z2A2 exp½ik2ðx sin y2 � z cos y2Þ � iotÞ�

þ z3A3 exp½ik3ðx sin y3 � z cos y3Þ � iot�, ð28Þ

C ¼ Z1A1 exp½ik1ðx sin y1 � z cos y1Þ � iotÞ� þ Z2A2 exp½ik2ðx sin y2 � z cos y2Þ � iotÞ�

þ Z3A3 exp½ik3ðx sin y3 � z cos y3Þ � iot�, ð29Þ

where the wave normal of the incident SV wave makes angle y0 with the positive direction of the
z-axis, and those of reflected P, MD and T waves make y1; y2 and y3 with the same direction, and

zi ¼ k2
i Giðrv2i � l� 2mÞ; Zi ¼ k2

i Hiðrv2i � l� 2mÞ ði ¼ 1; 2; 3Þ (30)

and

Gi ¼
�rv2i ð�1�2 � d2 þ rv2i Þ

d1�2 þ rv2i ½�ðd2 � rv2i Þ � �2 � ��2ð�1 þ �3Þ�
, (31)

Hi ¼
�2½rv2i ð��1 þ 1Þ � d1�

d1�2 þ rv2i ½�ðd2 � rv2i Þ � �2 � ��2ð�1 þ �3Þ�
. (32)

The ratios of the amplitudes of the reflected waves to the amplitude of the incident wave, namely
B1=B0; A1=B0; A2=B0 and A3=B0 give the reflection coefficients for reflected SV, reflected P,
reflected MD and reflected T waves, respectively. The wavenumber k0; k1; k2; k3 and the angles
y0; y1; y2; y3 are connected by the relation

k0 sin y0 ¼ k1 sin y1 ¼ k2 sin y2 ¼ k3 sin y3 (33)

at surface z ¼ 0. Relation (33) may also be written in order to satisfy the boundary conditions (25) as

sin y0
v0
¼

sin y1
v1
¼

sin y2
v2
¼

sin y3
v3

, (34)
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where v0 ¼
ffiffiffiffiffiffiffiffi
m=r

p
is the velocity of SV wave and vi; ði ¼ 1; 2; 3Þ are the velocities of three sets of

reflected compressional waves. Using the potentials given by Eqs. (26)–(29) in boundary conditions
(25), the reflection coefficients may be expressed as

B1

B0
¼

D1

D
;

A1

B0
¼

D2

D
;

A2

B0
¼

D3

D
;

A3

B0
¼

D4

D
, (35)

where

D ¼
x43x31 � x33x41

x42x31 � x32x41
�

x33ðx21 � x11Þ � x31ðx23 � x13Þ

x32ðx21 � x11Þ � x31ðx22 � x12Þ
,

D1 ¼
x43x31 � x33x41

x42x31 � x32x41
�

x33ðx21 þ x11Þ � x31ðx23 þ x13Þ

x32ðx21 þ x11Þ � x31ðx22 þ x12Þ
,

D2 ¼
�2ðx43x32 � x42x33Þ

x42x32
,

D3 ¼
2ðx43x31 � x41x33Þ

x41x31
,

D4 ¼
�2ðx42x31 � x41x32Þ

x41x31
,

x1i ¼ �
½lþ 2m cos2 yi þ t11y ðzi=k2

i Þb1 þ t11c ðZi=k2
i Þb2�ðki=k0Þ

2

m sin 2y0
,

x2i ¼
sin 2yiðki=k0Þ

2

cos 2y0
,

x3i ¼ cos yiðzi=k2
i Þðki=k0Þ

3,

x4i ¼ cos yiðZi=k2
i Þðki=k0Þ

3.

In the absence of thermoelastic diffusion, these reflection coefficients reduce to

B1

B0
¼

sin 2y1 sin 2y0 � ðv1=v0Þ
2 cos 2y0

sin 2y1 sin 2y0 þ ðv1=v0Þ
2 cos 2y0

, (36)

A1

B0
¼

ðv1=v0Þ sin 4y0
sin 2y1 sin 2y0 þ ðv1=v0Þ

2 cos 2y0
, (37)
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which are the same as those given by Ben-Menahem and Singh [20], if y1, y0, v1 and v0 are replaced
by e, f, a and b, respectively. It may also be mentioned that the MD and T waves will disappear in
absence of thermoelastic diffusion.
4. Numerical results

For computational work, the following material constants at T0 ¼ 27 �C are considered for an
elastic solid with generalized thermoelastic diffusion

l ¼ 5:775� 1011 dyn=cm2; m ¼ 2:646� 1011 dyn=cm2; r ¼ 2:7 g=cm3,

cE ¼ 2:361 cal=g �C; K ¼ 0:492 cal=cm s �C; at ¼ 0:05 cm3=g,

ac ¼ 0:06 cm3=g; o ¼ 10 s�1; a ¼ 0:005 cm2=s2 �C; b ¼ 0:05 cm5=g s,

D ¼ 0:5 g s=cm3.

The numerical values of reflection coefficients of various reflected waves are computed for angle of
incidence varying from 1� to 45� for L-S (Lord–Shulman) and G-L (Green–Lindsay) models when
t1 ¼ t0 ¼ 0:05 s and t1 ¼ t0 ¼ 0:04 s. These numerical values of reflection coefficients are shown
graphically in Figs. 2–5 where solid and dotted lines correspond to L-S and G-L models, respectively.
Fig. 2 shows the reflection coefficients of reflected SV waves for L-S and G-L models. The

reflection coefficient for each model, first increases and then decreases to its minima, thereafter, it
attains its value one at y0 ¼ 45�. Figs. 3–5 show the variations for reflected P, reflected MD and
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Fig. 2. Variations of reflection coefficients of SV waves with the angle of incidence for L-S and G-L models.
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reflected T, respectively. Comparing the solid and dotted lines in these figures, the effects of
second thermal relaxation time and second diffusion relaxation time are observed on the reflection
coefficients. The further numerical study is restricted to L-S model only. The numerical values of
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Fig. 3. Variations of reflection coefficients of P waves with the angle of incidence for L-S and G-L models.
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Fig. 4. Variations of reflection coefficients of MD waves with the angle of incidence for L-S and G-L models.
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Fig. 5. Variations of reflection coefficients of T waves with the angle of incidence for L-S and G-L models.
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Fig. 6. Variations of reflection coefficients of SV waves with the angle of incidence for sets S1, S2 and S3 of L-S model.
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reflection coefficients are computed for three different sets of thermal and diffusion relaxation
times, namely S1ðt0 ¼ 0:2; t0 ¼ 0:1Þ; S2ðt0 ¼ 0:02; t0 ¼ 0:01Þ and S3ðt0 ¼ 0:002; t0 ¼ 0:001Þ.
These coefficients are shown graphically in Figs. 6–9. The reflection coefficients of various
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Fig. 7. Variations of reflection coefficients of P waves with the angle of incidence for sets S1, S2 and S3 of L-S model.
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Fig. 8. Variations of reflection coefficients of MD waves with the angle of incidence for sets S1, S2 and S3 of L-S

model.
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Fig. 9. Variations of reflection coefficients of T waves with the angle of incidence for sets S1, S2 and S3 of L-S model.
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Fig. 10. Variations of velocities of MD and T waves with thermoelastic diffusion constant D for L-S and G-L models.
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reflected waves are affected considerably by thermal as well as diffusion relaxation times. On
comparing the curves for sets S1, S2 and S3, in Figs. 6–9, it may me remarked that the rate of
change of reflection coefficients decreases as we take values of thermal relaxation time t0 and
diffusion relaxation time t0 less than those given in set S3.



ARTICLE IN PRESS

B. Singh / Journal of Sound and Vibration 291 (2006) 764–778 777
The variations of the velocities of MD and T waves with D are also shown graphically in Fig. 10
for L-S and G-L models. The effects of second thermal relaxation time and second diffusion
relaxation time are noted on velocities of MD and T waves. The velocities P and SV waves are
same at each value of D and are not affected by second thermal and diffusion relaxation times.
Therefore, the graphs of these two waves are not included in Fig. 10.
5. Conclusions

From theory and numerical computation, the following points are concluded.
1.
 The theory of generalized thermoelastic diffusion is extended in the frame of G-L model. The
solutions of governing equations lead to the existence of one shear and three compressional
waves travelling with distinct speeds for two-dimensional motion in a solid with thermoelastic
diffusion.
2.
 The reflection of SV wave is studied. The reflection coefficients of various waves are expressed
in closed-form and computed numerically for both L-S and G-L models. The reflection
coefficients are also computed for different values of thermal and diffusion relaxation times for
L-S model only.
3.
 The velocities as well as reflection coefficients of various plane waves depend on various
thermal and diffusion parameters.

The present model of elastic solid with thermoelastic diffusion becomes more realistic due to the
existence of these new compressional waves. The present theoretical results may provide
interesting information for experimental scientists/researchers/seismologists working on subjects
of wave propagation.
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