Available online at www.sciencedirect.com

. JOURNAL OF
scmncs@mnecr SOUND AND

Sl VIBRATION
ELSEVIER Journal of Sound and Vibration 291 (2006) 902-931

www.elsevier.com/locate/jsvi

Numerical study of vibration damping, energy and energy flow
in a beam—plate system

crsk
G. Pavic

Laboratoire Vibrations-Acoustique, Institut National des Sciences Appliquées de Lyon, 20,
avenue Albert Einstein, 69621 Villeurbanne, France

Received 19 December 2003; received in revised form 20 May 2005; accepted 4 July 2005
Available online 12 September 2005

Abstract

A full analytical model of a beam—plate system has been produced in order to study the distribution of
vibration energy and energy flow in beams and rods under simple but realistic excitation conditions. Axial
and flexural vibrations are only analysed. Using the developed model as well as energy formulae presented
in a companion paper some characteristic features of energy distribution in thin beams/rods have been
identified which can be considered as universally applicable. It has been found that axial vibrations, often
neglected, may be of the same importance with respect to energy and energy flow as flexural vibrations.
Moreover, axial beam vibrations may provide an efficient mechanism of energy transfer to the adjacent
sub-systems. Realistic boundary conditions may result in wave conversion which in turn may reverse the
flow of energy of either axial or flexural vibration toward the source. The frequency-averaged net power
consumed by the beam sub-system was found to depend largely on damping, contrary to the total input
power to the system which stays fairly insensitive to it. The energy sharing between the beam and the
connected plate was found to depend little on the amount and distribution of damping within the system
providing the coupling between the two is strong. Finally, simulation of measurements of energy flow as
well as of absorption/reflection/transmission energy coefficients of incorporated joints was shown to be
affected to a large degree by beam damping which is often disregarded in experimental work.
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1. Introduction

Rods and beams are some of the simplest components of mechanical structures. The earliest
investigations on the propagation of mechanical energy in structures were carried out precisely on
these components. Yet, even at moderate frequencies at which simple rod and beam vibration
models are satisfactory the analysis of energy propagation, either by computation or measurement,
remains a problem. Simplified theories of energy distribution were successful in dealing with axially
vibrating rods, but less successful in dealing with beams vibrating in flexure. Measurement
techniques have not yet left laboratory conditions and, even so, the results are often not convincing.
As a rule, the structural damping, being rather difficult to handle, is neglected in measurements.

The main objective of this paper and its companion paper [1] is to contribute to the
understanding of some basic features of energy distribution and flow in rods and beams. While the
first paper deals with some generic notions of energy via an analysis of semi-infinite structures,
this paper will be focused on a finite rod/beam. The drawback in dealing with a finite system is
that the results have to loose generality in favour of detail such as boundary conditions. The study
will therefore be conducted in the spirit of ‘“demonstrating effects” rather than formulating
generalised conclusions.

Reference to measurement and modelling will be made where appropriate. The distinction will
be made between kinetic and potential energy. The former is usually associated with adverse
effects of vibration on humans, while the latter is responsible for dissipation effects in structurally
damped systems as shown in Ref. [1] or with mechanical damage. Thus potential energy can serve
as an indicator of the locations of high damping effect and thus can be used in vibration control
optimisation.

The terms “rod” and “beam’ are usually employed to make a distinction between axial and
flexural vibrations. Experience shows that these two types of vibration often coexist. One of the
objectives of the current paper is to make an account of such a coexistence where energy is
concerned. This will be done by modelling a single mechanical object, a beam, which will be
subjected to both axial and flexural vibration. In order to make a realistic but not too complex
model, the beam is taken free at one end and fixed to a plate at the other end. Such a configuration
is suitable because it will lead to natural wave conversion at the connection point. Thus even in the
case of single excitation type, either axial or flexural, both longitudinal and flexural waves will be
generated in the beam. The energy induced by both types of motion will be investigated.

2. Characteristics of a beam—plate system
The structure selected consists of a straight beam connected perpendicularly to a flat plate. This

structure will be modelled in order to analyse the influence of damping on energy characteristics of
the beam and to carry out numerical experiments using the energy formulations developed in Ref. [1].

2.1. Beam—plate model

The beam is made of steel, the dimensions are: length—2 m, radius of inertia—1 cm, mass per
unit length—2kg/m. It is attached to a 0.5m x 0.42m 10 mm thick steel plate. These values are
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typical of standardised elements in mechanical design. For example a steel pipe of 30 mm diameter
and 3 mm thickness used a lot in gas and liquid transport installations will have these parameters,
while 10 mm is a standardised thickness for steel sheets used in general construction works. The
plate thickness was chosen such that the flexural driving point impedances of the beam and plate
are of comparable average values. The excitation acts in a single point of the beam placed at a
distance 0.5 m form the free end; Fig. 1. The junction position on the plate, chosen at random, is
0.29m length wise, 0.22m width wise. The beam and the plate materials are assumed to be
identical: Young’s modulus 2 x 10'" Pa, mass density 7800 kg. The reference value of loss factor is
1%; this value will occasionally be varied where appropriate. In this study the realism of the
model matters which explains the attention paid to the choice of model parameters.

The plate is taken simply supported along all the edges. While the plate boundary conditions
are fairly irrelevant in this study, the supported boundary conditions offer the advantage of
enabling straightforward analytical computation of plate response. The excitation is assumed to
come from a rotating unbalanced mass m of eccentricity e positioned at a distance d = 10cm
away from the beam axis. Under such an excitation the beam will be subjected to an axial force N,
a lateral force F and a bending moment M which, in complex notation, read:

N = Qeiu)t, F = _erjwt’
M = Nd = Qde”, Q = mew?’. (1)

The simplicity of the beam—plate model will be further enhanced by assuming that the beam—plate
junction couples the movements in the vertical plane only. Such a type of junction could
theoretically be manufactured, but it has no value from the design point of view. It is used here for
the sole purpose of making the beam vibrate in the vertical direction only which will simplify the
presentation of results without affecting the objective of coupling axial and flexural movements.

The response will be analysed as a function of rotation frequency w. In order to avoid excessive
increase of excitation at high frequencies, the value of centrifugal force Q will be kept unitary.

0.5m

F 3
h 4

042m

0.5m

Fig. 1. Beam—plate system. Simultaneous axial, lateral and bending excitation is provided by an eccentric rotating
mass.
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This simplification in no way affects the analysis and the findings. In the other hand the frequency
variations of energy quantities, proportional to excitation square, will be easier to follow if the
frequency weighting of excitation is suppressed. The original phases between N, F and M will be
conserved though.

The axial beam motion is modelled by the thin-rod theory starting with the closed form
mobility solution of a free—free rod excited at one end. Two free—free sections are then coupled
across the (external) driving force to provide the mobility of a free—free rod for an arbitrary pair
of excitation and response positions. A similar procedure is employed to obtain the response of a
free—free beam subjected to a force or a moment excitation. The flexural beam motion is modelled
by Euler—Bernoulli theory. The beam axial and flexural response are obtained using direct
resolution of rod and beam wave equations rather than using modal summation. The plate is
modelled in a classical way by a real-mode superposition [2].

Once the general beam model was made, the connectivity between the beam and the plate was
taken into account by assuming that the plate in-plane impedance was much higher than the beam
flexural impedance. The plate in-plane impedance was estimated using an expression found by
Nikiforov, [3], obtained by considering an in-plane force acting on an infinite plate via a circular
indenter. Given the dimensions of beam cross-section and plate thickness the assumption about
the plate impedance was judged to be realistic. In this way the coupling movement at the
connection point consisted of beam axial movement and rotation only since the transversal beam
movement was effectively blocked by the plate.

The model of the beam—plate system is outlined in the Appendix. It provides the complex
amplitudes of two longitudinal and four flexural waves in each of the two sections of the beam.
The values of wave amplitudes are used to compute the energy and energy flow using the
equations of Ref. [1].

2.2. Global energy characteristics

The beam and the plate, taken individually, exhibit characteristic multi-resonant behaviour.
Fig. 2 shows the average global RMS vibration level of the free-blocked beam (a) and plate (b)
under unit excitation. The excitation position of the beam is the same as specified before, that of
the plate is at the connection point. The resonant peaks are well separated. The simplified
theoretical values of modal density, equal to 0.112f ~'?/Hz (beam, flexure), 0.0012/Hz (beam,
axial), and 0.00687/Hz (plate, flexure), indicate fairly low modal overlap at 1% loss factor.

Fig. 3 shows global power characteristics of the system analysed. Fig. 3(a) shows the total net
power supplied by the external excitation (full line) and the power transmitted to the plate (dashed
line). As the two curves overlap close to resonant peaks, markers are employed to improve
visibility. It can be seen that at some resonant frequencies, the 4th 7th 10th 12th, etc., some
significant input power is transmitted to the plate which dissipates more energy than does the
beam. Fig. 3(b) shows how the power consumed by the beam, i.e. the difference between the input
power and power supplied to the plate, is contributed by axial and flexural excitations.

In the presently analysed case the flexural excitation globally consumes more energy, but at
some frequencies the energy consumed by axial motion becomes larger. This is notably the case
around the resonant frequency at 162 Hz. The phenomenon is not related to the “local” beam
resonance; the lowest blocked beam resonance is at ~600 Hz, Fig. 2(b), implying that in free—free
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Fig. 2. rms vibration level of system components in under unit excitation: (a) free—clamped beam; (b) plate. Full line,
normal force; dashed line, moment in vertical plane; thick line, axial force.
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Fig. 3. Global net power in the system: (a) full line, input power; dashed line, power delivered to the plate; (b) power
consumed by the beam: full line, supplied by lateral force and bending moment; dashed line, supplied by axial force.
Markers indicate system resonant frequencies.

conditions the lowest resonance is twice that high. In fact, the mass of the beam coupled to the
stiffness-controlled sub-resonant plate creates a system resonance at 162 Hz. The whole system
behaves at this frequency as a lumped parameter mass—spring vibrator. The large connection force
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acting in parallel with correspondingly large inertial forces along the beam yield strong axial
deformations which, in spite of the absence of beam resonance, result in an elevated energy
consumption within the beam. The energy dissipation will thus sometimes be “invisible” if judged
by the vibration level. At higher system resonant frequencies at which the axial vibration
dissipates most of the energy in the beam the effect described is merged with the effects of axial
beam resonances.

The powers consumed in the beam under axial and flexural excitations, shown in Fig. 3(b),
are not equal to the powers of longitudinal and flexural vibrations though. As the two
types of vibration are coupled through the plate, a purely axial excitation would produce
transfer of energy flow in the beam by both axial and flexural vibrations. The same would
apply to a purely flexural excitation. This is demonstrated in Fig. 4. Shown are the axial and
flexural energy flows entering the connected side of the beam at the excitation point. While the
power consumed by the beam is, naturally, positive at all frequencies, the two energy flows
become independently negative at some frequency bands. Negative values are indicated by
dashed lines.

In the preceding example the loss factors of axial and flexural vibrations were supposed
identical, 1%. In reality these can be different from each other. Structural dissipation is governed
by strains: in axial vibration by normal strains only and in flexural vibrations by both normal and
shear strains. This results in different loss factors for the two motions. For example the loss factor
of axial vibrations in aluminium is typically half of that of flexural vibrations.

Fig. 5 shows the energy consumed by the beam and the plate when the loss factors of axial and
longitudinal vibrations are unequal. The loss factor of flexural vibration was held constant, 1%,
that of longitudinal vibration was changed ten times, first decreased to 0.1% and then increased to
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Fig. 4. Energy flow at the excitation point in the direction of connection point. — flexural;, — axial. Dashed lines,
negative values.
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Fig. 5. Effect of non-proportional damping to energy consumed by the (a) beam and (b) plate. Curves represent the
ratio of the consumed energy with modified axial damping and that with original axial damping. Axial loss factor: 0.1%
(dashed line) and 10% (full line). Constant flexural loss factor, 1%.

10%. The results are displayed by dividing the power values by the power under initial conditions,
(axial loss factor 1%). Square root scaling is used for improved resolution.

While the increase (decrease) of axial damping is followed by an increase (decrease) of energy
consumed by the beam, the opposite is seen to apply to the plate. The plots show that the effect of
changing axial damping is considerable at some narrow frequency ranges, with the response
peaking at some particular frequencies. It turns out that these frequencies are the system
resonances at which the plate absorbs more energy than the beam. These resonances are indicated
by circles at the upper graph boundary. At the remaining resonances, indicated by dots, the effect
is virtually non-existent. A closer look at the energy consumed by axial beam vibration and that
supplied to the plate reveals that at the resonances dominated by the plate the energy flow entering
the plate is supplied essentially by the axial beam motion which itself dissipates less energy than it
transmits. This explains the inverse trends in beam and plate dissipated energies with changing the
axial damping. The result is certainly relevant for vibration control of the plate which may prove
inefficient if the attention, as is often the case, is focused on damping only flexural vibration of the
sub-system supplying the plate energy.

It can be concluded that the analysis of energy flow in beams integrated in built-up systems
should be carried out by taking into account both types of vibration, flexural and axial, the latter
being often disregarded in current practice. Wave conversion may produce torsional vibration
too. The coupling which generates the wave conversion can lead to energy flow carried by one
type of vibration which is in the direction opposite to that of the total flow. Any simplified energy
flow analysis may thus be erroneous.
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2.3. Kinetic vs. potential energy

Fig. 6 shows the sharing of kinetic and potential energies in the form of a non-dimensional
factor, the Lagrangian coefficient. This coefficient is defined here as the ratio between the
difference of kinetic and potential energies, called the Lagrangian energy, and their sum, i.e. the
total energy. The Lagrangian coefficient is thus a normalised measure of the unevenness of kinetic
and potential energy sharing in the system. Fig. 6(a) shows the coefficients relative to the whole
system (full line) and to the beam only (dashed line). The two look similar. At the system resonant
frequencies the kinetic and potential energies are practically equal reducing the system coefficient
almost to zero. Below the first system resonance at 6.8 Hz both coefficients rapidly decrease
toward —1 as expected. Above the first resonance up to 100 Hz there exists one system resonance
at 42.5 Hz but less strong than the first one. Below any given resonant frequency the potential
energy of a given mode is higher than the corresponding kinetic energy and vice versa. Since the
first mode dominates the second one in the present case while the overlap of natural frequencies of
the two modes is low, the kinetic energy of the first mode will be higher than the potential energy
of the second mode practically throughout the whole span between the two natural frequencies.
The Lagrangian coefficient is consequently positive and large between the two resonances. The
third resonance is again further apart, but is of higher level than the second one. As a
consequence, the Lagrangian first rises above the second resonance but then falls below zero by
approaching the third resonance. At higher frequencies the relative span between the successive
resonances gets smaller and consequently the differences between the potential and kinetic
energies decrease.

057

051

0 0.05 0.2 0.5 1 15 2
(a) kHz (b)

Fig. 6. Lagrangian coefficient of beam—plate system: (a) full line, whole system; dashed line, beam only; (b) full line,
flexural beam vibration; dashed line, axial beam vibrations. Markers indicate positions of system resonant frequencies.
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A strong peak can be noticed in the beam Lagrangian at 162 Hz and one less strong at 475 Hz.
These peaks are not present in the Lagrangian of the entire system. At 162 Hz, dominated by axial
motion, the beam will add about 18 times more kinetic energy than the (already elevated)
potential energy. At this same frequency the kinetic and potential energies of the whole system are
nevertheless almost the same. This example shows how the whole assembly, while showing a
global tendency to even up the kinetic and potential energies, allows a large local mismatch of the
two which results in an uneven energy loss across the system.

Fig. 6(b) shows the Lagrangian coefficients of axial and flexural vibrations of the beam. The
former one exhibits strong oscillations throughout the frequency range of analysis indicating that
kinetic and potential energies of axial motion are very different from each other. The latter stays
close to the global Lagrangian coefficient of the beam which is understandable because the energy
of flexural motion dominates overall.

It can be concluded that the kinetic and potential energies of a beam integrated in a built-up
system can differ by a non-negligible amount. Furthermore, the kinetic and potential energies of
either axial or flexural motion considered individually can be very different from each other.

3. Effect of damping on system energy
3.1. Damping and system enerqgy level

Clearly, internal damping provides a key link between the power supplied to a system and its
energy. The relationship between the damping and the power supplied is not straightforward
though. Heckl et al. have shown that the net input power P of a point excited system is
independent of damping if averaging is done in a frequency band Aw containing at least several
resonances and furthermore over all excitation positions, [4]:

)

P = <|F2‘>Aw%’ (2)
where v is the modal density, m the system mass. A study of two simple, conservatively coupled
sub-systems has revealed that significant differences in damping types, concentrated or
distributed, did not affect sub-system powers appreciably, [5].

By considering vibration of infinite and periodic waveguides under point excitation Langley has
demonstrated that internal damping can considerably affect input power, [6]. He has shown that
the contribution of non-resonant modes, neglected in the derivation of Eq. (2), can be important
in the conditions of high modal overlap. The modal overlap, here taken as u = mo(f)f' /2, rises with
frequency as seen in Table 1. It is thus of interest to find out how damping influences sub-system
energies and power transmission where a finite beam system is concerned.

The effect of damping will be analysed in two ways: (a) directly, by looking at the input power
at different amount of system damping and (b) in a relative way, by looking how the distribution
of damping affects the distribution of system energy.

To get an average account of the effect of damping on input power the computation will be
done by averaging in frequency bands. An extended frequency range was considered, 0—5kHz,
needed to involve sufficient number of resonances for averaging. Seven different values of loss
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Table 1
Modal overlap MO of beam and plate at characteristic frequencies

50Hz 100 Hz 200Hz 500 Hz 1 kHz 2kHz
Beam 0.013 0.018 0.025 0.039 0.056 0.079
Plate 0.005 0.011 0.022 0.054 0.108 0.216

dB re 1mw
dB re 1mw/

015 053 1 17 24 33 44 015 053 1 17 24 33 44

(a) kHz (b) kHz

Fig. 7. Frequency-averaged net input power to the system: (a) global power supplied by the excitation; (b) power
consumed in the beam. Abscissa figures represent band centre frequencies. Columns represent loss factors: 0.1%, 0.2%,
0.5%, 1%, 2%, 5%, 10%.

factors were selected: 0.1%, 0.2%, 0.5%, 1%, 2%, 5% and 10%. The results were averaged using
the following sequence of bands: 0-300-750-1320-2000-2780-3880—-5000 Hz. Each band contains
at least five modal frequencies of the coupled system. Fig. 7 shows the averaged net input power of
the beam—plate system. The plot (a) concerns the entire system while the other plot concerns beam
section only. It can be seen that the input power is fairly independent of system damping where
the entire system is concerned. The higher the damping the more the input power deviates from its
mean value. Fig. 7(b) shows much larger power variations of the beam section than are the
variations in the power of the entire system.

The beam, considered on its own, is excited at two positions: externally at the driving point and
internally at the connection point. At both of these points the excitation is by a normal force, a
lateral force and a bending moment. But the complexity of excitation could not have been the
cause of large variation in beam power, since large power variations would have been noticeable
in the values of system power too. In order to explain the increase in power variations of the
beam, the exact value of the input power will be evaluated in the case of two harmonic forces of
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complex amplitudes F; and F, acting simultaneously. Using modal superposition the net power
can be readily expressed as a series:

w% [lFﬂqS%,n + |F§|¢§,n + 2Re(F1F§)¢l,n¢2,n]

2
(0 — 0?)" =y

P:%Z (3)

n

Here ¢, and ¢, , are the normalised eigenfunctions at the excitation points 1 and 2, w, the n'®
eigenvalue.

Providing the forces F; and F, are of constant spectral density Gi;, Gy, and G»; within a
frequency interval Aw =w,-w, integration over this interval gives

1
P= %; rnéna

Ty = Gudt, + Guds, + 2Re{Ga}dy b5,
2 2 2 2

¢, = tan™! On " % + tan™! ] . (3a)
nw? nw?

n n

The frequency-averaged input power is thus represented as a modal sum of the product
between an excitation-dependent factor, I', and a damping-dependent factor £. This result can be
of course generalised to an arbitrary number of excitations as I" represents in fact modal
excitation density. It holds irrespective of whether a particular eigenvalue w, is within or
outside the integration interval but is inapplicable if the modal excitation density changes with
frequency.

If the damping is very small and the eigenvalue w,, not very close to either of the two integration
limits the values of tan™" will be fairly independent of damping. The damping factor & will then be
approximately equal to = if w, lies within the integration interval and to zero elsewhere. An
analogous result, obtained in Ref. [4] for the case of single excitation force, leads to Eq. (2)
providing that averaging is done over all excitation positions. This assumption, often employed in
Statistical Energy Analysis, is not applicable to the present study.

Fig. 6 shows the damping factor & for an octave averaging band at different values of loss
factor. The abscissa is the ratio of the eigenvalue and the band centre frequency. It can be seen
that the higher the damping the more ¢ deviates from the 0—n—0 dependence. The leakage to
eigenvalues lying outside the averaging interval becomes then non-negligible as found in Ref. [6]
Fig. 8.

The excitation of the beam—plate system was taken to be independent of frequency which
explains the low variation of input power with damping. The excitation of the beam within
the system is however extremely dependent on frequency since the connection forces and
moments acting on the beam vary a lot with frequency in a typical resonant fashion. This explains
the much stronger variation of beam consumed energy with damping. More computations
carried out by increasing band widths were found to produce results fully consistent with the
shown ones. The effect of non-uniform excitation density cannot be removed by increasing the
band width.
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Fig. 8. Damping factor.

3.2. The influence of damping distribution on energy

The power consumed within the beam, i.e. the difference of input power and the power
transmitted to the plate at the connection point, thus depends to a large extent on internal
damping, even when frequency averaged, and this is irrespective of whether the excitation depends
on frequency or not. The next question is about how the powers and energies of the whole system
are shared by the beam and plate in dependence of damping. This question is relevant for
vibration control: the efficiency of an external damping treatment used for vibration reduction
depends to a large deal on its placement.

To start with, a simple system consisting of two linear point-coupled sub-systems will be
analysed first. System 1 is excited by a point force. In such a case the connection force F is related
to the excitation force F by a simple mobility ratio:

Fc=—cF, C=&, Mc= M, + M,.
Mc
Here M is the transfer mobility of the system 1 between the driving and connection points, M,
and M, are driving point mobilities of systems 1 and 2 at the connection points. The coupled
system is at resonance when the sum of mobilities at the coupling, M, is at minimum. By
denoting the driving point mobility at the excitation point by M the ratio of net powers supplied
to sub-systems 1 and 2 can be easily found to be

Re{Pi} _ Re{Mg} — Re{cM7}
Re{P»} Re{M>}|¢?|

1. 4)
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The terms which dominate in Eq. (4) are the real parts of mobilities at different points. The real
part of mobility, either driving or transfer, increases with damping away from resonances but
decreases with damping close to resonances. Providing the damping stays small, the following can
be drawn from (4):

® The ¢ factor will increase close to a system resonance (denominator small, coupling force
strong). An increase in plate damping should thus reduce the coupling force and ¢ will drop.
The influence of beam damping should produce a similar effect, less strong though as the beam
is the driven sub-system. At a beam resonance both the numerator and denominator rise, thus
the influence of beam damping should not be marked. At a plate resonance ¢ drops with plate
damping.

® The numerator in Eq. (4) contains two terms, the first of which increases at beam resonances
where it becomes proportional to beam damping inverse. The second term rises at both beam
and system resonances, the former inversely with beam damping. The effect of plate damping
cannot be generalised, but is not strong. Away from system resonances this term rises with both
beam and plate damping.

e The denominator in Eq. (4) will peak at system resonances, decreasing with beam damping and
to a lesser extent with plate damping providing the beam damping is low. This term stays fairly
unaffected by either the beam or plate resonances. Away from system resonances this term is
almost independent of beam damping, but increases with plate damping.

e The first term in Eq. (4) represents the ratio of the powers dissipated in the beam and plate,
respectively. It will be normally well above unity in absolute value providing the two sub-
systems are of comparable capacity in energy storage and well coupled, as it is the case
analysed. Under such conditions this power ratio will increase with the damping of the beam
and decrease with that of the plate.

All taken into account, the ratio of net powers of two connected sub-systems, the first externally
driven and the second passive, will be under some conditions, mentioned below, proportional to
the ratio of their loss factors (beam dissipated power > plate dissipated power):

Re(P1} _m
Re(Po} 1,

(4a)

This result holds better the lower the damping and the further the frequency is from system
resonances. It has been assumed that resonance effects are not being influenced by each other, in
other words that the conditions of low modal overlap apply. Eq. (4a) has a major consequence on
the sharing of beam and plate energies. The relationship between the complex input power to a
system P and its global kinetic E; and potential E, energies reads, [9]:

Py = 20[iEx + (1 = DE,). (4b)

The potential energy of the (structurally damped) beam is proportional to the ratio of the total net
(real) power delivered to the beam and its loss factor. The analogous rule applies to the plate. It
follows that the potential energies of the beam and plate, and thus approximately their total
energies, will stay roughly in the same proportion at low modal overlap irrespectively of how the
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damping is distributed between the beam and plate:

E, Re{P;}/(2wn,) E,
— =" X~ const & —. 5
Epz Re{Pz}/(2wn2) E2 ( )

The result (4b) is not surprising where frequencies not close to system resonances are concerned:
in any lightly damped system the response, and thus the energy, is unaffected by damping away
from resonance. But Eq. (4b) hold at resonance too if the modal overlap is low as shown above.
An equivalent result obtained in Ref. [4] expresses the ratio of frequency-averaged kinetic energies
of two coupled sub-systems, 1 and 2, in terms of modal sub-system densities v as well as the
damping and coupling loss factor of the driven sub-system:

(Ex2) _ 2 M
(Ex1)  vina +11y

(6)

Eq. (6) follows directly from the basic SEA equation applied to two sub-systems by replacing
kinetic energy by half the total energy. At low modal overlap the coupling loss factor is
proportional to damping, thus Eq. (6) is effectively damping independent. With increase in
overlap the coupling becomes weaker and the independence on damping is lost.

In a series of articles Mace has analysed in detail the energy of coupled one-dimensional
waveguides, in particular ensemble statistics and wave coherence effects of such systems; e.g.
Refs. [7,8]. A major improvement of traditional statistical power calculation was made by taking
account of sub-system reflections in a simple yet efficient way. The peak power supplied to a
strongly coupled system was found to occur at system resonances, as confirmed above. With the
coupling decreasing the power maxima shift to sub-system natural frequencies. The strength of
coupling was expressed in Ref. [8] in terms of two types of coefficients: the waveguide reflectance,
equivalent to modal overlap, and the coupling transmission coefficient. High transmissibility and
low overlap lead to strong coupling, which is the actual case. A beam—plate model, similar to the
present one except for infinite plate size, has been used in Ref. [7] as an example. Incidentally, this
model was found to produce results somewhat different than the analogous ones obtained by the
present model. The differences may be explained not only by the mismatch in plate geometry but
also in the treatment of the beam near field which was fully accounted for in the present model.

Fig. 9 shows the ratio of beam and plate net powers at different values of beam and plate
damping. The result is presented in the form of a shaded area obtained by varying the loss factor
in the beam and independently in the plate between 0.5% and 5% such that all possible
combinations of the two factors were covered.

The power sharing by sub-systems crucially depends on damping. This is clearly seen in
Fig. 9(a) showing the bare ratio of beam and plate powers. On the contrary the ratio of beam and
plate energies shown in Fig. 9(b) is seen to be little affected by the distribution of damping. It can
be demonstrated that the spread of results further reduces with reducing the maximum value of
the scanned damping. In other words, at not too high values of loss factor the beam and plate
energies stay roughly in the same proportion no matter how large is the damping and how
unevenly is it shared between the beam and the plate. The exception to this rule is seen at some
frequencies where the spread of values of the energy ratio increases as predicted by the simple
model.
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Fig. 9. Power sharing in beam—plate system under all possible variations in beam and plate loss factors between 0.5%
and 5%. (a) Ratio of net powers delivered to beam and plate; (b) ratio of beam and plate energies. Dotted lines indicate
positions of system resonant frequencies.

Fig. 10. Three-rod system.

It should be mentioned that the result (4a) applies to two coupled sub-systems one of which is
excited. Eq. (4) does not provide justification for an extension of this result to multiple coupled
sub-systems. Nevertheless, a simple example concerning a system consisting of three rods coupled
in series, shown in Fig. 10, demonstrates that the independence of energy ratios on damping is still
valid to an acceptable level of approximation. This can be confirmed by applying the modelling
developed in Ref. [7]. In the present example all three rods are externally excited. As in
the previous beam-plate case the modal overlap of the rods is low. The results are displayed
in Fig. 11. The shaded areas show the variation of the ratio of the total energy of each rod and the
total system energy, i.e. the sum of the three, for all possible independent variations of loss factors
of each rod between 0.25% and 5%. The system parameters are shown in Table 2.

While the ratio of beam and plate energies was shown to be fairly insensitive to damping
sharing between the two, the actual energy levels of course depend vitally on damping. Fig. 12
shows the plate, beam and global energy levels in dependence of beam and plate loss factors. The
values are given in a normalised way, by dividing the energy with the minimum energy which was
shown to correspond to maximum values of beam and the plate loss factors, i.e. 5%. The results
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Fig. 11. Energy sharing in three-rod system under all possible variations in rod loss factors between 0.5% and 5%. The
plots (a)—(c) correspond to the three rod sections. Dotted lines indicate positions of system resonant frequencies.

Table 2
Parameters of three-rod system

Rod no Unit mass (kg/m) Sound speed (m/s) Length (m) Driving point (m) Driving force (N)

1 2 4800 4 0.8 1
2 4 3900 2.5 0.5 J
3 3 5200 3.5 0.9 1+j

were obtained by assuming uniform broadband excitation with the response frequency averaged
in 4 bands of equal width between 0 and 2 kHz. The iso-energy lines superposed on the tone maps
serve for better visualisation of main trends.

As expected, the results indicate that both the amount of damping and the damping placement
play an important role in vibration control. Firstly, a saturation effect takes place, seen from the
rising spacing between iso-energy lines. Increase in damping is most effective when the initial
damping is very low; by adding more and more damping the control effect loses efficiency. This is
self-explanatory: damping controls resonances, the role of which in the overall response
diminishes as damping increases. The near-horizontal iso-energy lines of beam energy plots show
that the principal effect on beam vibration is produced by the beam’s own damping. The
analogous result applies to the plate only at low frequencies where the iso-lines are almost vertical.
At medium and higher frequencies the plate is equally controlled by the beam damping as
by its own damping. Finally, the overall vibration is more sensitive to beam damping than that of
the plate.
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Fig. 12. Normalised, frequency-averaged, kinetic energy level of beam—plate system in dependence of damping. Top
row, beam energy; middle row, plate energy; bottom row, global kinetic energy. The averaging bands: Ist column
0-500 Hz; 2nd column 500-1000 Hz; 3rd column 1000—-1500 Hz; 4th column 1500-2000 Hz. Abscissa, plate loss factor in
%, ordinate, beam loss factor in %. Dotted iso-lines are spaced by 1dB.

The last conclusions are not generally applicable to arbitrary coupled sub-systems, but rather to
the cases represented by the currently analysed system, i.e. to strongly coupled sub-systems only
one of which is driven, moreover by broadband excitation. A simplified, yet scrupulous, modelling
of such sub-systems via generic structural properties, e.g. as done in Ref. [7], will most likely be
sufficient to provide the same type of conclusions.

4. Energy density and energy flow
4.1. Independence of axial and flexural flows
In a straight beam vibrating in accordance with thin-rod and Euler—Bernoulli models the

energies carried by axial and flexural movements can be taken as independent. The kinetic energy
density i.e. the energy per unit beam length can be found to be

/ . 2
eun = [ o{Juol”) as =" | o) + 2 (F20) )+ G . (7a)
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where S is the surface of cross-section, p the mass density (assumed constant over the cross
section), u the particle velocity vector, m’ the beam mass per unit length, » the radius of gyration of
the cross-section, u, and u, are the displacements of longitudinal and flexural vibrations. The
middle term originates from the axial motions induced by flexure. It is typically much smaller than
the third term which represents the main contribution by flexure. In harmonic motion the spatial
differentiation of u,corresponds to the multiplication by flexural wavenumber k. This makes the
second term differ from the third one by an order of magnitude of (rkf)z. Since rkyhas to stay well
below unity to make the Euler—Bernoulli theory applicable, the second term will be negligible in
comparison with the third term. In the rest of the paper the kinetic energy density will be
considered as a sum of two components: an axial one, corresponding to the first term, and a
flexural one corresponding to the third term.
Potential energy density originates from axial motions only; it reads

2 2\ 2
Cpot = / (a(t)e(1)) S :%S <<6Léa;t)> >+r2 <(6 gtét)) > ’ (7b)

where ¢ and ¢ are the axial stress and strain and E the Young’s modulus. The division of potential
energy to one axial and one flexural component is self-explanatory.

An analogous analysis readily shows that the energy flow through the beam can be split into
two parts: one induced by longitudinal vibration, the other by flexural vibration. In conclusion,
the energy densities and the energy flow of longitudinal and flexural vibration can be considered
as de-coupled and can be treated separately.

4.2. Energy flow and density

Energy density and energy flow are local variables, functions of observation position. In order
to show a function of two variables, position and frequency, in a simple but meaningful way a
grey tone map will be used. The abscissa scale of each map shows the position along the beam
counting from the free end. The excitation position is thus at 0.5m, the connection position at
2m. As the modal density of the whole system, largely dominated by the beam flexural modes,
decreases with frequency the ordinate i.e. the frequency axis will be displayed in a square root
scale for better visual resolution. The quantity shown on the map will be presented by grey shades
in decibels. The adjacent tone scale quantifies each map. To keep the maps clear the presented
quantity will be truncated to some lower value in order to restrain the dB dynamics. This means
that all the values equal to or below the truncation threshold will be presented in the same tone—
black. The position of system resonant frequencies is indicated by small circles along the right-
hand side vertical axis.

Fig. 13 shows the maps of total energy density (a) and energy flow (b) in the beam. The
excitation position at 0.5m is clearly identifiable. The objective is to emphasise spatial rather than
frequency variations. Since energy variation with frequency is large, the energy map is normalised
by the space-averaged energy density. Thus at each given frequency the values of energy density
along the beam are divided by the mean spatial energy density at this frequency, making the
average value of each frequency line equal to unity. The energy density displays a complicated
pattern of lobes which narrow with frequency increase. Such lobes, two per wavelength, result
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Fig. 13. Beam-—plate system: (a) normalised total energy density; (b) total energy flow normalised to power input.

from the interference of vibration waves which move in opposite directions. At the frequencies
where the input power is mainly transmitted to the plate, such as at 180, 480 Hz etc, the map
shows horizontal bands which are not of lobar nature, i.e. which represent fairly uniform energy
density distribution along the beam. The condition of large power transfer to the plate
corresponds to low amplitude of reflected waves resulting in weak interference with the waves
moving toward the plate. The excitation position is seen as a vertical line representing a
discontinuity in energy density. It will be seen that this discontinuity is caused by the potential
energy density exhibiting a jump at the excitation point. The maxima of normalised energy density
are around 7dB, i.e. about 5 times the average value.

The energy flow map shown on Fig. 13(b) is also normalised, this time by the net input power.
At the excitation point the input power is split into two components: one directed to the plate, the
other directed to the free end. These two components are of opposite sign, but in order to fit the
decibel scale both are presented as positive. The frequency regions of strong transmission to the
plate are easily recognised as white bands stretching from the excitation position to the right.
While in some frequency bands the power transmission to the plate is strong, in other bands is
poor. The injected power in these bands is thus mostly consumed by the beam. Such a local energy
consumption is often disregarded, especially in measurements of energy flow.

The energy flow of axial and flexural motion are separately presented in Fig. 14. In the beam
section spanning between the free end and the excitation point the energy flow is always directed
towards the free end. The conversion of waves impinging the free end cannot take place which
makes the flow negative throughout this section for both axial and flexural vibration. The areas of
negative flow in the section spanning from the excitation to connection points are marked by “—
symbol. The lines of separation of negative and positive energy flow are always visible. By
increasing frequency the bands of positive and negative energy flow of a particular type of motion,



G. Pavi¢ | Journal of Sound and Vibration 291 (2006) 902-931 921

2 2
0
1 1 -5
10
N N
T 05 T 05
15
0.2 0.2 20
0.05 0.05 .25
0 0 -30
0 1 2 0 1 >
(a) position, m dB (b) position, m dB

Fig. 14. Beam—plate system. Flexural (a) and axial (b) values of energy flow normalised to unit input power. Markers
“~ indicate areas of negative flow. The flow values from Om (free end) to 0.5m (excitation point) are negative
throughout and are not marked as such.

flexural or axial, alternate. In the example analysed the axial energy flow regularly changes
direction as the frequency increases. Since the wavelength of axial motion are large, which does
not allow sufficient flow drop across the beam section between the excitation and connection
points, the axial flow at a given frequency is as a rule either completely positive or completely
negative. This is not the case with flow of flexural vibration: the frequency band of negative flow
at the connection point narrows by approaching the driving point. In a band between approx. 250
and 350 Hz the flow is positive at the side of driving point and negative at the opposite side, i.e. at
both the excitation and connection points the flexural power enters the beam to be dissipated in its
interior. The power entering the beam from the plate side is fed by the conversion of axial
vibration arriving to the plate. The total energy flow is always directed toward the plate, thus any
negative flow of one type of vibration, either axial or flexural, will be always accompanied by a
stronger flow of the other type of vibration. This explains the existence of levels higher than 0 dB
of the normalised flow at some frequency bands. The partial flow of either axial or flexural
vibrations can occasionally be of a higher level than the total flow.

Fig. 15 shows the density maps of kinetic and potential energies of flexural vibration. The two
energies are distributed in a similar way away from the beam ends and the driving point but in the
vicinity of these singularities any similarity is lost. The potential energy density shows a strong
discontinuity at the driving position, discussed already in Ref. [1]. This energy density is
proportional to the net value of energy flow divergence. The map indicates that the net divergence
oscillates considerably along the beam implying that some sections absorb a lot more energy than
other. This phenomenon may have considerable importance in optimising the placement of
vibration absorption treatments.
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Fig. 15. Beam-—plate system. Kinetic (a) and potential (b) normalised energy density of flexural motion. Circles indicate
system resonant frequencies.
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Fig. 16. Beam-plate system. Kinetic (a) and potential (b) normalised energy density of axial motion. Circles indicate
system resonant frequencies.

The maps of kinetic and potential energy densities of axial motion, Fig. 16, show that
significant spatial variations of two energies start only at high frequencies, above 1 kHz, at which
the beam length becomes comparable to half the axial wavelength. At lower frequencies the beam
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is vibrating axially almost as a rigid mass, producing a uniform distribution of energy density. The
kinetic and potential energy densities give dissimilar spatial-frequency pattern at all positions,
even away from discontinuities. The total energy density of axial vibration varies very little along
the beam, implying that the high values of kinetic energy density are accompanied by low values
of potential energy density and vice versa.

Maps in Fig. 15 show that the locations of high potential energy density can often be identified
experimentally in an easy way. It is sufficient to measure the vibration level, i.e. the kinetic energy
density. In the case of axial vibration the positions of high potential energy will coincide with
vibration level minimum at most positions. In the case of flexural vibration, the two energies will
match away from discontinuities. Near the boundaries within the distance of half the wavelength
the two energies may be very different, depending on the type of boundary. Close to the excita-
tion the situation may vary a lot in dependence of the excitation type; no general rule can be
given here.

5. The role of damping in experimental energy characterisation

Various techniques allow measurement of energy in rods and beams. Perhaps the most versatile
of these techniques, the wave separation technique, consists of extracting the amplitudes of
vibration waves from measured data and inserting these values in the governing formulae for
energy and energy flow expressed in terms of wave amplitudes. As a rule the separation is done by
neglecting structural damping, believed to produce negligible effects on results. This section
investigates how the neglecting of damping affects two known applications of experimental
vibration energy techniques: measurement of energy flow and measurement of energy coefficients
of joints.

5.1. Measurement of energy flow

The analysis will be carried out by assuming that the wave separation technique is used, [10—12].
The wave amplitudes are computed from axial and flexural vibration data sampled at different
points along the beam. As the objective here is to analyse the effect of neglecting damping, it will
be assumed that the vibration measurements are error free.

The general relationship between the known velocities at the sampling points and unknown
wave amplitudes reads:

v=XA ®)

where v is the N-vector of velocities at measurement points, A the M-vector of wave amplitudes
and X the N x M matrix of wave coefficients relative to the measurement points. This matrix
contain the well known terms of the form e*** which represent a general solution to wave motion
of the beam, k being a complex wavenumber. Axial vibration of beam consists of two waves
(M = 2) while flexural vibration consists of four waves (M = 4). If N = M the amplitude vector is
obtained by inversion, if N> M it is obtained by suitable pseudo-inversion. The structural
damping is contained in k, i.e. in the matrix X which is supposed to be known.
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Neglecting structural damping will yield two types of error: (1) the values of extracted
amplitudes of wave motion will be inaccurate (2) by inserting the amplitude values into the
equations of energy density and energy flow which do not take damping into account another
error is committed. This error would have occurred even if the values of wave amplitudes were
exact.

A concrete error analysis has been done for the current beam-—plate system. Several
combinations of vibration sampling points were employed. For each combination the wave
amplitudes of axial and flexural vibrations were computed, first exactly and then by setting
damping to zero. The computed values of wave amplitudes, exact and contaminated, were then
fed into the equations of energy density and energy flow given in Ref. [1], in the latter case by
setting again damping to zero. The whole procedure represents in fact two virtual measurements,
one performed by taking damping into account, the other performed by neglecting it.

Four equidistant sampling points were used for extraction of flexural wave amplitudes. Two
inner points of the same array were used for the extraction of axial wave amplitudes. Results are
shown for three configuration of sampling points: (a) spaced by 30 cm starting from the position
0.8 m, (b) spaced by 10cm starting from 1.1 m, (c) spaced by 10 cm starting from 0.55m. Results
refer to the middle position of the array: those of configurations (a) and (b) refer to the position
1.25m, those of configuration (c) to the position 0.7m (20cm away of the excitation point).

The error in evaluating energy density from data contaminated by neglecting damping was
found negligible. This error was found high only in frequency regions close to the coincidence
frequencies, i.e. frequencies at which the spacing between measurement points matches an integer
multiplier of half the wavelength. At the coincidence frequencies the matrix of wave coefficients
becomes singular so that even a small error in the coefficients close to a coincidence frequency will
produce large error in the result. This effect is not an exclusive consequence of using incorrect
damping values. In real measurements it is contributed by all sources of error, such as error in
positioning of the sampling points, phase error between signals, etc. However, neglecting the
damping is the only source of error, in the present simulation.

The error in evaluating energy flow was found not negligible. Fig. 17 shows the relative error in
the evaluation of energy flow by neglecting damping. The relative error is defined as the ratio of
the difference of the erroneous and exact values and the exact value. The bold line denotes the real
part of flow, the thin line the imaginary part. Dotted lines mark system resonant frequencies.
Square root scales are applied to both abscissa and ordinate to improve visual resolution.

At some frequencies the error of neglecting damping becomes extremely high. This is the case
especially in the vicinity of frequencies at which the flow changes direction. Close to such “flow
reversal” frequencies the value of the flow is small and changes rapidly. By setting the damping to
zero the flow reversal frequencies will be shifted with respect to the exact ones which explains the
extreme values of error found. It can be seen that the error has not any discernible behaviour close
to resonance frequencies. It can be further seen that the error in net energy flow decreases by
decreasing the spacing between the sampling points. The error in the imaginary flow is not very
sensitive to the spacing. The exception regarding the sensitivity of net flow to the spacing is
noticeable at low frequencies: the error becomes insensitive to the spacing and converges to —1
with the frequency approaching zero. Thus at low frequencies neglecting damping leads to a
major underestimation of net energy flow. By analysing the expressions for energy flow in Ref. [1]
it can be shown that at low frequencies the contribution of the evanescent waves to net energy
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Fig. 17. Relative error in the evaluation of flexural energy flow in a beam using wave decomposition technique. Bold
line, real part of flow; thin line, imaginary part. Transducer spacing, top 0.3 m; middle and bottom 0.1 m; array centre
from nearest discontinuity, top and middle 0.75m, bottom 0.2 m. Dots indicate system resonant frequencies. Most of
the error maxima occur at frequencies at which energy flow change sign.

flow becomes not negligible while the contaminated data modify this contribution a lot, much
more than other contributions. The axial vibrations do not contain evanescent waves, thus the
low-frequency error (not shown) is small.

5.2. Measurement of joint energy coefficients

The existence of damping will affect the classical way the reflection and transmission of vibration
waves is analysed. The two phenomena are most often expressed by energy indicators. If a rod or a
beam exhibits a jump of mechanical properties, such as caused by a joint or change in cross section,
one part of incident energy carried by vibration will be reflected and one part will be transmitted. If
the discontinuity is not conservative, the following simple energy equilibrium rule applies:

r+t+a=1, )



926 G. Pavi¢ | Journal of Sound and Vibration 291 (2006) 902-931

where r, ¢t and «a stand for reflection, transmission and absorption energy coefficients due to the
discontinuity. These coefficients can be expressed in terms of vibration wave amplitudes at the
discontinuity. It will be shown that the presence of damping in the rod affects the reading of energy
coefficients.

Let a longitudinal wave in a rod strike a discontinuity with an amplitude 4 (complex). As a
result, a reflected wave of complex amplitude R and a transmitted wave of complex amplitude T
are generated. The discontinuity is taken to be at the origin, x = 0. The net energy flow impinging
the discontinuity reads, [1], (A6):

Re(P), = LW/Eim|*|A7|[1 — |o?| + nlm{a}], (10a)

where & = R/A is the complex ratio of the reflected and incident amplitudes while the subscript 1
refers to the upstream part of the rod. At the other side of discontinuity only the transmitted wave
is assumed to exist making the energy flow carried across the discontinuity equal to

Re(P), = 1\/Exmyo*| 47| |7 (10b)

with © = T/A. The incident energy flow Re{}-’}o is obtained by setting « = 0. Consequently, the
energy coefficients read

_ Re(P), _
Re(P )o B

_Re(P), |Ex
~ Re(P), \/E

|

/

|2 — pIm{a), ¢ 7)) (11)
n
The reflection coefficient is thus seen to not merely be the absolute square of the reflected/incident
amplitude ratio but depends in addition on the damping in the upstream part of the rod. By
ignoring damping an error is produced which will be illustrated by the following example.

Assume the rod has a discontinuity in the form of a linear axial joint. The joint is characterised
by its complex mobility matrix M defined at two terminal points 1 and 2 by

u F My My
. =M , M= .
i F, My My

Reciprocity implies M, = M»; = M,. Recalling the strain—stress relationship for pure axial
motion and assuming the terminal forces and velocities as positive if directed into the joint, the
amplitude ratios o and 7 can be readily evaluated (proof omitted for the sake of brevity):

_ 1+K2M22 _ K1 M,
a=1-2- 1082 o (12)
with
k=vEp(14+jn/2), D=+ M)1+K2Mp)—kixM;. (12a)

By analysing Eq. (12) it can be seen that even joints which are dissipation free (M purely
imaginary) will yield reflection coefficient dependent on rod damping via the complex factors x.
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Fig. 18. Absorption coefficient of a lossy mass—spring joint in a rod established via wave energy flow computation.
Thick line, exact value; thin line, approximate value by neglecting damping in the rod. Full lines, normal joint
orientation; dotted lines, reversed joint orientation. Dashed and dashed-dotted line, approximate value for a lossless
joint, normal and reversed orientations, respectively.

To get some concrete insight into the nature of error caused by neglecting the rod losses it will
be assumed that the joint is a simple system consisting of a spring of stiffness { and loss factor #;
followed by a mass m. The joint mobility matrix then reads:

1 l—a)zm/C -1
joom 1 1

M = ] £ = Re{lH(1 + jn).
jom

The rod will be taken of the same material and unit mass as in the beam—plate case. The joint
parameters are: m = 0.2kg, { = 5x 10" N/m, n; = 1%. Fig. 18 shows the absorption coefficient of
the joint computed exactly and by neglecting the damping in the rod, (11). Both joint orientations
are considered: the direct one (mass followed by the spring) and the reverse one. The latter is
obtained by interchanging the position of the diagonal terms in the mobility matrix. The dashed
and dashed-dotted curves shown on the same plot represent the case when the joint damping is set
to zero while neglecting the damping in the rod.

The relative error by neglecting the damping is seen to be very large. In particular, the reflection
and transmission coefficients of an undamped joint will not add to unity which may result even in
negative absorption as seen in Fig. 18.

An analogous situation applies to flexural vibration in a beam. In this case the evanescent waves
will affect the energy coefficients in addition to propagating ones. The formulae for the reflection
and transmission energy coefficients become increasingly complex as the damping couples the
evanescent and propagating waves in energy flow.
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For example, when a propagating wave impinges a discontinuity, it will create one reflected pair
of propagating and evanescent waves and one transmitted pair of such waves. By introducing the
symbols f for the ratio between the reflected evanescent wave and the incident wave and y for the
ratio between the transmitted evanescent wave and the incident wave, the two energy coefficients
can be found from energy flow equations of [1, (B3b)]:

£
2

‘ﬁ%‘ — Re{p*} - Im{ﬁy*}] } (13)

Re(P), _ | 5 n
T Re(P), ] +3

(= ReP)s _ Bzmé 2|+
Re(P), Bim'y 2

where the asterisk stands for complex conjugate. It can be seen that the own beam damping plays
again a major role in the computation of energy coefficients of a beam joint.

Im{a} +

—Re{(1+0)p"} + Im{(1 — oc)b’*}] ,

6. Concluding remarks

The computational study of a beam attached to a plate, while treating not more than a
particular case, has nevertheless demonstrated some characteristic features of energy distribution
in beams (rods) which, by their nature, can be considered as being generic. The main points
emanating from this study can be summarised as follows:

e Axial vibrations of a realistically excited beam may be of the same importance with respect to
energy flow as flexural vibrations. In particular these vibrations may act as a ““hidden’ carrier
of energy to the surrounding sub-systems.

® Due to wave conversion which can take place at beam discontinuities the energy flow in the
beam due either to axial or flexural vibrations can become negative even if the only vibration
source is at the beam itself.

e While the frequency-averaged input net power to a system is fairly independent of damping, the
energy consumed by a beam, i.e. the sum of energy flows exchanged via excitation and
connection points, will depend crucially on damping.

e In a beam-driven built-up system the sharing of energy between the beam and the rest of the
system is little dependent on damping providing the coupling is strong.

o Beam damping plays a major role in the experimental evaluation of energy flow and energy
indicators of the beam. However, the evaluation of energy density is not affected by damping.

e Computation of absorption, reflection and transmission coefficients at a beam discontinuity or
an incorporated joint will be erroneous if the beam damping is neglected.

Appendix. Model of beam and plate vibration

In a straight beam the axial and lateral motions are uncoupled. The axial, lateral and angular
displacements of the beam at point B—upg, ug, ug—and forces and moments at point 4—N 4, F,
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Fig. Al. Beam—plate model.

M 4—can be linked by a 3 x 3 mobility matrix:

1 Up N4 Y g4 0 0
U =: ApaQu 4p=1q 8 0o Q= Fa b, Apa=| 0 Hps Spa|. (A
. wp MA 0 GBA KBA

Fig. Al represents the model of the beam-—plate system. The total vibration load acting
on the beam consists of the external load at the excitation point £ and an internal load acting
at the connection point C. The latter acts also on the plate but in opposite direction as seen on
Fig. Al.

The plate moment mobilities depend on the orientation of the excitation which follows from
Fig. 1. The symbols for mobilities of the plate will be taken the same as for the beam; a superscript
“b” or “p” will distinguish between the two. With such a convention in mind, the governing
continuity equations of the velocities at the connection point can be written as

axial : Y2, N — Y2 N, = HY..N. + Si.- M.,
lateral : HY.,F — HY. Fo + S0 M — SV M, = YV F,, (A.2)
angular : G2, F — GL.oF. + Kby M — K2 M, = GLoN. + K% M..

By denoting the column of external load by Qg and that of internal load by Qc, the following
solution is obtained for the latter from (A.2) and (A.1):

(YbCC + Hpcc) 0 SpCC
Qc=T""A%,Q; TI= 0 (HY.o + Y2) 5% . (A.3)
Gec Gee (K¢e + Kee)

The matrix I clearly represents the coupling effect between the beam and the plate. It depends
only on the mobilities of the two structures at the coupling point. In the absence of the plate the
related plate mobilities become infinite and thus Q becomes zero.

Once the reaction load Q, is known, the response velocities at an arbitrary point X can be
obtained by the superposition of external and internal loads using the notation of (A.1):

1 1
qQy = J-E(AXEQE — AxcQ¢) = ExgQp, Exr = jE(AXE — AxcT 7' AZp). (A.4)
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The complex 3 x 3 displacement transfer matrix E represents the liaison between the external load
vector Qg at the position E and the displacement response vector qy at an arbitrary position X.
This matrix will be further used to compute the amplitudes of vibration waves in the beam.

The wave amplitudes are not unique for the whole beam. Excitation point represents a
discontinuity which splits the beam into two sections, each of which will have its own set of wave
amplitudes. To compute these amplitudes 3 points will be identified which limit the two sections:
free end point O (x = 0), excitation point E (x = ¢) and connection point C (x = L).

The displacement amplitudes of longitudinal and flexural vibration, U and V, given in terms of
wave amplitudes read:

U=Use R U_d ¥V =Ae R4 4 b 4 Ce MY 4 C_b. (A.5)

The amplitudes at each beam section will be arranged in a 6-column complex vector A:

A= . (A.6)

\ Vs

The amplitude vector of a given section can be recovered from the known displacement vectors at
any two different points within the section concerned. By denoting the two points by 4 and B and
using Egs. (A.4) and (A.5) the amplitude vector A can be expressed in terms of the excitation
vector Qg:

A =VY,3Qy, (A7)

where W is the 6 x 3 amplitude conversion matrix relative to points A and B which gives the vector
A directly in terms of the external loading Qg:

[eie i 0 0 0 0
0 0 eI el e~ ey
= 0 0  —jkre i jkeeltt  —kpei4 et
) B4E ks Jkf f f
= QAB{ Epi } 5= iy einy 0 0 0 0 (A-Ta)
0 0 e I8 els e 8 e°s
i 0 0 —jkfe_jZB jkfejZB —kfe_ZB kaZB |

The wave amplitudes of the section between the free end and the excitation point, will be thus
obtained using the conversion matrix W g, those of the section between the excitation point and
the plate using Wgc £ . Once the wave amplitudes are computed, the energy density and energy
flow in the beam become available using the expressions given in Ref. [1].
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