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Abstract

In duct acoustics the fundamental sound generating mechanisms must often be described by nonlinear time domain

models. A linear frequency domain model is in many cases sufficient for describing the sound propagation in the connected

duct system. This applies both for fluid machines such as IC-engines and compressors and for musical wind instruments.

Methods for coupling a nonlinear source description to a linear system description have been proposed by several authors.

In this paper some of those methods are compared concerning accuracy, calculation time and the possibility to perform

parametric studies. The model problem used is a simple piston–restriction system connected to a linear system with varying

complexity. The piston and restriction are considered as the source part and are modelled nonlinearly.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

To understand and solve noise problems it is essential to know the strength of the noise sources and
understand how they interact with different surroundings. In this article the main focus will be on in-duct
fluid-borne noise sources but the techniques discussed are also applicable to vibro-acoustic problems. The
acoustic source-receiving system problem can be subdivided in a number of different ways.

The description of the source and the receiving (duct-) system can be obtained from a theoretical model or
from measurements using a so-called black box model, where the model parameters are obtained from
experiments. In many cases no theoretical model is available, which means that black box models are
frequently used especially for source characterization. A review of methods for obtaining black box source
data from measurements can be found in Ref. [1].
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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The models for the sources and the sound propagation in the receiving system can be linear or nonlinear.
Here, linear and nonlinear simply refers to the structure of the equations that describe the acoustic behaviour.
The linear models can be further divided into time-invariant and time-varying, which means that the operators
or boundary conditions in the governing equations are either independent or dependent on time.

The analysis of the problem can be made either in the time domain or in the frequency domain. For linear
time-invariant models, the analysis is preferably done by transforming the problem via a Fourier transform to
the frequency domain. For nonlinear models the Fourier transform is not directly applicable and the problem
should be analyzed in the time domain. It is quite frequently found that a linear frequency domain model is
sufficient, or even the only available model, to describe the receiving system or system boundary condition
while a nonlinear time domain model is needed to describe the source. This is usually called a hybrid linear/
nonlinear model. Techniques for coupling the data from the linear frequency domain model to the nonlinear
time domain model are needed. The comparison of a number of such techniques is the main purpose of the
present paper.

The models used can also be one-dimensional, two-dimensional or three-dimensional depending on the
geometry of the studied systems and on the frequency range of interest. For linear sources it is also possible to
get an estimate of the degree of interaction between the source and the receiving system for different frequency
ranges. This can be obtained via the Helmholtz number

He ¼ kl, (1)

where k ¼ o=c is the acoustic wavenumber, o is the angular frequency, c is the speed of sound and l is a
typical length scale for the acoustic propagation. In duct propagation problems, the length scale would
typically be the duct radius. If He is much larger than one, the source will effectively behave as if the receiving
system is infinite. It is then possible to use the acoustic power generated under free field conditions to
characterize the source. When He is of the same order or smaller than unity the source behaviour is strongly
influenced by the system boundaries. In this case sound power is not sufficient for describing the source and
the one-port, two-port and multi-port models described in Ref. [1] must be used.

In the following discussion only one-dimensional low Helmholtz number applications will be included.
Linear models for the source and the receiving system are frequently used. A number of references to in-duct
applications and also some structure borne sound applications are given in Ref. [1]. The applications include
clearly linear sources as ventilation fans but also IC-engine exhaust systems where the linearity of the source
can be put in question. Methods for experimentally testing the linearity of a source under test are given in Ref.
[2]. Many fluid machines such as compressors and IC-engines are high level acoustic sources. The validity of
modelling them as linear time-invariant systems may therefore indeed be questioned. The alternative is of
course to use nonlinear models to describe the complete system, see, e.g., Refs. [3,4]. The most important
factor that determines the transition from linear to nonlinear models is the sound level in the system. As a first
estimate it can be stated that if the relative pressure fluctuations caused by a machine is less than 1% the linear
models are applicable. For air at standard conditions, this corresponds to sound pressure levels less than
150 dB (re. 20mPa). It should be noted that this value applies to a propagating wave. Even in a small
amplitude wave, it is possible that nonlinear effects can accumulate when the wave propagates a large number
of wavelengths. This phenomenon is called shock wave formation and will occur if the losses are small enough
[5]. Locally at, e.g., narrow constrictions in a system, nonlinearities can also occur at much lower levels. In
the model problem used in this article only local nonlinearity will be considered, while shock wave formation
is neglected.

Most works in this field have started from first principles, i.e., the equations describing the conservation of
energy, momentum and mass in a fluid. To simplify the problem somewhat, lumped source models and 1-D
sound propagation have often been assumed. The resulting equations are solved in the time domain using the
method of characteristics or finite difference methods. The disadvantage of using these methods, compared to
the linear frequency domain methods, is that they are more complicated to use and they cannot treat the
complicated geometries found in, e.g., automobile silencers.

The hybrid linear/nonlinear methods, where a nonlinear time domain model is used for the source and a
linear frequency domain model is used for the receiving system, was first introduced for in-duct sources in
Refs. [6,7]. A frequency domain iterative one-point method was used to perform the coupling between the time



ARTICLE IN PRESS
F. Albertson et al. / Journal of Sound and Vibration 291 (2006) 963–985 965
domain solution for the source and the frequency domain description of the rest of the system. The same
technique was also suggested by Jones [3] for application to IC-engine exhaust systems and tested by Bodén [8]
for a modified compressor with unstable results. The problem seems to be the chosen coupling technique even
though acceptable results were obtained in Refs. [6,7]. The harmonic balance technique is an alternative
frequency domain technique, using an Euler method instead of the one-point method, with better convergence
properties. It has been used for microwave circuits in forced oscillations [9,10] and was adapted for modelling
the self-sustained oscillations of wood-wind instruments by Gilbert et al. [11].

The hybrid methods can be divided into a number of main groups. One group is the iterative techniques,
which can be further subdivided into frequency domain iterative techniques [6,7,9–12] and time domain
iterative techniques [13] depending on in which domain the convergence check and the coupling is performed.
Another group is the convolution techniques where the frequency domain impedance boundary condition is
transformed into the time domain. The impedance boundary condition is given by

PðoÞ ¼ ZðoÞQðoÞ, (2)

where PðoÞ is the pressure at the boundary, ZðoÞ is the impedance and QðoÞ is the flow velocity at the
boundary. This equation can be transformed into the time domain giving

pðtÞ ¼

Z t

0

zðt� tÞqðtÞdt, (3)

where zðtÞ is the impulse response of the system with frequency response ZðoÞ. The convolution can be solved
numerically which can be rather time consuming. It has also been reported that the impulse response
convolution technique can give unstable results [14]. An alternative is to reformulate the boundary condition
using the reflection coefficient RðoÞ, which can be calculated from the impedance by

RðoÞ ¼
ZðoÞ � Zc

ZðoÞ þ Zc

, (4)

where Zc is the characteristic impedance. The boundary condition is then given by

P�ðoÞ ¼ RðoÞPþðoÞ, (5)

where PþðoÞ and P�ðoÞ are the amplitudes of the incident and reflected pressure waves at the boundary. The
corresponding time domain expression is given by

p�ðtÞ ¼

Z t

0

rðt� tÞpþðtÞdt, (6)

where rðtÞ is the reflection function of the system with reflection coefficient RðoÞ. The reflection function seems
to give more stable results than the impulse response function. A reflection function convolution technique
was used by Gazengel et al. [15], as well as a number of other authors in musical acoustics, for time domain
simulation of single reed wind instruments. An impulse response convolution technique was suggested in Ref.
[13] in conjunction with iteration. In some works on IC-engine exhaust and intake systems convolution using
the reflection function [16,17] or scattering matrix [18,19] have been used. In these studies nonlinear wave
propagation, calculated using the method of characteristics, in the exhaust pipe upstream of the linear
boundary condition [16,17] or even in the pipes in-between mufflers [18,19] is an important part of the models.
Since these techniques are not applicable to the model problem studied in this paper they will not be further
considered. An impulse response convolution technique has also been suggested [20] for solving the problem
of acoustic locally reacting impedance boundary conditions for computational aeroacoustics codes. For these
codes computational efficiency is very important and the direct implementation of convolution according to
Eq. (3) or (6) will be too time consuming. To solve this problem Eq. (3) is z-transformed giving,

PðzÞ ¼ ZðzÞQðzÞ. (7)

The impedance ZðzÞ is modelled as a IIR filter according to the equation

ZðzÞ ¼
a0 þ

PN
n¼1 anz�n

1�
PK

k¼1 bkz�k
, (8)
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where an and bk are the filter coefficients that have to be identified from ZðoÞ using digital-processing
techniques. The resulting IIR-filtering can be implemented in the numerical codes in a computationally
efficient way. A method close to the IIR filter is the expansion method proposed in Ref. [14], where the
reflection coefficient in Eq. (4) is expanded into a stable differential operator.

In this paper the following methods are presented and tested: the Harmonic Balance Method with a
Newton–Raphson step algorithm, a frequency domain iteration method with a one-point step algorithm, a
time domain iteration method with a one-point step algorithm, a convolution method based on the reflection
function and a convolution method based on the impulse response function. For completeness, a short
description is given of an expansion method.
2. Description of model problem

The objectives are to study the features of different coupling methods. To this end, a simple model
problem is chosen to simplify the modelling of the system and emphasize the coupling methods. This model
problem should be easily described using simple nonlinear and linear equations. To satisfy the require-
ments, a simple piston–restriction system was chosen, see Fig. 1. This system is a compressor with
the valve removed. Hence, no mean flow is present, but only an oscillating flow through the
constriction.

The system is divided in two separate parts. These parts are connected over some chosen cross section. One
part contains the linear part of the system, often a pipe system in applications, and the other part contains the
nonlinear source part. Here only a brief summary of the model problem is given. See Ref. [12] for a detailed
description.

On the left-hand side of Fig. 1 the simple piston–restriction system is depicted. A principal sketch
of the same system is shown on the right-hand side of Fig. 1. Using the three volumes 1, 2 and 3,
according to Fig. 1, the unknowns are defined as written below the principal sketch. A subscript denotes
in which volume the unknown is given. Four quantities are studied, the pressures p1ðtÞ and p3ðtÞ, the
volume flow q3ðtÞ and the density r1ðtÞ. A comprehensive derivation of the equations is given in
Ref. [12]. Here, the equations are only summarized as follows. To emphasize the different domains,
the time domain unknowns are written in lowercase letters, while the frequency domain unknowns
are written with uppercase letters. The time domain equations of the model of the simple piston–restriction
d2

d3 = 4.3 cm

l2

LV
d1 = 7.0 cm

P1 V1 ρ1 Q1 P3 ρ3 Q3Q2

1 2

"Pipe""Volume" "Constriction"

3

Fig. 1. The piston–restriction system used in the model. A one-dimensional approximation was used. The source volume is labelled

volume 1, the constriction volume 2 and the pipe volume 3.
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system are

p1ðtÞ � p3ðtÞ ¼

r2
2

q2
3ðtÞ

1
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qq3

qt
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(9)

d

dt
ðV 1ðtÞr1ðtÞÞ ¼ �r0q3ðtÞ, (10)

p1ðtÞ ¼ P0ðr1ðtÞ=r0Þ
n (11)

and finally the frequency domain equation is

Q3ðoÞ ¼ Y 3ðoÞP3ðoÞ or P3ðoÞ ¼ Z3ðoÞQ3ðoÞ. (12)

Note that Eq. (9) is not symmetric. For different signs of the volume flow Q3, different equations are applied.
Except for the studied unknowns as defined above, the quantities in the equations are r0 ¼ r2 ¼ 1:23 kg=m3,
S1 ¼ area of the pipe in volume 1, S2 ¼ area of the pipe in volume 2, S3 ¼ area of the pipe in volume 3,
d1 ¼ acoustic end correction in volume 1, d3 ¼ acoustic end correction in volume 3, l2 ¼ length of constriction
(see Fig. 1), n ¼ 1:4 is the polytropic index, P0 ¼ 105 Pa, while Y 3ðoÞ and Z3ðoÞ are the admittance and
impedance of the linear part of the system.

The oscillating volume V 1ðtÞ provides a driving force and is closely linked to the movement of the piston.
From the piston geometry defined in Fig. 2 it is found that the oscillating volume is

V 1 ¼ S1Lv þ S1LA1 1þ cosðotÞ þ
LA2

LA1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

LA1

LA2

� �2

sin2ðot Þ

s2
4

3
5

0
@

1
A. (13)
LA2

LA1

θ

d1

Fig. 2. Detailed picture of the piston movement. The angle y ¼ ot in Eq. (13). The fundamental frequency is constant given by

f 0 ¼ o0=2p, the rotational speed of the crankshaft. Here, LA1 ¼ 40mm and LA2 ¼ 95mm.
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Here LA1 ¼ 40mm and LA2 ¼ 95mm are the lengths of the axes as specified in Fig. 2, o is the angular
frequency, S1 is the area of the pipe in volume 1 and Lv is the buffer length, i.e. the minimum length, from the
piston to the constriction, see Fig. 1.

3. Iterative methods

All iteration methods are based on the same basic iteration concept. A convergence loop is constructed by
choosing an order in which the equations are applied. The solution of the equations representing the system
behaviour is found by iterating this convergence loop with different initial values. The final value of some
specific unknown of the convergence loop is used as a parameter for changing the initial conditions, until some
predefined convergence criteria is satisfied. The various methods differ in how this final value is used for
modifying the initial values of the iteration. Another difference is in which regime the calculations are carried
out.

A detailed description of the presented methods is given below. Note the differences in how the coupling is
performed and furthermore in which domain the calculations are carried out. The general outline of the
iteration process given above is also given for each iteration method.

3.1. Frequency domain hybrid methods

3.1.1. Harmonic balance method

The fundamental idea of the Harmonic Balance Method (HBM) is to ‘‘balance’’ or compare the N first
harmonics in a series expansion. This also explains the name ‘‘Harmonic Balance Method’’. For this purpose,
the studied system is decomposed into two separate subsystems, a linear and a nonlinear part. The linear part
is treated in the frequency domain and the nonlinear part in the time domain. In the specific model problem of
this paper, the nonlinear part is the source and the linear part is the (general) pipe system. The interface
between the two subsystems consists of the Fourier transform pair. A comprehensive description together with
a full reference list is given in Ref. [12].

A general outline of the HBM is as follows, see Fig. 3. First an appropriate unknown is chosen to use in the
convergence check, which is performed in the frequency domain. After that, the equations are rewritten in a
suitable form for a convergence loop. An initial value of the chosen unknown is given. The different linear and
nonlinear equations are applied according to the convergence loop. Finally, a new value of the chosen
convergence unknown is calculated. If the difference between the initial value and the final value of the first N

harmonics satisfy the predefined convergence criteria, ‘‘harmonic balance’’ is reached. Otherwise, an
increment of the initial value is calculated using a generalized Euler method, i.e. the Newton–Raphson
method. The number of harmonics N used in the HBM has to be chosen by using some criterions. First, the
amplitude of the Nth harmonic has to be much smaller than the dominating ones. Secondly, the total sound
spectra must not change when the number of harmonics is changed.

For the specific model problem of the piston–restriction system, the convergence loop is defined as below.
See Ref. [12] for a detailed description.

The HBM has earlier successfully been used for self-sustained oscillations of musical wind instruments [11].
The method was found to be very convenient for showing the modifications of the playing frequency and the
spectrum when a physical parameter was changed or a new term was introduced in the equations.

In the applications given in Refs. [9,21] the HBM was used as a practical and effective method to analyze the
steady-state periodic solutions based on the use of voltage and current probes of nonlinear microwave circuits.
The stability of these steady-state periodic solutions was studied as well [10].

In Ref. [12] the HBM was applied, and thoroughly analyzed, for the same model problem as in this paper. A
comprehensive study on the advantages, possibilities and drawbacks was presented together with several
numerical examples.

In HBM, the FFT pair provides the interaction between the frequency domain and the time domain. In the
direction from the time domain to the frequency domain the ordinary fast Fourier transform (FFT) is used. In
the other direction, the frequency domain data is translated to a time domain series. That is, the inverse
transformation is replaced by a sum of sines and cosines which converts the frequency domain data to time
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Fig. 3. Block diagram of the Harmonic Balance method with Euler coupling.
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domain data. Here, it is assumed that only periodic functions are present, which is in line with the assumption
of only studying steady-state periodic solutions. Let o be the fundamental angular frequency and N the
truncated number of harmonics considered. If X ðoÞ ¼ FFTfxg ¼ fCkg, where FFT means the Fast Fourier
Transform, then

xðtÞ ¼
XN

k¼1

Cke
ikot ¼

XN

k¼1

½ak cosðkotÞ þ bk sinðkotÞ�, (14)

where ak and bk are real while Ck is complex. The relation between ak; bk and Ck is given by

Ck ¼ ðak � ibkÞ=2. (15)

In the final equations of the model, the equations adopted to the HBM convergence loop, both integrals and
derivatives are present. One of the advantages of the HBM is that it is very easy to integrate and differentiate.
3.1.2. One-point iteration method proposed by Soedel et al.

The iteration methods proposed by Soedel et al. in Refs. [4,6] are essentially equivalent to the piecewise
HBM presented above. The main idea is similar, and all calculations from linear relations are carried out in
the frequency domain. The difference between the two descriptions, as given in this paper, is the iteration
process. Note that the two methods are both a ‘‘harmonic balance method’’, but here we distinguish between
the methods in order to examine the effect of the coupling strategy. In HBM, the final value of the convergence
parameter after the convergence loop is used for recalculating the initial value using an Euler method. Here,
the new initial values are determined by simply inserting the final values as new initial values. That is, a one-
point method is used. Since the difference between the initial and final values can be large, this means that the
approach is more unstable.
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Fig. 4. Block diagram by Soedel et al. proposed Harmonic Balance method with one-point coupling.

F. Albertson et al. / Journal of Sound and Vibration 291 (2006) 963–985970
The method is based on decomposition of equations in two subsystems, the linear part and the nonlinear
part, over some cross section, and is applied as shown in Fig. 4.

Similar to the HBM, the Fourier transform pair provides the actual coupling between the time domain and
the frequency domain. The ordinary FFT is used for transforming the time domain data to frequency domain
data. For the transform back to the time domain, the inverse FFT is rewritten as a Fourier series, see Eq. (14).
This works well only for periodic functions and it of course restricts the analysis to steady-state periodic
solutions. Soedel et al. have later developed the method trying to stabilize the existing convergence problems
[22]. The proposed method is to apply a convergence factor n in the equation

pai ¼ n � pi þ ð1� nÞ � pai�1, (16)

where pai is the pressure that is used in the final calculation stage, pi is the pressure directly calculated in stage i

and pai�1 is the used pressure in stage i � 1.

3.2. Time domain methods

3.2.1. One-point iteration method proposed by Gupta et al.

In HBM [9–12] and the iteration method proposed by Soedel et al. [4,6], the computations are performed
for only one complete cycle at a time. In the method proposed by Gupta [13], the impedance is trans-
formed from the frequency domain to an equivalent time domain impedance boundary condition
(TDIBC). The coupling is performed in the time domain using a convolution integral. The system time
history, that is the past cycle data, is then used. There is thus a clear difference compared to the previous
iteration methods.

The computational scheme is given in Fig. 5.
Note that the convolution is applied to a full cycle in each discrete time step. For this purpose, the data from

the previous cycle is used. Mathematically, this can be expressed as follows. It is assumed that the convolution
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Fig. 5. Block diagram by Gupta et al. proposed time domain iterative method with one-point coupling.
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is calculated using the time domain formulation of Eq. (12)

q3ðtÞ ¼ y3ðtÞ � p3ðtÞ ¼

Z
cycle

y3ðtÞ � p3ðt� tÞdt. (17)

The number of samples used for the time vectors is Ns. The element number k in the vector q3 for iteration
j þ 1 is denoted

fq3g
jþ1
k . (18)

Following the idea of Gupta [13], a new pressure vector fp3newg is defined by taking the last Ns � k elements of
the past pressure vector fp3g

j and the first k elements of the vector fp3g
jþ1. The convolution is then given by

fq3g
jþ1
kþ1 ¼

XNs

n¼0

fy3gn � fp3newgNs�n. (19)

4. Non-iterative methods

4.1. Convolution methods

A main drawback of the frequency domain iterative methods presented above, is that they are only adapted
to calculate the steady-state periodic solutions. The time domain iteration method proposed by Gupta et al.
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could in principle be used for finding transient behaviour, but the convergence criteria is the limiting factor. By
nature a transient behaviour means changing behaviour, which implies that a solution cannot be found by
using the present convergence criteria. On the contrary, the time domain methods are able to find the complete
solutions including both transient and steady-state solutions. They are also well-adapted to finding solutions
of problems where the control parameters change over time. Many of these methods have been used in musical
acoustics [23,24] not only to find solutions of the model, but to do synthesis.

As with the iterative methods, the system is decomposed in two separate subsystems, a linear part and a
nonlinear part. In the convolution method, the linear part is treated in the time domain as well. The impedance
relation in Eq. (12) can be rewritten in the time domain as a convolution relation, where the impulse response
zðtÞ is the inverse Fourier transform of the impedance, see Eq. (3). The main drawback of this method thus
becomes clear, since it is very time consuming to calculate the convolution integral as a long system memory is
required. A way to minimize the time consumption is to apply a smaller time window for the convolution
integral, see Table 1. One way to obtain this is to use a reflection function rðtÞ in place of the impulse response
zðtÞ. The reflection function is defined as the inverse Fourier transform of the plane wave reflection coefficient
given in Eq. (4). The impulse response provides a relation between the acoustical pressure pðtÞ and the
acoustical volume flow qðtÞ (or momentum flux), but the reflection function gives a relation between the
incoming acoustical pressure pþðtÞ and the outgoing acoustical pressure p�ðtÞ as described by Eq. (6). Note
that the total pressure pðtÞ is the sum

pðtÞ ¼ pþðtÞ þ p�ðtÞ (20)

and the volume flow qðtÞ is given by

qðtÞ ¼
pþðtÞ � p�ðtÞ

Zc

. (21)

The length of the time window can be significantly smaller for the reflection function compared to the impulse
response. As an example the results for a open ended cylindrical pipe is shown in Fig. 6.

In the limit case of the lossless cylindrical tube, the corresponding reflection function is the negative dirac
function with a delay t0 ¼ 2L=c (twice the time of the ‘‘system length’’)

rðtÞ ¼ �dðt� t0Þ ¼ �dðt� 2L=cÞ. (22)

If the thermoviscous losses are taken into account, there is a more complicated analytical reflection function
[25]. Usually there is no analytical expression for the reflection function of realistic resonators like complex
mufflers. But it can be calculated numerically from the geometry, see Fig. 7, using for example simulation
softwares as SID [26]. The used muffler consists of one inlet and one outlet coupled together trough two
parallel paths. The two paths include Helmholtz and quarterwave resonators, pipes, perforated pipes and
absorptive material.

The difficulty of the technique is the development of the numerical tool which is reliable for low sampling
frequencies. Each step of the numerical tool has to be studied very carefully. That is:
(1)
Tab

Tim

Case

Con

Con

Con

Har
the calculation of the discrete approximation of the plane wave reflection function,

(2)
 the description of the nonlinear source dynamics in the discrete time domain,

(3)
 solving the whole system.
le 1

e consumption for the open ended pipe case

Time (s)

volution with reflection function 38.07

volution with impulse response (2 times length) 68.10

volution with impulse response (4 times length) 78.38

monic Balance Method with Newton Raphson 8.73
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Fig. 7. The first 50ms of the reflection function of a complex muffler (calculated numerically).
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For an extensive discussion of these difficulties, and particularly about the discrete plane wave reflection
function, see Ref. [15] where the time domain simulation of reed wind instrument behaviour is analyzed in
detail. Below, points (2) and (3) applied to the compressor model problem (equations given in Section 2), are
summarized.

The dynamics of the compressor model has been modelled by the three nonlinear equations (9–11). These
equations are rewritten using two new variables y1 and y2 defined as

y1ðtÞ ¼ r1ðtÞV1ðtÞ; and y2ðtÞ ¼ q3ðtÞ. (23)
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After the elimination of p1 using Eq. (11), and the substitution of the variables r1V1 and q3 by y1 and y2,
Eqs. (9) and (10) become a set of two ordinary nonlinear first-order differential equations as follows. For y1

the differential equation is

dy1

dt
¼ �r0y2. (24)

For q3 ¼ y240

dy2

dt
¼ P0

y1

V 1r0

� �n

� p3 � P0 �
r0
2

1

S2
2

�
1

S2
1

 !
y2
2

" #
S2

r0ðl2 þ d1Þ
(25)

and for q3 ¼ y2o0

dy2

dt
¼ P0

y1

V1r0

� �n

� p3 � P0 þ
r0
2

1

S2
2

�
1

S2
3

 !
y2
2

" #
S2

r0ðl2 þ d3Þ
. (26)

These ordinary nonlinear differential equations are solved using an Adams–Bashforth, Adams–Moulton
(ABAM) predictor–corrector numerical method. Before doing this, the last unknown variable p3 remaining in
the above equations has to be estimated.

If the impulse response method was used, p3 would be directly related to y2 by Eq. (23). Since the reflection
function method is used, some straightforward algebra is needed to rewrite Eq. (5) to relate p3 and q3. Using
Eqs. (20–21) applied to p3 in place of p gives

2pþ ¼ p3 þ Zcq3 (27)

and consequently

p3 ¼ pþ þ p� ¼
ðp3 þ Zcq3Þ þ r � ðp3 þ Zcq3Þ

2
¼
ðp3 þ Zcq3Þ þ p

past
3

2
, (28)

where p
past
3 means the pressure p3 due to the system history. That is, all system reflections are gathered into the

past pressure. In the discrete time domain, p3½n� is calculated in the sample n (time sampling) assuming that
every variable is known from sample 1 to sample n� 1. Then Eq. (28) can be rewritten in the discrete time
domain as

p
past
3 ½n� ¼

Xn

k¼1

rd ½k�fp3½n� k� þ Zcq3½n� k�g; rd ½0� ¼ 0. (29)

Note that q3 ¼ y2.
The method of simulation described above to solve the whole system can be summarized as depicted

in Fig. 8.

4.2. Expansion method

Fung et al. [14] have proposed yet another method. The main idea is to expand the impedance ZðoÞ in
powers of ðioÞk and then invert the series to a time domain linear operator, since the inverse Fourier transform
of ðioÞk is dk=dtk. It is however found that a direct inversion of the power series of the impedance ZðoÞ in
general corresponds to an unstable differential operator. A direct inversion of the power series of the reflection
coefficient RðoÞ is claimed to give numerically stable, accurate and easily implementable results.

The reflection coefficient RðoÞ is thus expanded into a power series as

RðoÞ ¼ U þ iV ¼ ðU0 þU2o2 þ � � �Þ þ iðV1o� V 3o3 þ � � �Þ. (30)

The linear differential operator is found by direct inversion of this power series. That is

rðtÞ ¼ U0 �U2
d2

dt2
þ � � �

� �
þ i V 1

d

dt
� V 3

d3

dt3
þ � � �

� �
. (31)
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Fig. 8. Block diagram of the convolution method with reflection function.
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Eq. (28) holds here as well. The only difference is that the expression of the past pressure p
past
3 ðtÞ is replaced by

p
past
3 ðtÞ ¼ U0

Z t

0

p3ðt� tÞ þ Zcq3ðt� tÞdt

þ
Xn

k¼1

ð�1ÞkU2k

Z t

0

d2k

dt2k
½p3ðt� tÞ þ Zcq3ðt� tÞ�dt

þ
Xn

k¼0

ð�1ÞkV 2kþ1

Z t

0

d2kþ1

dt2kþ1
½p3ðt� tÞ þ Zcq3ðt� tÞ�dt. ð32Þ

By calculating the integrals it is found that the past pressure of p
past
3 ðtÞ can be replaced by the following

integro-differential operator.

p
past
3 ðtÞ ¼ U0

Z t

0

p3ðt� tÞ þ Zcq3ðt� tÞdt� V 1½p3ðtÞ þ Zcq3ðtÞ�

�
Xn

k¼1

ð�1Þk U2k

d2k�1

dt2k�1
þ V2kþ1

d2k

dt2k

 !
½p3ðtÞ þ Zcq3ðtÞ�. ð33Þ

Using this expression together with Eqs. (9–12) and Eq. (28) gives a new differential equation system which
can be solved using some appropriate numerical method.
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5. Comparison of coupling methods

A total of four methods have been tested: the HBM, the one-point iteration method in the frequency
domain, the one-point iteration method in the time domain and the convolution method with a reflection
function. The two one-point iteration methods gave unstable results for almost all test cases, while the HBM
and the reflection function method gave in almost all cases stable results.

As a general conclusion it can be deduced that the one-point iteration methods give divergent solutions
to a larger extent than the HBM, see Fig. 9. The reason is the main difference of the methods,
namely the recoupling of the final value. In the one-point iteration methods the final value of a
convergence loop is used as a new initial condition in the next loop. This one-point approach can
cause divergent behaviour for systems where the initial condition is far away from the final solution.
A better approach is to use the Newton–Raphson method used in the HBM. There the final value
of a convergence loop is used for modifying the former initial condition. This gives smaller variations
in the initial condition, and in many cases convergence where the one-point methods give divergent
solutions.

The two better methods, that is the harmonic balance method and the convolution method with reflection
function, have been compared for several cases. The comparison cases were chosen to give an increased
complexity of the problem ranging from the easiest case with an infinite pipe to a more difficult case with a
general impedance for a muffler.

Various features, for example time consumption and consistency between methods, are considered. Both the
steady state as well as transient behaviours are studied. To this end, the following test cases were applied for
the receiving part:
(i)
Fig.
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infinite cylindrical pipes
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The source parameters (fundamental frequency f 0, buffer length Lv and orifice diameter d2) were varied
for all test cases. Finally, the transient behaviour of the system was analyzed by two different types of
accelerations.

5.1. Steady-state solutions

5.1.1. Cylindrical pipes

First the case of infinite cylindrical pipes was used for comparison. In this case, the convolution integral
reduces to

p3ðtÞ ¼ Zcq3ðtÞ, (34)

and consequently no pressure history has to be used in the calculations. The HBM and the reflection function
method was compared for different values of the driving frequency f 0, the buffer length Lv and the orifice
diameter d2. In Fig. 10, the first ten harmonics of the sound pressure levels of P3ðoÞ are plotted. In this case,
the geometrical configuration is kept constant, but the frequency f 0 of the piston is altered (10 and 100Hz).
Note that there are actually two curves plotted. It is thus in practice no difference between the solution from
HBM and the reflection function method in this case.

Figs. 11 and 12 show the volume flow Q3ðtÞ and the density r1ðtÞ for the infinite pipe case as well. Here
different geometrical parameters are varied, while the frequency is held constant. Only on the left-hand side in
Fig. 12, there is a very slight difference between the solutions from the different methods. The considered case
of an infinite pipe is however the least complicated case, since no conversion between the impedance Z3ðoÞ and
the reflection function rðtÞ has to be done. The general conclusion to be drawn must therefore be that it is a
good sign that there is excellent agreement for this simple case.

A cylindrical pipe or a complex muffler has to be represented well in both the frequency domain and the
time domain, to form a basis of the comparison of methods. It is important that the frequency domain
representation and the time domain representation reflect the same physical system. Fig. 13 shows the
reflection function rðtÞ in the time domain and the admittance Y 3ðoÞ in the frequency domain for the same
complex muffler. The admittance is adapted to fit the HBM, with values only at the harmonics. For 40
harmonics, only 40 values are needed.

In the reflection function a value for each time sample is needed. Consequently, the length of the reflection
function is inversely proportional to the time step. The numerical predictor–corrector method used in this
paper needs a fine mesh, that is a short time step, to produce accurate numerical solutions. This implies though
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Fig. 10. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was an infinite pipe with 0.043m

diameter, the buffer length was Lv ¼ 16 cm and the diameter of the restriction was d2 ¼ 1 cm. The HBM results (solid) and the reflection

function method results (dashed) are so close that they are indistinguishable. (a) f 0 ¼ 10Hz; (b) f 0 ¼ 100Hz.
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a high sampling frequency F s, since the time step is

dt ¼
2

Fs

. (35)

Here, one problem becomes obvious. A good description of the muffler is needed for high sampling
frequencies in order to create a sufficient small time step. In Ref. [15] this problem is addressed and a number
of possible solutions are discussed. Here, a linear FIR-filter is used together with phase-rotation and a time
compensation for the filter as well as the rotation.

In comparing the length of the reflection function, that is the system time history needed, with the values in
the harmonics for HBM, some conclusions about the calculation time are in place. The HBM solution was
calculated more or less 15 times faster than the reflection function method. It is therefore suitable to use the
HBM in cases where a lot of parametric studies are performed. An advantage of the HBM compared to the
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Fig. 13. A complex muffler represented by both the reflection function and the admittance. (a) Reflection function; (b) admittance.
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Fig. 14. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was an open pipe with 1.96m length and

0.043m diameter, the diameter of the restriction was d2 ¼ 3 cm and the fundamental frequency f 0 ¼ 10Hz. The HBM results (solid) and

the reflection function method results (dashed) are displayed in the same figure. (a) Lv ¼ 36 cm; (b) Lv ¼ 6 cm.
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reflection function method is also that previous solutions can be used as initial values to decrease the number
of iterations. In the reflection function method, every calculation is restarted. A previous solution can of
course give new initial values, but there is always a diminishing transient solution present.

As a next step, the complexity of the comparison cases was increased to examine how the methods reacted
to different complexity and different variations. The infinite pipe configuration was switched to an open
cylindrical pipe configuration. Here the problem of conversion between the impedance Z3ðoÞ and the
reflection function rðtÞ are present. In Fig. 14 only the buffer length Lv is varied. On the right-hand side,
Lv ¼ 6 cm, which represents a more nonlinear case than the graph on the left-hand side, where Lv ¼ 36 cm.
The two methods give very similar results for the first four or six harmonics, but the solutions deviate for
higher harmonics. Note that the level in the region of deviation is approximately 50–60 dB lower than the
strongest harmonic.

Fig. 15 shows the reaction to variation in orifice diameter d2. In this case, there is a very good agreement for
d2 ¼ 3 cm, but a slight difference is present for d2 ¼ 1 cm. The decrease of orifice diameter represents an
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Fig. 15. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was an open pipe with 1.96m length and

0.043m diameter, the buffer length was Lv ¼ 6 cm and the fundamental frequency f 0 ¼ 100Hz. The HBM results (solid) and the reflection

function method results (dashed) are displayed in the same figure. (a) d2 ¼ 3 cm; (b) d2 ¼ 1 cm.
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Fig. 16. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was an expansion chamber. The buffer

length was Lv ¼ 16 cm and the fundamental frequency f 0 ¼ 10Hz. The HBM results (solid) and the reflection function method results

(dashed) are displayed in the same figure. (a) d2 ¼ 3 cm; (b) d2 ¼ 1 cm.
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increase in nonlinearity of the system. From Figs. 14 and 15 it seems that the solutions differ more for a more
nonlinear configuration of the system than for a more linear system.
5.1.2. Mufflers

Mufflers can be very complicated. To study the reaction of the solutions when complex mufflers are applied,
two steps of complexity were used. First a simple expansion chamber was used, and then a plane wave model
for a complex commercial muffler was used.

In Fig. 16, the sound pressure level of P3ðoÞ is plotted. The degree of nonlinearity was increased by
decreasing the orifice diameter d2. While there is a fairly good agreement between the HBM and the reflection
function solutions for d2 ¼ 3 cm, a larger deviation is visible for d2 ¼ 1 cm. This furthermore amplifies the
preliminary conclusion that the methods produce slightly different solutions for a heavily nonlinear system.



ARTICLE IN PRESS

0 200 400 600 800 1000
80

90

100

110

120

130

140

150

160

170

180

frequency [Hz]

S
P

L 
re

l. 
2×

10
-5

 P
a 

[d
B

]

S
P

L 
re

l. 
2×

10
-5

 P
a 

[d
B

]

0 200 400 600 800 1000
80

90

100

110

120

130

140

150

160

170

180

frequency [Hz](a) (b)

Fig. 17. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was an expansion chamber. The

diameter of the restriction was d2 ¼ 3 cm and the fundamental frequency f 0 ¼ 100Hz. The HBM results (solid) and the reflection function
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Note that the y-axis has been rescaled to be equivalent in both graphs to clearly show the difference between
the two cases.

In Fig. 17 the buffer length Lv is varied. The smaller value of Lv, that is a shorter buffer length, gives higher
levels in the system. This is also clearly visible in comparing the graphs in the figure. The tendency in the
graphs changing Lv was not clear, but a rather random pattern was found.

The commercial muffler was modelled by the simulation software SID [26], and the results from the
software was compared with measurements with very good agreement for low frequencies. Fig. 18 shows four
graphs with different values of the buffer length Lv. The first two graphs actually show very good agreement
between the solutions from the two methods. The last two graphs though indicate that for a higher level, the
accuracy is lower.

Finally, the worst found case is shown in Fig. 19. Here a change (rather large though!) in orifice diameter
caused a major discrepancy between the solutions.

5.2. Transient solutions

Transient solutions are of great interest in industrial applications, for example in a car or truck acceleration.
In this section, the abilities of the methods to model transient behaviour are analyzed.

For the HBM, the only type of solution that can be found is steady state and periodic. A so-called envelope
method has though been proposed [27] to simulate a transient behaviour. The steady-state solution is
calculated for each chosen driving frequency, for example a number of frequencies between 10 and 20Hz as
depicted in Fig. 20. Then the steady-state solutions are plotted in time domain or frequency domain for each
calculated fundamental frequency. From this type of graph it is possible to deduce some physical properties of
the system. On the left-hand side of Fig. 20 the graph shows the pressure p3ðtÞ as a function of both time and
fundamental frequency f 0. The red colour means high pressure and the blue means low pressure. On the right-
hand side a close-up is shown. The pressure p3ðtÞ is calculated for d2 ¼ 3 cm and Lv ¼ 16 cm, while the linear
part of the system was represented by the complex muffler used in the previous section, see Fig. 13 for
reflection function and admittance of the muffler. For this set of parameters, the system seems to have a
resonance at approximately 18.25Hz. This is crucial knowledge for designing an efficient muffler.

However, an envelope method cannot really show the system behaviour during an acceleration, only reveal
the resonances and other similar type of features of the system. The main reason for this is that when a system
parameter is changed, the system will produce a particular solution to the differential equation system. In an
HBM-based envelope method, all these transient system responses are missing, since only steady-state
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Fig. 18. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was a complex muffler. The diameter of

the restriction was d2 ¼ 3 cm and the fundamental frequency f 0 ¼ 10Hz. The HBM results (solid) and the reflection function method

results (dashed) are displayed in the same figure. (a) Lv ¼ 36 cm; (b) Lv ¼ 26 cm; (c) Lv ¼ 16 cm; (d) Lv ¼ 6 cm.
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Fig. 19. Sound pressure level of P3ðoÞ as a function of harmonics displayed in Hz. The resonator was a complex muffler. The buffer length

was Lv ¼ 16 cm and the fundamental frequency f 0 ¼ 100Hz. The HBM results (solid) and the reflection function method results (dashed)

are displayed in the same figure. (a) d2 ¼ 3 cm; (b) d2 ¼ 1 cm.
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Fig. 20. The HBM-based envelope of the sound pressure p3ðtÞ plotted as a function of both non-dimensional time and fundamental

frequency. The scale is blue for low pressures, then green, yellow and finally red for high pressures. The resonator was a complex muffler.

The buffer length was Lv ¼ 16 cm and the diameter of the restriction was d2 ¼ 3 cm. Note that the fundamental frequency is altered from

10 to 20Hz. (a) 10–20Hz; (b) 16–20Hz close-up.
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Fig. 21. The sound pressure p3ðtÞ plotted for different accelerations using the reflection function method. The resonator was a complex

muffler. The buffer length was Lv ¼ 16 cm and the diameter of the restriction was d2 ¼ 3 cm. A continuous, but not continuously

differentiable acceleration (dashed) and a five times continuously differentiable, that is smooth, acceleration (solid) are displayed in the

same figure. (a) Acceleration of f 0; (b) p3ðtÞ.
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solutions are used. To get a better idea of the actual system behaviour, the reflection function method
can be used.

Fig. 21 shows the pressure p3ðtÞ calculated from the reflection function method when a change in
fundamental frequency of the piston is applied. The frequency of the piston was held constant at f 0 ¼ 10Hz
up to 0.3 s. At t ¼ 0:3 s a linear change in frequency was applied until t ¼ 0:4 s. After that the frequency was
again held constant, but now at the new frequency of f 0 ¼ 15Hz, see Fig. 21. In the same figure, a smoother
acceleration (five timed continuously differentiable) is also plotted. Note that this smooth transition from one
constant speed to another gives a smoother change in pressure. In these graphs, the transient behaviour of the
system is clear. Each time the fundamental frequency is changed, a new transient solution is created. These
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solutions will die out after some system dependent time when the fundamental frequency is held constant
once again.

In comparing the two cases in Fig. 21, it is concluded that a smoother acceleration does not necessarily give
smaller pressure perturbations, but in general the transient will die out faster.

6. Results and discussion

Among the various methods tested in this paper, only HBM and reflection function method gave stable and
convergent results for the model problem. The one-point frequency domain iteration method proposed by
Soedel et al. gave divergent solutions in all cases except when an initial value very close to the solutions was
chosen. It should however be mentioned that in Refs. [4,6,7] stable solutions were found for a compressor.

The one-point time domain iteration method proposed in Ref. [13] has the same drawbacks as the one-point
frequency domain iteration method above. Only divergent solutions were found for this method as well.

For the steady-state periodic regime, the HBM produces faster results than the reflection function method.
This allows a more comprehensive parametric study of the system. For transient behaviour, the reflection
function method gives a clear advantage compared to the HBM, since all transient behaviour in the system can
be found using this method.

In comparing the calculation time, the HBM is generally faster than the reflection function method. For
simple systems with low levels, the reflection function requires only a quite large time step. Consequently, in
this case the reflection function method is faster, sometimes even faster than the HBM. But for systems with
higher levels and larger oscillations, the time step in the reflection function method must be smaller in order to
solve the system using some numerical scheme. This is the main reason for the reflection function method
being slower compared to the HBM.

A general conclusion can be drawn from the presented graphs in Section 5. The methods seem to give very
similar results for simple as well as complex systems with, in some sense, small nonlinearities. As the levels are
increased, and the degree of nonlinearity is increased, the solutions slowly diverge. There could be many
reasons for this discrepancy. Some of them are summarized below.

Theoretically, the reflection function and the impedance/admittance descriptions of the system are
equivalent. For implementation using measured data and discrete time and frequency functions some
differences will however occur. For a simple resonator system, the discrepancy is small, for example the infinite
cylindrical pipe case used for comparison. When the complexity of the system increases, towards a more
realistic case, the discrepancy between the different system descriptions becomes crucial. When taking the
inverse Fourier transform of a calculated or measured impedance, a contradiction between the desired features
will arise. The reflection function is a fast function by means of a large difference in value over a very short
period of time. To model this high frequencies are needed. But when high frequencies are present using an
inverse Fourier transform, Gibb’s phenomenon will arise. These spurious oscillations do not exist in the
physical system, but they arise from the mathematics.

As mentioned above, a more complex system with higher levels and larger oscillations also needs a smaller
time step. There will be a compromize between calculation time and accuracy. A small difference between
solutions using different time steps could be found. Hence, the size of the time step also influence the
comparison between the methods.

A limitation of the presented methods is that there is no direct possibility to take into account nonlinear
wave propagation in the models. It would require an approach as for example in Refs. [16–19].
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