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Abstract

The influence of uncertain input data on response spectra of dynamic structures is considered.
Traditionally, frequency response analyses are based on finite or boundary element models of the objective
structure. In the case of the mid-frequency range problem, however, a very fine mesh is required to correctly
approximate the frequency response. This is particularly problematic in uncertainty modeling where the
computational effort is usually increased significantly by the need for multiple runs (e.g. when conducting a
Monte Carlo analysis) to achieve reliable results.

In this paper, the spectral element method, combined with a fuzzy set-based uncertainty modeling
approach, is presented as an appealing alternative, provided that the models are simple enough to yield a
spectral element representation. To conduct the fuzzy analysis part, three different implementations of the
extension principle of fuzzy arithmetic are applied and compared. The suitability of each method depends
on the number of uncertain parameters, the problem characteristics, and the required accuracy of the
results. The performance of the proposed approach is illustrated by two test problems, a simple coupled rod
and a reinforced plate model. To verify the fuzzy-valued results, a Monte Carlo simulation has also been
included.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, considerable research effort has been placed in studying the mid-frequency
range problem of structural dynamics. Of great practical importance in this field is the simulation
of the frequency response under uncertain parameters, which can provide important answers
during the design stage of products that must meet stringent noise and vibration criteria (e.g.
automotive parts).
Possible sources of uncertainty are manifold. For instance, geometrical and material

inconsistencies of components as well as their interaction with an unpredictable environment
could be taken into account [1]. Simplifying assumptions made in the development phase of the
mathematical models could further increase the uncertainty of the results. Other typical examples
are uncertain parameters obtained by parameter identification processes subjected to measure-
ment errors. An effort to categorize sources of uncertainty in dynamic engineering problems was
made by Manohar and Gupta [2], who propose the following four categories: physical or inherent
uncertainties, model uncertainties, estimation errors, and human errors. Keese [3] summarizes
that uncertainties can be caused either by intrinsic variability of physical quantities, such as
irregularities in material properties caused by the manufacturing process or simply by lack of
knowledge, which he calls epistemic uncertainty.
Three predominant approaches are available to describe and quantify uncertainty mathema-

tically, namely probability theory, interval analysis, and possibility theory based on fuzzy sets.
With probability theory, stochastic processes are used to model system behavior that is to some
extent unpredictable. Resulting probabilities can be estimated from a sufficiently large sample of
realizations (outcomes) of random variables and stochastic processes [4]. For probabilistic
uncertainty modeling approaches with applications to structural dynamics, see e.g. Refs. [5–8] and
the references therein. Interval analysis [9] provides the means to deal with imprecise data, and is
extensively used in tolerance analysis. Here, imprecision refers to a lack of knowledge about the value
of a parameter that is in turn expressed as a crisp tolerance interval. A main advantage of interval
analysis is its capability to provide guaranteed bounds on the results for given interval-valued input
data. This fact implies the important distinction of a result to be possible rather than probable. Fuzzy
set-based methods emerged from the work of Zadeh [10]. They are especially well suited for dealing
with forms of uncertainty that are inherently non-statistical in nature. Instead of producing single
intervals as outputs, possibility theory based on fuzzy sets permits gradations of possibility.
The rest of the paper is organized as follows: in Section 2, a brief summary of the spectral

element method (SEM) is presented. Section 3 reviews the basics of fuzzy set theory and discusses
possible numerical implementations of fuzzy arithmetic. In Section 4, we describe the proposed
procedure for computing frequency response function (FRF) envelopes via SEM subjected to
fuzzy-valued input data. In Section 5, we present two tests problems. We apply all three fuzzy
arithmetical methods of Section 3 to illustrate the advantages and disadvantages of each method.
2. Review of the spectral element method

The formulation of the SEM used here was proposed by Doyle [11] in the context of wave
propagation problems. The method is a systematization of the mobility approach developed much
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earlier [12]. It uses the exact solution matrices with transcendental functions in the frequency
domain, solving the dynamic problems with Fourier-based techniques. The basic idea of SEM is
to combine the advantages of analytical spectral analysis with the efficiency and organization of
the Finite Element Method (FEM). The main advantage of SEM in comparison to FEM is the
fact that the spectral element dynamic stiffness matrix is computed in the frequency domain,
which allows the stiffness and the inertia of the distributed-parameter system to be described
exactly. Thus, it is not necessary to refine the mesh as the wavelength becomes smaller. It can
be shown that the SEM dynamic stiffness matrix corresponds to an infinite number of finite
elements [11].
The SEM is formulated based on two types of elements, two-noded and single-noded (also called

throw-off) elements. The latter are adopted when the member extends to infinity and is connected
at a single point (or line). The major drawback of SEM is that the elements may only be assembled
in one dimension, and that the solution along the orthogonal dimensions have to be found
analytically, which is only possible for simple geometries. Doyle proposes a more general
approach [11], which consists of using image sources—fictitious forces are used to impose the
desired boundary conditions, such as mirror sources in acoustics to model a rigid surface—but the
approach still requires an ad hoc solution, which does not always exist. Thus, in the present stage,
the spectral element formulation is applicable just for structural elements with simple geometry
and boundary conditions [13,14].
In order to illustrate the proposed approach for including parametric uncertainty in SEM

models, we describe the low-order spectral rod element in the following. This model is used for the
first numerical example of Section 5, a system of two coupled rods. For a detailed description of
the more complex SEM model for reinforced plates, as used in the second numerical example,
please refer to Refs. [13,15].
We start with the following equation of motion [11]:

q
qx

EA
qu

qx

� �
¼ rA

q2u
qt2
� q, (1)

where EA is the axial stiffness with the Young’s modulus E and the cross-sectional area A, and rA
is the mass density per unit length of the rod. Now, the spectral analysis can be applied with a
solution of the form

ûðx;oÞ ¼ Ae�ikLx þ Be�ikLðL�xÞ, (2)

where A and B are the amplitudes at each frequency. Finally, by applying boundary conditions to
a uniform wave-guide, the following symmetric matrix can be obtained:

F̂1

F̂2

( )
¼

EA

L

ikLL

ð1� e�i2kLLÞ

1þ e�i2kLL �2e�ikLL

�2e�ikLL 1þ e�i2kLL

" #
û1

û2

( )
¼ ½k̂e�fûg, (3)

where k̂e is the complex dynamic stiffness matrix for the rod element, F̂ is the complex amplitude
of the applied nodal forces, û is the vector of the complex amplitudes of the nodal displacements,
and kL is the wavenumber, which is given by kL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2r=E

p
in case of the rod.

In order to account for structural damping, an internal loss factor Z can be applied by using a
complex Young’s modulus Eð1þ iZÞ.



ARTICLE IN PRESS

R.F. Nunes et al. / Journal of Sound and Vibration 291 (2006) 986–1003 989
From the dynamic stiffness matrices of the elements k̂e, a global dynamic stiffness matrix, K̂ , is
easily assembled by using the direct stiffness method. The solution is found by solving a linear
system of equations of the type fF̂g ¼ ½K̂ �fÛg, where fÛg is the global displacement vector. The
FRFs are the elements of the inverse of the global dynamic stiffness matrix as a function of
frequency.
3. Fuzzy set-based uncertainty modeling

Traditionally, probability theory is used to deal with uncertain information. However, as
Dubois and Prade pointed out, there are important characteristics of uncertainty that cannot be
handled appropriately by the probability theory [16], mainly since its key concepts are based on
principles of randomness, which is not necessarily the source of uncertainty. In this paper, fuzzy
sets are used to represent the uncertain input data.

3.1. Basics of fuzzy set theory

In the following, we briefly review the concepts of fuzzy sets. For a more detailed discussion of
the basics of fuzzy set theory, see, for instance, Refs. [17, pp. 9–35], [18, pp. 10–14], [19, pp. 14–57].
Let X be a space whose generic elements are denoted by x, and let m ~A : X !M � ½0; 1� be a

characteristic function that maps X to the membership space M. Then, a fuzzy set is uniquely
defined by the following set of pairs:

~A ¼ fðx; m ~AðxÞÞ jx 2 X g. (4)

m ~A is called membership function. If M ¼ f0; 1g; ~A is called non-fuzzy or crisp. If supx2X m ~A ¼ 1,
then the fuzzy set ~A is called normal. In the following, it is assumed that all fuzzy sets are
normalized.
The definition of the support of a fuzzy set, the notion of a-cuts, and the convexity of fuzzy sets

are important preliminaries to computing functions of fuzzy sets, and are therefore defined in the
following.
The support of a fuzzy set ~A is the crisp set of all x 2 X , such that m ~A40, i.e.

suppð ~AÞ ¼ fx jm ~AðxÞ40; x 2 X g. (5)

Let ~A be a fuzzy set with ~A ¼ fðx;m ~AðxÞÞ; x 2 X g. Then, the crisp set Aa with

Aa ¼ fx jm ~AðxÞXa; x 2 X ; 0oap1g (6)

is called a-cut or a-level set of ~A. In case of bounded supports, we also define the 0-cut as the
closed interval A0 ¼ ½infðsuppð ~AÞÞ; supðsuppð ~AÞÞ�. a-cuts are often called intervals of confidence,
since in case of convex fuzzy sets, a-cuts are closed intervals associated with a gradation of
possibility or confidence between ½0; 1�.
A fuzzy set ~A ¼ fðx; m ~AðxÞÞ;x 2 X g is convex, if for all a; b; c 2 X with apbpc,

m ~AðaÞpm ~AðbÞ or m ~AðcÞpm ~AðbÞ. (7)

Alternatively, a fuzzy set is convex if all a-level sets are convex in the conventional set-theoretic
sense, i.e. if all a-level sets are connected.
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Fig. 1. Examples for convex fuzzy sets.
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Example. Fig. 1 shows two examples for membership functions of convex fuzzy sets. The
respective definitions of the fuzzy sets are
(1)
 ~A ¼ fðx;m ~AðxÞÞ jm ~AðxÞ ¼ ð1þ ðx� 5Þ4Þ�1; x 2 Rg,

(2)
 ~B ¼ fðx;m ~BðxÞÞ jx 2 Rg, with

m ~BðxÞ ¼

ðx� 2Þ=2 if 2pxo4;

1 if 4pxo5;

ð8� xÞ=3 if 5pxo8;

0 otherwise:

8>>><
>>>:
We now proceed with the definition of Zadeh’s extension principle [20]. It extends functions of
real numbers to fuzzy-valued functions, and thus forms the theoretical basis of almost all methods
for computing with fuzzy sets.
3.2. Extension principle

Let ~A1; . . . ; ~Ad be d fuzzy sets with the membership functions m1; . . . ; md defined on the spaces
X 1; . . . ;X d , respectively. Let f : X 1 � � � � � X d ! Y be the objective function that maps the
spaces X 1 � � � � � X d to the space Y, i.e. y ¼ f ðx1; . . . ;xdÞ and y 2 Y . Then, the fuzzy image ~B can
be obtained by the formulae

~B ¼ fðy;m ~BðyÞÞ j y ¼ f ðx1; . . . ;xdÞ; ðx1; . . . ;xdÞ 2 X 1 � � � � � X dg

with

pðx1; . . . ;xdÞ ¼ minðm1ðx1Þ; . . . ; mdðxdÞÞ,

m ~BðyÞ ¼
sup

y¼f ðx1;...;xd Þ

ðpðx1; . . . ; xdÞÞ if 9y ¼ f ðx1; . . . ;xdÞ;

0 otherwise:

8<
: (8)
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If the fuzzy sets ~A1; . . . ; ~Ad of the extension principle are convex fuzzy sets with compact support,
and the objective function f : X 1 � � � � � X d ! Y is continuous, then the following alternative
formulation is equivalent to Eq. (8) (for the proof see Ref. [21]).

~B ¼ fðy; m ~BðyÞÞ j y 2 Y g

with

m ~BðyÞ ¼
supfa j y 2 Bag if y 2 B0;

0 otherwise;

(

Ba ¼ min
x2Oa

f ðxÞ;max
x2Oa

f ðxÞ

� �
; 0pap1. (9)

In Eq. (9), Oa ¼ ðA1Þa � � � � � ðAdÞa, 0pap1 denote the interval boxes formed by the a-cuts
ðA1Þa; . . . ; ðAdÞa.
Usually, an implementation of the extension principle is based on the alternative formulation,

which can be treated much easily by a numerical algorithm than the original formulation
according to Zadeh, Eq. (8).

3.3. Implementation of the extension principle

We will use three different implementations of the extension principle, namely the reduced
transformation method [22], the general transformation method [22], and the sparse grid
approach [23]. In the following, a brief description of these methods is given. A common feature
of all three methods is the fact that they require real-valued function evaluations only, they are
thus directly applicable to a wide range of functions, including FEMmodels (see e.g. Refs. [24,25])
and SEM models for dynamic structures as in this paper. For a detailed discussion of the
implementation of these methods, please refer to the provided references.

3.3.1. Reduced transformation method/FWA algorithm

The reduced transformation method [22] is an improved version of the classical FWA algorithm
by Dong and Wong [26] that ensures convexity of the fuzzy result. It is based on the alternative
formulation of the extension principle, Eq. (9). The first part of the method consists of discretizing
the fuzzy-valued inputs into a-cuts. Permutations of the lower and upper bounds of the a-level sets
are formed to obtain the corner points (‘‘vertices’’) of the d-dimensional boxes Oa in Eq. (9). If the
objective function is monotonic with respect to all input parameters in the region O0, these points
suffice to correctly compute the resulting a-cuts. Otherwise, the method may underestimate the
correct result.
The computational complexity is governed by the number of function evaluations N, which

grow linearly with the number of considered a-cuts m and exponentially with the dimension d, i.e.
N ¼ m2d .

3.3.2. General transformation method
The general transformation method proposed by Hanss [22] is an implementation of the

extension principle that first discretizes the convex fuzzy sets into a-cuts, and then again discretizes
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the a-cuts into sets of points. Due to the discretization scheme, only convex fuzzy sets ~A with
bounded support and a single value m with m ~AðmÞ ¼ 1 may be used as inputs. The results of the
transformation method can be made arbitrarily accurate by letting the number of a-cuts m go to
infinity, but at the cost of a high computational complexity.
The cost of the general transformation method is governed by the number of function

evaluations N. In this study, we use an efficient implementation of the general transformation
method that eliminates recurring permutations [27]. In this case, with m denoting the number of a-
cuts, N is given by N ¼ ðm� 1Þd þmd .
Note that the extended transformation method [28] cannot reduce the computational effort to

less than N ¼ md function evaluations (even if monotonicity is detected), since it always requires
to compute the 0-cut with a full grid. In case of non-monotonicity, the effort is significantly
higher, i.e. N ¼

Pm
k¼1m

d . Therefore, we recommend to implement the general transformation
method considering recurring permutations according to Ref. [27], as it has been done in this
paper.

3.3.3. Computing fuzzy functions using sparse grids
The sparse grid method [23,29] is applicable to continuous functions, and the fuzzy input

parameters must be convex with bounded support. The main idea of the method is to compute a
sparse grid interpolant of the objective function with sufficient accuracy for the d-dimensional box
O0 in Eq. (9), using only a low number of real-valued function evaluations. The number of
support nodes of the sparse grid interpolant grows only very moderately with increasing problem
dimension d. The hierarchical structure of the sparse grid interpolation scheme permits to
subsequently increase the interpolation depth until a sufficient estimated relative or absolute
accuracy is reached. The interpolant then replaces the objective function in the optimization
problems in Eq. (9). The subsequent optimization problems are solved by suitable global
optimization algorithms that take advantage of the known properties of the interpolant.
The computational complexity of the sparse grid approach cannot be expressed as simply as for

the other methods above, since it depends on the objective function itself. However, in case of
expensive objective functions, the evaluation of the model at the support nodes of the interpolant
usually governs the overall computation time. Depending on the type of the sparse grid used, the
number of support nodes varies. Here, we have used the sparse grid with piecewise multilinear
basis functions from Ref. [23], where the number of function evaluations N is at most

Np2nþ1 �
ðnþ d � 1Þ!

n!ðd � 1Þ!
,

where n denotes the depth of the sparse grid, n 2 N. The interpolant can be made arbitrarily
accurate with increasing n.
4. Estimating envelope FRFs using SEM and fuzzy sets

In this section, we describe the overall approach to computing envelope FRF magnitudes of
dynamic structures using SEM and fuzzy sets. This proves to be very straightforward, since the
fuzzy arithmetical methods described in the previous section allow us to keep the SEM model as it
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is—only multiple real-valued evaluations of the model are required to obtain an approximate
solution of the envelope. Thus, the method is applicable as easily as a Monte Carlo (MC) method,
however, it is much more efficient as the numerical examples of the next section will illustrate.

Step 1: Discretization: First, the objective frequency range ½F0;F1� is divided into s� 1
equidistant or logarithmically spaced steps, giving s discrete frequencies f i, i ¼ 1; . . . ; s. We
suggest one to use a logarithmic distribution when analyzing the dynamic response especially in
vibroacoustic applications, since in this case, the resonance frequencies usually lie close together
with increasing frequency. It is advisable to compute the FRF for a crisp set of input parameters
first to select an adequate resolution, i.e., capable of clearly resolving the resonance frequencies.
The d uncertain input parameters ~p1; . . . ; ~pd are discretized into N discrete parameter vectors pj,
j ¼ 1; . . . ;N, pj 2 O0 according to the chosen implementation of the extension principle of Section
3, and O0 as in Eq. (9). Note that in case of the reduced and the general transformation method, N
is determined by the number of a-cuts m chosen for the fuzzy number discretization. The sparse
grid approach requires the interpolation depth parameter n.

Step 2: Model evaluation: Then, the magnitude of the frequency response function FRFð f i; pjÞ is
computed for all s �N permutations. An efficient implementation may vectorize the calls to the
SEM model to treat multiple discrete frequencies, or alternatively, several sets of parameter
permutations at once.

Step 3: FRF envelope construction: In case of the reduced and general transformation methods,
the resulting discrete frequency response magnitudes FRFð f i; pjÞ can be used directly to compute
an approximate envelope. For each a-cut 2 ½0; 1� (where a must match the cuts selected for the
discretization), we compute FRFað f iÞ ¼ ½FRFa;minð f iÞ;FRFa;maxð f iÞ�, with

FRFa;minð f iÞ ¼ min
pj2Oa

FRFð f i; pjÞ (10)

and

FRFa;maxð f iÞ ¼ max
pj2Oa

FRFð f i; pjÞ. (11)

In case of sparse grid-based fuzzy arithmetic, the discrete frequency response magnitudes
FRFð f i; pjÞ, i ¼ 1; . . . ; s, j ¼ 1; . . . ;N, are used to construct s sparse grid interpolants
Anþd;dðFRFð f iÞÞ that approximate the FRF at each discrete frequency f i in the parameter
domain O0. For a detailed description of constructing these sparse grid interpolants, see Refs.
[23,29]. To obtain the frequency response envelope, a suitable global optimization algorithm [23]
is used to compute

FRFa;minð f iÞ ¼ min
p2Oa

Anþd;dðFRFð f iÞÞðpÞ (12)

and

FRFa;maxð f iÞ ¼ max
p2Oa

Anþd;dðFRFð f iÞÞðpÞ. (13)

Here, any set of a levels can be chosen for the optimization part. Obviously, the sparse grid-based
approach requires more computational effort to compute the envelope. However, often much
fewer evaluations of the SEM model are required to compute an accurate approximation of the
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response envelope. In case of complex, expensive to evaluate models, this can result in enormous
time savings.

Remark. To obtain good results with the sparse grid-based approach, it is recommended to use
FRF function values in logarithmic scale, i.e. use logðjFRFð f i; pjÞjÞ to construct the interpolant,
since the underlying multilinear interpolation scheme will produce more appropriate interpolated
values.

Finally, the fuzzy-valued frequency response at any given frequency f i can be composed from
the a-level sets FRFð f iÞa. Furthermore, the response function envelopes for a given interval of
confidence a are easily obtained by plotting the two curves of the minimum and the maximum
FRF magnitudes FRFa;minð f iÞ and FRFa;maxð f iÞ, respectively, over the frequencies f i 2 ½F0;F1�.
5. Numerical applications

In this section, we provide numerical results for two test problems. Both models were subjected
to two uncertain parameters.
To get a detailed insight into the performance of the SEM/fuzzy approach, we have performed

several runs on the models with different discretization parameters. In all simulation runs, the
frequency domain was decomposed into s ¼ 1000 frequencies at logarithmically spaced steps. This
resolution is much higher than it would have been necessary from a practical point of view to
achieve good results. However, it permitted to visualize the subtle differences in the convergence
behavior of the applied methods by zooming into the regions of interest.
We have also conducted an error analysis to assess the quality of the computed results. The

reference solutions Rmin and Rmax at a ¼ 0 were obtained numerically with a highly accurate
sparse grid interpolant using an interpolation depth of n ¼ 9, which resulted in N ¼ 3329 support
nodes per frequency. The maximum error emax and the average error emin of the FRF envelopes
were computed according to the following formulae:

emax ¼ max
i¼1;...;s

½jFRF0;minð f iÞ � Rminð f iÞj þ jFRF0;maxð f iÞ � Rmaxð f iÞj�, (14)

eavg ¼
Xs

i¼1

½jFRF0;minð f iÞ � Rminð f iÞj þ jFRF0;maxð f iÞ � Rmaxð f iÞj�

" #
� s�1. (15)

For comparison, we have also included a MC simulation with N ¼ 10, 100, and 1000 samples.
The samples were uniformly distributed in O0, generated by the pseudo-random number generator
RAND of MATLAB.

5.1. Coupled rod system

In the first example, we consider a system of two coupled rods. An axial force P is applied to the
free end of rod 1, as shown in Fig. 2. Table 1 summarizes the properties of rods 1 and 2 adopted
for the numerical model. The free–free boundary condition was used. The modulus of elasticity ~E
and the damping loss factor ~Z are treated as uncertain parameters. Note that in this simulation,
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rod 1

 

P

L1

rod 2

 L2

Fig. 2. Model of the coupled rod system.

Table 1

Physical and geometrical properties of the coupled rod system

Parameter Mean value m̄ Spread a Unit

~E1=2 2:71� 109 10%m̄ N/m2

~Z1=2 1:0� 10�2 10%m̄ —

r1=2 1140 — kg=m3

A1 1:735� 10�3 — m2

A2 1:862� 10�4 — m2

L1 0.20 — m

L2 2.46 — m
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~E1=2 and ~Z1=2 are not independent, i.e. ~E1 ¼ ~E2 ¼ ~E and ~Z1 ¼ ~Z2 ¼ ~Z, where ~E and ~Z are the
uncertain parameters. The uncertain parameters ~p are modeled as triangular fuzzy numbers with
spread a, i.e. ~p ¼ hm� a;m;mþ ai according to the triplet notation of Kaufmann and Gupta [30].
We have studied the frequency response for the uncoupled case as well as the coupled case. For
the coupled-rod case, the point receptance at the connection of the rods is considered (see Fig. 2).
One important feature of this setup is that rod 2 has a much higher modal density than rod 1,

which implies that rod 2 acts as ‘‘fuzzy attachment’’ to rod 1 [31].

5.2. Plate with reinforcements

In the second example, a plate with simple supports in the yz-plane and free-free in the xz-plane
is studied, see Fig. 3. Please also refer to Refs. [13,15] for a more detailed discussion of this model.
Ref. [13] includes a review of the SEM formulation for reinforced plate elements and a
comparison with a FEM approach. The assumed properties are summarized in Table 2. The FRF
is computed at the drive point located at position ðx; yÞ ¼ ð333:4; 160:0Þmm.

5.3. Simulation results

For the discretization parameters and the achieved accuracy of the runs, please refer to Table 3.
The computed FRF envelopes including zooms for different discretization refinements are shown
in Figs. 4–6, for the uncoupled rod, the coupled rod, and the plate system, respectively. Only the
envelopes for the 0-cut are shown, which reflect the maximum variation for the considered
uncertainty range. An exemplary fuzzy-valued result at a specific frequency f k is shown in the
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Fig. 3. Schematic diagram of the stiffened plate (units in meters) [13].

Table 2

Physical and geometrical properties of the plate

Parameter Mean value m̄ Spread a Unit

~E 69� 109 5%m̄ N=m2

~h 4 10%m̄ mm

r 2700 — kg=m3

n 0.3 — —

Lx 0.400 — m

Ly 0.704 — m
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right-most column in case of the fuzzy-arithmetical methods (rtrm: reduced transformation
method, gtrmrecur: general transformation method considering recurring permutations, sparse:
sparse grid-based). For the MC analysis, the distribution of the sampled results at f k is shown in
the right-most column. The location of f k in the frequency domain is indicated by the bold dashed
line in the zoom plots.

5.4. Interpretation of the results

5.4.1. Accuracy
All of the deterministic fuzzy set-based methods significantly outperformed the MC analysis in

terms of achieved accuracy vs. the number of required function evaluations. This is no surprise,
since unlike in problems such as integration, where pure MC methods provide the attractive
convergence order of 1=

ffiffiffiffiffi
N
p

due to the central limit theorem independent of the problem
dimension, the convergence order decreases exponentially with the dimension. We emphasize that
the MC method was only used here to verify the correctness of the fuzzy-set-based results.
Both transformation method variants sample the corner points of the domain of the uncertain

parameters, which are the relevant points when monotonicity is present. In proximity of the
resonance frequencies, the response function is non-monotonic, and the sampled inner points
become relevant. The reduced transformation method only samples the diagonals of the
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Table 3

Discretization parameters and approximation error for the simulation runs

Method m n N Uncoupled rod Coupled rod Plate

emax eavg emax eavg emax eavg

MC — — 10 4.6 1.3 7.4 0.57 14 3.3

— — 100 0.73 0.15 0.85 0.083 6.5 0.86

— — 1000 0.30 0.037 0.38 0.024 2.3 0.22

rtrm 2 — 5 5.0 0.52 7.0 0.37 14 3.0

5 — 17 1.1 0.11 1.8 0.092 8.6 1.2

17 — 65 0.49 0.054 0.58 0.042 3.9 0.33

33 — 129 0.46 0.051 0.54 0.039 3.8 0.23

gtrmrecur 5 — 41 1.0 0.078 1.6 0.069 5.2 0.56

17 — 545 0.085 0.0076 0.14 0.0068 0.55 0.059

33 — 2113 0.028 0.0026 0.042 0.0023 — —

sparse 21 1 5 5.0 0.56 7.2 0.39 15 3.0

21 3 29 1.0 0.090 1.6 0.082 11 1.0

21 5 145 0.096 0.0089 0.15 0.0080 5.2 0.27

21 6 321 0.027 0.0023 0.036 0.0020 2.1 0.13
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parameter domain hypercube, and is thus not guaranteed to converge to the correct result. This
can be observed in the sub-plots (b,ii–iv) of the Figs. 4 and 5, where the envelope curve shows a
kink near the peak, which is not present in the case of other methods (a,c,d,ii–iv).
The sparse grid-based approach showed mixed results. In the rod case, the performance was

very good. Compared to the general transformation method, a significantly better asymptotic
convergence rate was achieved (see Fig. 7), as was shown to hold in Ref. [23] for smooth functions.
However, for the plate example, the encountered oscillations were too strong to be correctly
resolved by an interpolant with a small number of nodes.
In summary, considering the error plot of Fig. 7, we suggest to use the reduced transformation

method if only a crude approximation of the envelope is needed. For FRFs that do not exhibit a
highly oscillatory behavior in the objective frequency domain, we suggest one to use sparse-grid-
based approach. Otherwise, the general transformation method is most suitable.

5.4.2. Performance

In practice, it is of great importance to obtain simulation results quickly. We therefore give
performance results of the discussed SEM/fuzzy approach in the following. All numerical tests
were carried out using MATLAB V6.5 running on a Linux i686 1.6GHz PC.
The evaluation of the coupled rod SEM model at 1000 discrete frequencies took trod ¼ 0:55 s.

The evaluation of the plate SEM model at 1000 discrete frequencies took tplate ¼ 24 s. The
overhead of the transformation method variants was negligible in all runs (i.e., less than 0.1% of
the overall computation time). The sparse grid-based approach required additional computing
time depending on m and n; this took about tsp ¼ 25240 s for the considered parameters m ¼ 21
and n ¼ 1; . . . ; 5. In the case of the plate model, this overhead was insignificant due to the



ARTICLE IN PRESS

-47.9937 -39.3936

N=10

N=100

N=1000

7000 8500
-54

-52

-50

-48

-46

-44

-42

-40

7000 8500103 104
-65

-60

-55

-50

-45

-40

-35

-60

-55

-50

-45

-40

-35

-60

-55

-50

-45

-40

-35

-60

-55

-50

-45

-40

-35

-30

7000 8500
f [Hz] f [Hz] f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]
FR

F 
[d

B
, r

ef
. m

/N
]

FR
F 

[d
B

, r
ef

. m
/N

]
FR

F 
[d

B
, r

ef
. m

/N
]

FRF [dB, ref. m/N]

-47.9969 -39.69217000 8500 7000 8500103 104 7000 8500
f [Hz] f [Hz] f [Hz]Frequency [Hz] FRF [dB, ref. m/N]

-47.9969 -39.34997000 8500 7000 8500103 104 7000 8500
f [Hz] f [Hz] f [Hz]Frequency [Hz] FRF [dB, ref. m/N]

-47.9969 -39.34997000 8500 7000 8500103 104 7000 8500
f [Hz] f [Hz] f [Hz]Frequency [Hz] FRF [dB, ref. m/N]

0.5

1

µ 
(F

R
F

)

-52

-50

-48

-46

-44

-42

-40

-54

-52

-50

-48

-46

-44

-42

-40

-54

-52

-50

-48

-46

-44

-42

-40

0

0.5

1

µ 
(F

R
F

)
0

0.5

1

µ 
(F

R
F

)

0

m=2
m=5
m=17

m=2
m=5
m=17

n=1
n=3
n=5

α = 0
α = 1

α = 0
α = 1

α = 0
α = 1

(d)

(c)

(b)

(a)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

Fig. 4. Envelope FRFs for the uncoupled rod system: (a) MC, (b) rtrm, (c) gtrmrecur, (d) sparse grid; (i) full spectrum,

(a,ii–iv) zoom for N ¼ 10; 100; 1000, (b,c,ii–iv) zoom for m ¼ 2; 5; 17 a-cuts, (d,ii–iv) zoom for level n ¼ 1; 3; 5; (a,v)
range of MC results depending on N at f 892 ¼ 7796:4Hz, (b–d,v) fuzzy-valued result at f 892 depending on m; n.

R.F. Nunes et al. / Journal of Sound and Vibration 291 (2006) 986–1003998



ARTICLE IN PRESS

-45.0722 -37.6265

N=10

N=100

N=1000

3000 5000

-48

-46

-44

-42

-40

-38

3000 5000101 102 103 104

101 102 103 104

101 102 103 104

101 102 103 104

-60

-50

-40

-30

-20

-10

0

3000 5000
f [Hz]f [Hz]f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

-45.1877 -37.42753000 5000 3000 5000

-50

-40

-30

-35

-45

-20

-25

-15

-10

-50

-40

-30

-35

-45

-20

-25

-15

-10

-50

-40

-30

-35

-45

-20

-25

-15

-10

3000 5000
f [Hz]f [Hz]f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

3000 5000 3000 5000 3000 5000
f [Hz]f [Hz]f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

3000 5000 3000 5000 3000 5000
f [Hz]f [Hz]f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

0

0.5

1

µ 
(F

R
F

)

0

0.5

1

µ 
(F

R
F

)

0

0.5

1

µ 
(F

R
F

)

-48

-46

-44

-42

-40

-38
 
 

-48

-46

-44

-42

-40

-38 

-48

-46

-44

-42

-40

-38 

-45.1877 -37.4275

-45.1877 -37.4275

m=2
m=5
m=17

m=2
m=5
m=17

n=1
n=3
n=5

α = 0
α = 1

α = 0
α = 1

α = 0
α = 1

(d)

(c)

(b)

(a)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

Fig. 5. Envelope FRFs for the coupled rod system: (a) MC, (b) rtrm, (c) gtrmrecur, (d) sparse grid; (i) full spectrum,

(a,ii–iv) zoom for N ¼ 10; 100; 1000, (b,c,ii–iv) zoom for m ¼ 2; 5; 17 a-cuts, (d,ii–iv) zoom for level n ¼ 1; 3; 5; (a,v)
range of MC results depending on N at f 867 ¼ 3986:6Hz, (b–d,v) fuzzy-valued result at f 867 depending on m; n.

R.F. Nunes et al. / Journal of Sound and Vibration 291 (2006) 986–1003 999



ARTICLE IN PRESS

-74.6877 -56.7172

N=10

N=100

N=1000

800 1000
-80

-75

-70

-65

-60

-55

-50

-80

-75

-70

-65

-60

-55

-50

-80

-75

-70

-65

-60

-55

-50

-80

-75

-70

-65

-60

-55

-50

800 1000101 102 103

101 102 103

101 102 103

101 102 103

-75

-70

-65

-60

-55

-50

-45

-40

800 1000

(i) (ii) (iii) (iv)

f [Hz]f [Hz] f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

-74.2888 -56.7637800 1000 800 1000

-75

-70

-65

-60

-55

-50

-45

-40

800 1000
f [Hz]f [Hz] f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

-74.8405 -56.7193800 1000 800 1000

-75

-70

-65

-60

-55

-50

-45

-40

800 1000
f [Hz]f [Hz] f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

-75.006 -56.096800 1000 800 1000

-75

-70

-65

-60

-55

-50

-45

-40

800 1000
f [Hz]f [Hz] f [Hz]Frequency [Hz]

FR
F 

[d
B

, r
ef

. m
/N

]

FRF [dB, ref. m/N]

(v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

0

0.5

1

µ 
(F

R
F

)
µ 

(F
R

F
)

µ 
(F

R
F

)

m=2
m=5
m=17

 

0

0.5

1
m=2
m=5
m=17

 

0

0.5

1
n=1
n=3
n=5

(d)

(c)

(b)

(a)

α = 0
α = 1

α = 0
α = 1

α = 0
α = 1

Fig. 6. Envelope FRFs for the plate system: (a) MC, (b) rtrm, (c) gtrmrecur, (d) sparse grid; (i) full spectrum, (a,ii–iv)

zoom for N ¼ 10; 100; 1000, (b,c,ii–iv) zoom for m ¼ 2; 5; 17 a-cuts, (d,ii–iv) zoom for level n ¼ 1; 3; 5; (a,v) range of

MC results depending on N at f 849 ¼ 897:90Hz, (b–d,v) fuzzy-valued result at f 849 depending on m; n.

R.F. Nunes et al. / Journal of Sound and Vibration 291 (2006) 986–10031000



ARTICLE IN PRESS

101 102 103

10−1

10−2

10−1

10−2

10−3

10−1

10−2

10−1

10−2

10−1

100

101

(a)

(b)

N

e m
ax

 [d
B

, r
ef

. m
/N

]

101 102 103

100

101

N

e m
ax

 [d
B

, r
ef

. m
/N

]
101 102 103

101

100

102

N

e m
ax

 [d
B

, r
ef

. m
/N

]
101 102 103

100

101

N
e a

vg
  [

dB
, r

ef
. m

/N
]

101 102 103

N

e a
vg

 [d
B

, r
ef

. m
/N

]

101 102 103

100

10−1

10−2

10−3

100

N

e a
vg

  [
dB

, r
ef

. m
/N

]

(c)

(d)

(e)

(f)

Fig. 7. Error plots: (a,b) uncoupled rod, (c,d) coupled rods, (e,f) plate; þ: MC, �: gtrmrecur, &: rtrm, B: sparse.

R.F. Nunes et al. / Journal of Sound and Vibration 291 (2006) 986–1003 1001
expensive model evaluations. The approximate overall run times can be obtained by multiplying
trod and tplate by N from Table 3, and adding tsp in case of the sparse grid-based method.

5.4.3. Scalability
In this paper, only problems with two uncertain parameters were addressed. Let us assume that

a maximum of about 1000 model evaluations per frequency is feasible in practice. The
applicability of the reduced transformation is then limited to about d ¼ 8 uncertain parameters if
five a-cuts are used. The general transformation method scales significantly worse, since its
complexity grows with OðmdÞ. Better results than with the reduced transformation method were
only achieved for more than 10 a-cuts. Therefore, only models with up to three uncertain
parameters are feasible. For d ¼ 4, a sparse grid interpolant of level n ¼ 5 requires 1105 function
evaluations. For d ¼ 9, a level 3 interpolant requires 1177 evaluations, which may still suffice
depending on the smoothness of the FRF curve. Needless to say that a MC simulation would
require significantly more than 1000 samples to produce reliable results in higher dimensions.
6. Conclusions

In this paper, the spectral element method was combined with fuzzy set methods to determine
the frequency response function (FRF) envelopes for structures under uncertain input data. Three
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different implementations of the extension principle of fuzzy arithmetic were applied and
compared with a standard Monte Carlo analysis. The reduced transformation method is
suggested to get an initial approximate solution with few function evaluations. If higher accuracies
are required, and if the FRF curves are sufficiently smooth, such as the presented rod example, the
sparse grid method performed best. In case of FRFs that exhibit a highly oscillatory response with
very high local curvature, such as in the plate case, the general transformation method represented
the most appropriate approach.
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