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Abstract

To investigate ground vibrations from railways an analytical approach is taken. The ground is modelled
as a stratified half-space with linearly viscoelastic layers. On top of the ground a rectangular embankment is
placed, supporting the rails and the sleepers. The rails are modelled as Euler–Bernoulli beams where the
propagating forces (wheel loads) are acting and the sleepers are modelled with an anisotropic Kirchhoff
plate. The solution is based on Fourier transforms in time and along the track. In the transverse direction
the fields in the embankment are developed in Fourier series and in the half-space with Fourier transforms.
The resulting numerical scheme is very efficient, permitting displacement fields far outside the track to be
calculated. Numerical examples are given for an X2 train that operates at the site Ledsgard in Sweden. The
displacements are simulated at 70 and 200 km/h and are compared with the displacements from simpler
models. The simulations are also validated against measurements, with very good agreement. At 70 km/h
the track displacements agree almost exactly and at 200 km/h the displacements are a very good
approximation of the measurement.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of ever faster trains the problem with excessive ground vibrations has
increased. These problems are of particular relevance when the ground consists of soft materials,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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such as various types of clay. In these materials the shear wave velocity may be as low as 30–40m/s,
and is thus lower than typical train speeds. A well-documented case with large vibrations due to
high speed trains occurred at Ledsgard in Sweden [1–4].
The interest in modelling ground vibrations has increased in recent years, mainly because of the

problems with high speed trains. The mathematical problem with a moving point force on an
elastic half-space is an old problem, see Ref. [5] for the stationary problem in a layered viscoelastic
configuration and an extensive review. Recent contributions with a non-stationary load include
Refs. [6,7].
To include the stiffness of the embankment and rails, a model with a beam on an elastic half-

space is common. Dieterman and Metrikine [8] determine the critical speed of a uniformly moving
point load and give further references. Recently, Madshus and Kaynia [3] and Kaynia et al. [2]
used a viscoelastic beam treated by finite elements on an analytical layered half-space and
favourably compare the results with the measurements at Ledsgard. Takemiya [4] uses an
analytical model with an Euler–Bernoulli beam on a layered viscoelastic half-space, which also
compares the results with the measurements at Ledsgard with good agreement. Also Krylov and
Ferguson [9] and Sheng et al. [10] use similar models, the latter for considering a time harmonic
load.
The more or less analytical methods mentioned so far have the advantage of leading to fast

numerical computations and to a natural modelling of the infinite domains (radiation conditions).
But the geometries of necessity are rather limited, although this is primarily a limitation at higher
frequencies. Another limitation is that analytical methods are restricted to linear phenomena. An
alternative is of course to employ FEM or some other discretization method. This allows for
arbitrary geometries and for nonlinear effects. However, the infinite domains must be treated in
some way, e.g. by absorbing or radiation boundary conditions. Another drawback is the
computational time which can be very long (days or more). An example of the application of
FEM is given by Ekevid and Wiberg [11], where the scaled boundary finite element method
proposed by Wolf and Song [12] is used to treat the infinite domain. Another limitation of FEM,
that is apparent from their paper, is that the discretized region is small, in this case 40m in length
(with a 107m long train) and less than that in the transverse direction. Thus the response is only
obtained in a region quite close to the train.
In the present paper, a more refined analytical model is introduced. This model includes an

embankment of finite width and height that is placed on a stratified half-space with viscoelastic
layers. The embankment is also modelled as a viscoelastic material. The two rails are modelled as
beams on top of the embankment and in addition to the vertical movement also the transverse and
longitudinal displacements are taken into account. Thus, the rails are governed by
Euler–Bernoulli’s equation in both the vertical and transverse directions but by the rod equation
in the longitudinal direction. No torsion is included. The sleepers are also placed on top of the
embankment and are governed by an anisotropic Kirchhoff plate. Comparisons are made with
simpler models (which can be obtained as limits) and with measurements.
The plan of the present paper is as follows. In Section 2 the problem is formulated and it is in

particular pointed out that the boundary conditions on the vertical sides of the embankment are
of a special type with vanishing tangential stresses but vanishing normal displacement. In Section
3, these boundary conditions are seen to enable a Fourier series representation of the
displacements in the transverse direction in the embankment. Together with Fourier transforms
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this leads to a rather straightforward solution procedure. The validity of the boundary conditions
is investigated with finite elements in Section 4 and the constraint on the normal displacement is
seen to have little effect on the results when it is compared to the natural boundary conditions.
Finally, in Section 5 some numerical results are presented and the displacements are compared to
measurements.
2. Problem formulation

To model a railway track, a rectangular embankment with the outer dimensions 2a� d is
situated on the surface of a layered ground, see Fig. 1. On top of the embankment, the rails are
modelled as two Euler–Bernoulli beams with the width c at the positions �bR and the sleepers as
an anisotropic Kirchhoff plate with the dimensions 2bS � h. The ground consists of n layers,
which are positioned with the coordinates d1 � dn�1. Each wheel is treated as a point load acting
on the rail: F ¼ F0dðx�

R t

0 VðsÞdsÞ. F0 is the amplitude, V ðtÞ the time-dependent velocity, x the
coordinate along the track and t the time. The displacement components in the embankment and
in the layered ground are uj ¼ fuj; vj;wjg, where uj, vj and wj are the cartesian components in the x,
y and z direction, respectively. The index j represents the embankment (j ¼ e) and the ground
layers (j ¼ 1; 2; . . . ; n). With similar use of notation, the material parameters are defined with the
density rj and the Lamé constants with hysteretic damping lj and mj.
The displacements in the embankment and in each layer are governed by the elastodynamic

equations of motion:

ðlj þ 2mjÞrðr � ujÞ � mjr � ðr � ujÞ ¼ rj €uj (1)

and the traction on a plane with the normal direction ek (k ¼ x; y; z) is given by

t
ðekÞ

j ¼ ljekr � uj þ 2mjqkuj þ mjek � ðr � ujÞ. (2)
x

y

z

-aa -bRbR

d

h Sleepers (Kirchhoff plate)
Rails (E-B beams)

Layer 1

Layer 2

Layer j
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Fig. 1. A cross section of the model showing geometrical and material properties and the applied wheel loads. The rails

and the sleepers are introduced as boundary conditions on top of the embankment.
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At each interface between two layers, i.e. at the coordinates z ¼ dj between layer j and j þ 1, the
displacement and traction vectors are continuous:

uj ¼ ujþ1; z ¼ dj, (3)

t
ðezÞ

j ¼ t
ðezÞ

jþ1; z ¼ dj. (4)

On the top surface the traction must vanish, except for the region under the embankment where
the displacement and traction vectors are continuous:

u1 ¼ ue; jyjoa; z ¼ 0, (5)

t
ðezÞ

1 ¼
tðezÞ
e ; jyjoa; z ¼ 0;

0; jyj4a; z ¼ 0:

(
(6)

To enable a series expansion of the displacement field in the embankment, the boundary
conditions on the sides of the embankment must be designed in a special way:

ve ¼ 0; jyj ¼ a; �dozo0;

sxye ¼ 0; jyj ¼ a; �dozo0;

szye ¼ 0; jyj ¼ a; �dozo0:

8><>: (7)

The two conditions on the shear stresses are the natural ones, but the constraint on the normal
displacement component ve is unphysical. The reason for this choice is mathematical, because
these conditions imply the following simpler ones:

ve ¼ 0; jyj ¼ a; �dozo0;

qyue ¼ 0; jyj ¼ a; �dozo0;

qywe ¼ 0; jyj ¼ a; �dozo0:

8><>: (8)

It is seen in Section 4 that the constraint on the normal displacement gives very good
approximations of the vertical displacements on top of and besides the embankment when the
rails are loaded vertically.
On top of the embankment the two rails are placed. They are characterized by the cross-

sectional area Ab, the modulus of elasticity Eb, the mass density rb and the moment of inertia
about the y and z axis Iyb and Izb (subscript b denotes beam). In the transverse direction they are
governed by Euler–Bernoulli’s equation and in the longitudinal direction by the rod equation.
It is recently shown by Vostroukhov and Metrikine [13] that the vertical displacement due to

train passage over a track with discrete sleeper positions is almost identical to the results when the
sleepers are uniformly distributed along the track. Hence the mass and stiffness from the sleepers
are accounted for by introducing a transversely isotropic Kirchhoff plate [14]. The shear stiffness
and the Young’s modulus in the x direction should both be equal to zero if the rails are supported
by sleepers. However, a slab track carries forces in the longitudinal direction via the sleepers. A
transversely isotropic plate model is able to describe both situations. The plate material has a mass
density rs, a modulus of elasticity Esk and Poisson’s ratio nsyz in the y–z plane and Esx in the x
direction and nsxk in the x–k plane, where k represents all directions perpendicular to the x
direction. In the x direction the shear modulus is Gsx and in the isotropic y–z plane it is simply
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Gsk ¼ Esk=2ð1þ nsyzÞ. Note that nsxkEsx ¼ nskxEsk due to symmetry of the stiffness tensor. On the
free surface next to the plate, i.e. at bSpyoa, the traction vanishes.
The normal and transverse components of the traction on top of the embankment thus satisfy

the boundary conditions:

szze ¼

J1 €we þ J2q
4
xwe þ J3q

2
xq

2
ywe þ J4q

4
ywe; jyjobS; jyje½bR � c=2�;

I1 €we þ I2q
4
xwe þ I3q

2
xq

2
ywe þ I4q

4
ywe � F=c; jyj 2 ½bR � c=2�;

0; bSpjyjoa;

8>><>>: (9)

syze ¼
ðrbAb €ve þ EbIzbq

4
xveÞ=c; jyj 2 ½bR � c=2�;

0; jyje½bR � c=2�;

(
(10)

where

I1 ¼ J1 þ
rbAb

c
; J1 ¼ rsh;

I2 ¼ J2 þ
EbIyb

c
; J2 ¼

h3

12

E2
sx

Esx � Eskn2sxk

� �
;

I3 ¼ J3; J3 ¼
h3

6

EskEsxnsxk

Esx � Eskn2sxk

þ 2Gsx

� �
;

I4 ¼ J4; J4 ¼
h3

12

EskEsx

Esx � Eskn2sxk

� �
:

In the longitudinal direction the shear stress, sxze, accounts for the coupling to the rails via the rod
equation:

sxze ¼
ðrbAb €ue � EbAb q

2
xueÞ=c; jyj 2 ½bR � c=2�;

0; jyje½bR � c=2�:

(
(11)

The boundary conditions (9)–(11) are valid for z ¼ �d and all x.
3. Exact solution

From the geometry of the problem, natural ways to represent the solution follow. It is
convenient to apply Fourier transforms with respect to t and x, where the corresponding
transform variables are denoted o, which is the angular frequency, and q, which is the
wavenumber in the x direction. The doubly transformed fields are denoted by a hat.
Analytical solutions to the equations of motion (1) are obtained by decomposing the

displacement fields in three scalar potentials in the embankment (j ¼ e) and in the ground layers
(j ¼ 1; 2; . . . ; n):

uj ¼ rjj þr� ðezcSHjÞ þ r � r� ðezcSVjÞ. (12)
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Here jj, cSHj and cSVj are potentials for longitudinal, horizontal transverse and vertical
transverse waves which satisfy scalar wave equations.

3.1. Solution in the ground

In the layered ground a Fourier transform in y makes it possible to represent the displacement
fields by employing the potentials:

ĵj ¼
1

2p

Z 1
�1

ðAjd e
ihpj ðz�dj�1Þ þ Aju e

�ihpjðz�djÞÞ eipy dp, (13)

ĉSHj ¼
1

2p

Z 1
�1

ðBjd e
ihsjðz�dj�1Þ þ Bju e

�ihsjðz�djÞÞ eipy dp, (14)

ĉSVj ¼
1

2p

Z 1
�1

ðCjd e
ihsjðz�dj�1Þ þ Cju e

�ihsjðz�djÞÞ eipy dp, (15)

where p is the transform variable to y. Ajd ¼ AjdðpÞ, Aju ¼ AjuðpÞ, Bjd ¼ BjdðpÞ, Bju ¼ BjuðpÞ, Cjd ¼

CjdðpÞ and Cju ¼ CjuðpÞ are the amplitudes of the down-going (subscript d) and up-going
(subscript u) P, SH and SV waves, respectively. The wavenumbers are kpj ¼ o=cpj and ksj ¼ o=csj,

where the wave speeds are given by cpj ¼ ððlj þ 2mjÞ=rjÞ
1=2 and csj ¼ ðmj=rjÞ

1=2. Corresponding

wavenumbers in the z direction are hpj ¼ ðk
2
pj � q2 � p2Þ

1=2 and hsj ¼ ðk
2
sj � q2 � p2Þ1=2, where

Im hpjX0 and Im hsjX0. In the last half-infinite layer (j ¼ n) there are no reflected waves, i.e.
Anu ¼ 0, Bnu ¼ 0 and Cnu ¼ 0, and the radiation condition with down-going or evanescent waves
has been applied. The dj�1 and dj in the exponents are crucial as they prevent exponential growth.
With this choice the absolute value of the exponential functions never exceeds one. When j ¼ 1
by definition: d0 ¼ 0.
It is trivial to obtain the displacement fields and the stresses by employing Eqs. (13)–(15)

together with Eqs. (12) and (2).

3.2. Solution in the embankment

As mentioned, the displacement field in the embankment (j ¼ e) can be developed in
trigonometric series and must satisfy the boundary conditions along the sides of embankment (8).
Due to the symmetric loading the field ue is symmetric about y ¼ 0, which means that ue and we

are even and ve is odd. Hence they are developed in Fourier cosine and Fourier sine series, with
wavenumber pm ¼ mp=a in the y direction. This gives the following choice for the potentials in
Eq. (12):

ĵe ¼
X1
m¼0

ðD1m sin hpmzþ E1m cos hpmzÞ cos pmy, (16)

ĉSHe ¼
X1
m¼1

ðD2m sin hsmzþ E2m cos hsmzÞ sin pmy, (17)
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ĉSVe ¼
X1
m¼0

ðE3m sin hsmz�D3m cos hsmzÞ cos pmy. (18)

Dnm and Enm are unknown amplitudes, where n ¼ 1; 2 and 3 give the amplitudes for the P, SH and
SV waves, respectively. The wavenumbers are similar to those in the half-space, but with subscript
e to denote the embankment: kpe ¼ o=cpe and kse ¼ o=cse. Here the wave speeds are given by

cpe ¼ ððle þ 2meÞ=reÞ
1=2 and cse ¼ ðme=reÞ

1=2 and the wavenumbers in the z direction are hpm ¼

ðk2
pe � q2 � p2mÞ

1=2 and hsm ¼ ðk
2
se � q2 � p2mÞ

1=2, where the roots are defined so that Im hpmX0 and

Im hsmX0.
Similar to the layers in the ground, the displacement field can easily be determined employing

Eqs. (16)–(18) together with Eq. (12):

ûe ¼
X1
m¼0

ûmðzÞ cos pmy, (19)

v̂e ¼
X1
m¼1

v̂mðzÞ sin pmy, (20)

ŵe ¼
X1
m¼0

ŵmðzÞ cos pmy, (21)

where

ûmðzÞ ¼
X3
n¼1

anmðDnm sin knmzþ Enm cos knmzÞ, (22)

v̂mðzÞ ¼
X3
n¼1

bnmðDnm sin knmzþ Enm cos knmzÞ, (23)

ŵmðzÞ ¼
X3
n¼1

gnmðDnm cos knmz� Enm sin knmzÞ. (24)

The coefficients anm, bnm, gnm and knm are tabulated in Table 1.
Table 1

Displacement coefficients in embankment

n ¼ 1 2 3

anm iq pm iqhsm

bnm �pm �iq �pmhsm

gnm hpm 0 �ðp2m þ q2Þ

knm hpm hsm hsm
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The z components of the stresses are used in the boundary conditions and are derived using
Eq. (2):

ŝxz e ¼
X1
m¼0

ŝxz mðzÞ cos pmy, (25)

ŝyz e ¼
X1
m¼0

ŝyz mðzÞ sin pmy, (26)

ŝzz e ¼
X1
m¼0

ŝzz mðzÞ cos pmy, (27)

where

ŝxz mðzÞ ¼
X3
n¼1

mexnmðDnm cos knmz� Enm sin knmzÞ, (28)

ŝyz mðzÞ ¼
X3
n¼1

meznmðDnm cos knmz� Enm sin knmzÞ, (29)

ŝzz mðzÞ ¼
X3
n¼1

meZnmðDnm sin knmzþ Enm cos knmzÞ. (30)

The coefficients xnm, znm and Znm collect the resulting coefficients from the differentiations in
Eq. (2):

xnm ¼ knmanm þ iqgnm, (31)

znm ¼ knmbnm � pmgnm, (32)

Znm ¼ ððkse=kpeÞ
2
� 2Þðiqanm þ pmbnmÞ � ðkse=kpeÞ

2knmgnm. (33)

3.3. General solution procedure

To obtain a solution to the unknowns in the ground expressed in the constants in the
embankment, the interfacial conditions (3)–(4) and the boundary condition (6) are used. The
interfacial conditions in Eq. (3) give

iqAjðdjÞ þ ipBjðdjÞ � qhsjCjðdjÞ ¼ iqAjþ1ðdjÞ þ ipBjþ1ðdjÞ � qhsjþ1Cjþ1ðdjÞ, (34)

ip AjðdjÞ � iqBjðdjÞ � phsjCjðdjÞ ¼ ipAjþ1ðdjÞ � iqBjþ1ðdjÞ � phsjþ1Cjþ1ðdjÞ, (35)

ihpj
eAjðdjÞ þ ðq

2 þ p2Þ eCjðdjÞ ¼ ihpjþ1
eAjþ1ðdjÞ þ ðq

2 þ p2Þ eCjþ1ðdjÞ (36)
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and the conditions in Eq. (4) give:

mjð�2qhpj
eAjðdjÞ � phsj

eBjðdjÞ þ iqðk2
sj � 2h2sjÞ

eCjðdjÞÞ

¼ mjþ1ð�2qhpjþ1
eAjþ1ðdjÞ � phsjþ1

eBjþ1ðdjÞ

þ iqðk2
sjþ1 � 2h2sjþ1Þ

eCjþ1ðdjÞÞ, ð37Þ

mjð�2phpj
eAjðdjÞ þ qhsj

eBjðdjÞ þ ipðk2
sj � 2h2sjÞ

eCjðdjÞÞ

¼ mjþ1ð�2phpjþ1
eAjþ1ðdjÞ þ qhsjþ1

eBjþ1ðdjÞ

þ ipðk2
sjþ1 � 2h2sjþ1Þ

eCjþ1ðdjÞÞ, ð38Þ

mjððk
2
sj � 2h2sjÞAjðdjÞ þ 2ihsjðp

2 þ q2ÞCjðdjÞÞ

¼ mjþ1ððk
2
sjþ1 � 2h2

sjþ1ÞAjþ1ðdjÞ þ 2ihsjþ1ðp
2 þ q2ÞCjþ1ðdjÞÞ, ð39Þ

where

AkðzÞ ¼ Akd e
ihpkðz�dk�1Þ þ Aku e

�ihpkðz�dkÞ; eAkðzÞ ¼ Akd e
ihpkðz�dk�1Þ � Aku e

�ihpkðz�dkÞ,

BkðzÞ ¼ Bkd e
ihskðz�dk�1Þ þ Bku e

�ihskðz�dkÞ; eBkðzÞ ¼ Bkd e
ihskðz�dk�1Þ � Bku e

�ihskðz�dkÞ,

CkðzÞ ¼ Ckd e
ihskðz�dk�1Þ � Cku e

�ihskðz�dkÞ; eCkðzÞ ¼ Ckd e
ihskðz�dk�1Þ þ Cku e

�ihskðz�dkÞ.

Taking an inverse Fourier transform of the boundary condition (6), three more equations are
obtained

m1ð�2qhp1
eA1ð0Þ � phs1

eB1ð0Þ þ iqðk2
s1 � 2h2

s1Þ
eC1ð0ÞÞ ¼

X1
m¼0

ŝxz mð0Þf mðpÞ, (40)

m1ð�2php1
eA1ð0Þ þ qhs1

eB1ð0Þ þ ipðk2
s1 � 2h2s1Þ

eC1ð0ÞÞ ¼
X1
m¼0

ŝyz mð0ÞgmðpÞ, (41)

m1ððk
2
s1 � 2h2

s1ÞA1ð0Þ þ 2ihs1ðp
2 þ q2ÞC1ð0ÞÞ ¼

X1
m¼0

ŝzz mð0Þf mðpÞ. (42)

f m and gm are defined as

f mðpÞ ¼

Z a

�a

cos pmy e�ipy dy ¼
2ð�1Þmp sinðapÞ

p2 � p2m
, (43)

gmðpÞ ¼

Z a

�a

sin pmy e�ipy dy ¼ �
2ið�1Þmpm sinðapÞ

p2 � p2
m

. (44)

There are two possible methods that can be adopted to express the unknowns in the ground in
terms of the constants in the embankment, one of which is the so-called Thomson–Haskell
approach or transfer matrix technique [15]. The idea is to obtain a linear relation between the
unknowns by recursive elimination, starting from the bottom layer. However, with increasing
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frequency the calculations will eventually suffer from precision problems and the algorithm
becomes unstable [15]. Instead, to obtain a stable solution algorithm, the global matrix approach
used by e.g. Lih and Mal [15] is adopted. The idea is to obtain the unknowns in the ground
expressed in the constants in the embankment simultaneously for each p using Eqs. (34)–(42). In
this way all the unknowns Ajd , Aju, Bjd , Bju, Cjd and Cju that depend on the continuous Fourier
variable p can be expressed in Dnm and Enm (which do not depend on p).
Employing an inverse Fourier series with respect to y over the width of the embankment

(�aoyoa) of the boundary condition (5) together with similar inverse Fourier series of the
boundary conditions on top of embankment (9)–(11) the remaining unknowns Dnm and Enm are
solved. Due to orthogonality there is one equation for each m, denoted with m0. Eqs. (5) result in

1

2p

Z 1
�1

ðiqA1ð0Þ þ ipB1ð0Þ � qhs1C1ð0ÞÞf m0 ðpÞdp ¼
2a

�m0
ûm0 ð0Þ; m0 ¼ 0; 1; . . . , (45)

1

2p

Z 1
�1

ðipA1ð0Þ � iqB1ð0Þ � phs1C1ð0ÞÞgm0 ðpÞdp ¼ �av̂m0 ð0Þ; m0 ¼ 1; 2; . . . , (46)

1

2p

Z 1
�1

ðihp1
eA1ð0Þ þ ðq

2 þ p2Þ eC1ð0ÞÞf m0 ðpÞdp ¼
2a

�m0
ŵm0 ð0Þ; m0 ¼ 0; 1; . . . . (47)

�m0 is the Neumann factor where �0 ¼ 1 and �m0 ¼ 2 for m0X1. The similar inverse Fourier series
are applied on the boundary conditions (9)–(11) resulting in

ŝzz m0 ð�dÞ
2a

�m0
¼
X1
m¼0

ðKzbGm;m0 þ KzsDm;m0 Þŵmð�dÞ �
F̂

c
G0;m0 ; m0 ¼ 0; 1; . . . , (48)

ŝyz m0 ð�dÞa ¼
X1
m¼1

Kybv̂mð�dÞOm;m0 ; m0 ¼ 1; 2; . . . , (49)

ŝxz m0 ð�dÞ
2a

�m0
¼
X1
m¼0

Kxbûmð�dÞGm;m0 ; m0 ¼ 0; 1; . . . , (50)

where

Kzb ¼ �
Abrb

c
o2 þ

EbIyb

c
q4; Kzs ¼ �J1o2 þ J2q

4 þ J3q
2p2

m þ J4p
4
m, (51)

Kyb ¼ �
Abrb

c
o2 þ

EbIzb

c
q4, (52)

Kxb ¼ �
Abrb

c
o2 þ

EbAb

c
q2. (53)

Gm;m0 , Om;m0 and Dm;m0 are determined analytically for each combination of m and m0:

Gm;m0 ¼

Z �bRþc=2

�bR�c=2
cos pmy cos pm0ydyþ

Z bRþc=2

bR�c=2
cos pmy cos pm0ydy, (54)
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Om;m0 ¼

Z �bRþc=2

�bR�c=2
sin pmy sin pm0ydyþ

Z bRþc=2

bR�c=2
sin pmy sin pm0ydy, (55)

Dm;m0 ¼

Z bS

�bS

cos pmy cos pm0ydy. (56)

Finally the Fourier transformed force in Eq. (40) is

F̂ ¼ F0

Z 1
�1

Z 1
�1

d x�

Z t

0

V ðsÞds

� �
eiðot�qxÞ dxdt. (57)

The integration of the velocity within the Dirac delta function is needed if the train accelerates.
However, if the train travels with constant speed, V0 the expression is simplified:

F̂ ¼ F0

Z 1
�1

Z 1
�1

dðx� V0tÞ e
iðot�qxÞ dxdt ¼ F0

2p
jV0j

d
o
V0
� q

� �
. (58)

This enables very fast computations, since the inverse Fourier transform with respect to q becomes
trivial, i.e. q ¼ o=V0 (typically around 1min for an 200� 200m2 domain with a frequency
content of 0ofo3Hz).
4. The embankment boundary conditions

To investigate how much the constraints on the sides of embankment (7) affect the
displacement fields, a 2D finite element model in plain strain is used and the results are
compared to the model with natural boundary condition and to an embankment with sloping
sides (to simulate a more natural geometry). The symmetric geometry of the problem is used to
reduce the computational time. The computational domain of the model is shown to the left in
Fig. 2. The materials in the embankment and in the ground represents the materials that are used
in the final model in the embankment and in the surface layer, see further in the next section. The
ground is clamped at its outer surface. In this way it is efficient to make a frequency response
analysis, using a stationary harmonic loading. Thus a harmonic force with the amplitude F0 ¼

50 kN and the excitation frequency o varied between 1 and 40Hz is applied at the position where
the rails are placed, see Fig. 2. Since the solution procedure requires steady-state conditions,
enough damping has to be adopted to avoid responses from waves that are reflected by the
clamped boundary. A good approximation of the half-infinite domain is obtained if the wave
amplitude is less than 90% of the excitation amplitude close to the clamped boundary. Rayleigh
damping is used, which models the damping with coefficients proportional to the mass and
stiffness matrices C ¼ adMM þ bdKK . The coefficients are obtained using the constant critical
damping x ¼ 0:1 at the frequencies 1 and 10Hz from

xi ¼
1

2

adM

oi

þ bdKoi

� �
. (59)

This gives adM ¼ 1:1424 and bdK ¼ 0:0029.
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Fig. 3. The resulting vertical amplitudes at the positions 1, 2 and 3 shown in Fig. 2. The results are given for the three

models of the embankment in Fig. 4(a)–(c). The height of the embankment is (a) d ¼ 0:5m and (b) d ¼ 1:0m.

Fig. 2. (a) The principles of a 2D FE-model to simulate the frequency response due to harmonic loading with frequency

o; (b) an example of the total amplitude for the excitation frequency 5Hz. The wavelength in the ground is 17.4m

resulting in the radius R ¼ 121:8m.
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The frequency response analysis is made at discrete frequencies between 1 and 40Hz. The
higher the frequency, the faster the waves are damped, so it is unnecessary to use the same domain
for all frequencies. Hence the radius of the ground domain is chosen to be R ¼ 8l for low
frequencies (less than 5Hz) and R ¼ 7l for higher frequencies, where l is the wavelength of the
shear wave in the ground for the investigated frequency. To obtain accurate results the maximum
edge size of the used triangular elements is chosen in a way so that there are at least six elements
per wavelength. The elements are Lagrange–Quadratic elements which give good accuracy.
The vertical displacement amplitudes at the positions 1–3 (see Fig. 2) are gathered for discrete

frequencies in Fig. 3 for embankments with d=2a ¼ 0:5
8
to the left and d=2a ¼ 1

8
to the right. The
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Fig. 4. The three embankments used in the validation of the boundary conditions (7): (a) the embankment used in the

presented model; (b) the same rectangular region, but with natural boundary conditions at the sides; (c) an embankment

with sloping sides to represent a more common geometry of existing embankments.
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solid lines with square markers represent the embankment with unnatural boundary conditions,
Fig. 4a, the dashed lines with triangular markers the rectangular embankment with natural
boundary conditions, Fig. 4b, and the dash–dotted lines with circular markers the embankment
with sloping sides, Fig. 4c. In general it is seen that the approximation with the model (a) gives
very good agreement to both model (b) and model (c). There are no significant differences
between the three models if the height of the embankment is changed from 0.5 to 1.0m. At 40Hz
the model (a) disagree at most with 20% with the model (b), which occurs at position 2. To
conclude, the constraints on the sides of the embankment give very good approximations of the
displacements due to the vertical loading compared to the results obtained with the natural
boundary conditions, i.e. with syy e ¼ 0 instead of ve ¼ 0. However, if the load was applied
transversally, the results would disagree much more.
5. Numerical examples

Madshus and Kaynia [3] use the program ‘‘VibTrain’’ described in Kaynia et al. [2] to predict
the ground vibrations observed at the site Ledsgard. They represent the track by a beam with
finite elements resting on a layered ground. A similar approach is taken by Takemiya [4], where
the track is represented with an Euler–Bernoulli beam. Due to nonlinearities in the soils, the
material parameters are highly dependent on the velocity, mainly why two train speeds have been
investigated: 70 and 200 km/h. The ground is modelled with five layers (n ¼ 5) and the soil
parameters adopted for the present model are tabulated in Table 2, based on the comprehensive
measurements performed by the Swedish National Rail Administration BANVERKET and used
by Kaynia et al. [2], Madshus and Kaynia [3] and Takemiya [4].
Both the geometrical and material properties for the embankment are somewhat uncertain. For

the beam used in ‘‘VibTrain’’ Kaynia et al. [2] use the bending stiffness EI ¼ 200MNm2 at low
train speeds and EI ¼ 80MNm2 at high speeds, and the mass density is taken as 10 800 kg/m. The
geometries for the track in question are vaguely described. However, in the paper presented by
Madshus and Kaynia [3], a cross section of a part of the track structure at Ledsgard (consisting of
three tracks) is outlined. Assuming that Madshus and Kaynia [3] use a symmetric embankment
with the dimensions 1:4� 8:0m2 to obtain the bending stiffness for their beams, the modulus of
elasticity for the embankment is obtained from the given bending stiffness at low and high train
speeds (excluding the bending stiffness for the rails).
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Table 2

Soil parameters from the test site Ledsgard [3,4], used in the simulations for low train speeds (V0 ¼ 70km=h) and high

train speeds (V0 ¼ 200 km=h)

Soil layer Thickness

(m)

Mass

density rj

ðkg=m3Þ

cs ðm=sÞ cp ðm=sÞ Damping ratio dj

V0 ¼ 70 V0 ¼ 200 V0 ¼ 70 V0 ¼ 200 V0 ¼ 70 V0 ¼ 200

Surface crust ðj ¼ 1Þ 1.1 1500 72 65 500 340 0.04 0.063

Organic clay ðj ¼ 2Þ 3.0 1260 41 33 500 360 0.02 0.058

Marine clay ðj ¼ 3Þ 4.5 1475 65 60 1500 1500 0.05 0.098

Marine clay ðj ¼ 4Þ 6.0 1475 87 85 1500 1500 0.05 0.064

Marine clay ðj ¼ 5Þ 1 1475 100 100 1500 1500 0.05 0.060
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Using the material parameters shown in Table 2, the amplitudes become too small at low train
speeds when the 1.4m thick embankment is used, no matter the width of the embankment. Both
the average material parameters for the 1.4m thick embankment consisting of crushed rock,
gravel and sand given by Madshus and Kaynia [3] and the bending stiffness used by Kaynia et al.
[2] and by Takemiya [4] was used. When the track was replaced by the Euler–Bernoulli beam with
the width 3.0m as Takemiya [4] proposes, the amplitudes agree well at the train speed 70 km/h but
disagree much at 200 km/h.
To obtain more realistic results the somewhat arbitrary cross section 0:5� 8:0m2 for the

embankment together with the mass density re ¼ 1800kg=m3 [3] and the Poisson ratio ne ¼ 0:3 is
chosen. It is seen in the next section that with this choice the results agree very well with
measurements.
On top of the embankment the rails are placed. They are standard UIC60 rails with cross-

sectional area Ab ¼ 76:87 cm2, modulus of elasticity Eb ¼ 210GPa, density rb ¼ 7850kg=m3 and
moment of inertia about the y- and z-axis Iyb ¼ 3055 cm4 and Izb ¼ 516:4 cm4 [16]. The base
that is in contact with the embankment is c ¼ 15 cm and the span of the rails is 2bR ¼ 1:5m,
see Fig. 1.
A standard mono-block sleeper coded NS 90 [16] has the outer dimensions 2520� 300�

233mm3 (length� width� height) and are distributed with the regular intervals 0.67m [3]. In this
model the distributed mono-block sleepers are modelled with the transversely isotropic (in the y–z

plane) Kirchhoff plate, which has a width of 2520mm, height of 233mm and an infinite
distribution along the track. The weight of one sleeper is within 200–300kg, and the average of
250 kg gives the mass density of the plate rs ¼ 635kg=m3. With the modulus of elasticity Es ¼

38 450MPa for one sleeper [17] the stiffness in the y–z plane becomes Esk ¼ 38 450MPa. As the
sleepers are supported directly on the gravel on the embankment, the stiffness in the x direction is
chosen to be zero, Esx ¼ 0MPa, as well as the shear modulus, Gsx ¼ 0MPa. The Poisson’s ratio is
assumed to be nsyz ¼ nsxk ¼ 0:2 with some uncertainty, but experience shows that this does not
affect the results (k is any direction perpendicular to the x direction).
The axle-load is introduced via Eqs. (9) and (57)–(58) and in the model it is superimposed to

yield an X2 train with five cars, one of which is the engine, see Fig. 5. It has the same configuration
as the train that operated along the west coast line during the measurements at Ledsgard [1–4].
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Fig. 6. Simulated vertical ground motion at z ¼ 0 for an X2 train in southbound configuration travelling from left to

right at the site Ledsgard. The train speeds are: (a) 70 km/h and (b) 200 km/h.

Fig. 5. The X2 train configuration that is used in the model, showing the geometrical properties and the axle-loads

F1–F5.
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5.1. Simulations at 70 and 200 km/h

Fig. 6 shows the vertical motion of the ground at z ¼ 0 when the front of the train passes the
origin. The train travels from left to right with 70 km/h (left figure) and 200 km/h (right figure) and
the vertical displacement w is displayed in a gray scale. When the train travels with 70 km/h the
field is quasi-static, but as the train passes the shear wave velocity for the softest clay
(cs2 � 148 km=h), the characteristic mach-cone is formed behind the train.
The same solutions are seen in Fig. 7, but at y ¼ 0 and z ¼ �d (the solid lines). In addition the

measured displacement is seen as the dashed line. In the left figure the train travels with 70 km/h
and the result agrees very well with corresponding measured displacement. However, at the front
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Fig. 7. Simulated (solid curve) and measured (dashed curve) vertical displacement at y ¼ 0 and z ¼ �d. The train

speeds are: (a) 70 km/h and (b) 200 km/h, in southbound direction (travelling from left to right in the figures).

Fig. 8. Frequency spectra for the simulated displacements in Fig. 7. The speeds are: (a) 70 km/h and (b) 200 km/h.
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and back wheel pair the levels disagree with more than 1mm. It should be remarked that it is
more or less just the static displacement that follows the train at this velocity and that low
frequencies below 3Hz completely dominate, see Fig. 8. The simulation is made for frequencies up
to 10Hz.
To the right the speed is 200 km/h and also here the simulation is made up to 10Hz. The

simulated displacements differ a bit from the measured results, but still the overall levels agree
well. It should be remarked that also Takemiya [4] and Kaynia et al. [2] obtain similar
disagreements at 200 km/h. The amplitudes become very large, which emphasize the importance
of designing railway lines on grounds with higher shear wave velocities than the operating train
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Fig. 9. The quotient between the frequency response for some variations in the track model and the present track model

at y ¼ 0 and z ¼ �d. The solid curve (—) represents the present model, the dashed curve (��) an embankment without

rails and sleepers, the dash–dotted curve (��) the present model but without the coupling to the rod equation in the

longitudinal direction in Eq. (11), i.e. sxz ¼ 0 at the interface between the rails and the embankment, and the dotted

curve (� � �) that the track is replaced with an equivalent Euler–Bernoulli beam. The train speeds are: (a) 70 km/h and

(b) 200 km/h in southbound direction.
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speeds. Countermeasures such as the dry deep mixing method (dry DMM) has been used by
BANVERKET at the site Ledsgard with good results.
Fig. 8 shows the corresponding frequency spectra for the displacements at a fixed point on the x

axis. They reveal a wave-like pattern with sharp valleys that is due to interference between all the
wheel loads [4]. At the speed 70 km/h (the left figure) the static value at 0Hz is 18.3mm s and
already at 1Hz the value is less than 12% of this and at 3Hz less than 3%. When the train speed is
increased to 200 km/h (the right figure) the shape of the frequency response is somewhat distorted.
The levels for low frequencies are decreased but at higher frequencies they are increased. The
interference pattern is stretched out in proportion to the increased speed, which is clearly seen for
the sharp valley at 1Hz at the speed 70 km/h, which is moved to 3Hz for the speed 200 km/h with
a factor of 200

70
. The static value at 0Hz is here 8.5mm s and it is not reduced to less than 20% until

3.5Hz and less than 5% at 7.5Hz.
In Fig. 9, four curves (at each speed) of the quotient between the frequency response for some

variations of the track model and the present track model on top of the embankment at y ¼ 0m
are shown. The solid curve is for the present model. The dashed curve shows the response for a
track model without rails and sleepers. It is seen already at as low frequencies as 1Hz for the train
speed 70 km/h and 7Hz for 200 km/h that the higher the frequency is, the more the simplified
model overestimates the results compared to the present model. A similar track model as that
proposed, but without the coupling in the longitudinal direction between the rails and the
embankment in Eq. (11) is represented with the dash–dotted curve. It overestimates the
results above 1 and 7Hz at the speeds 70 and 200 km/h, but the results differ with at most 30% at
70 km/h and 60% at 200 km/h. In comparison to the response from the model with the track
replaced with an Euler–Bernoulli beam (dotted curve), the differences are small. The same
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Fig. 10. The time domain displacements for the results in Fig. 9. The solid curve (—) represents the present model, the

dashed curve (��) an embankment without rails and sleepers, the dash–dotted curve (��) the present model but

without the coupling to the rod equation in the longitudinal direction in Eq. (11), i.e. sxz ¼ 0 at the interface between

the rails and the embankment, and the dotted curve (� � �) that the track is replaced with an equivalent Euler–Bernoulli

beam. The train speeds are: (a) 70 km/h and (b) 200 km/h in southbound direction.
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parameters as Takemiya [4] use for the equivalent Euler–Bernoulli beam are adopted here and are
represented by the bending stiffness EI ¼ 200MNm2 at 70 km/h and EI ¼ 80MNm2 at 200 km/h,
the mass density 10 800 kg/m and the cross-sectional area 1:4� 3:0m2. Moreover, it is assumed
that there is no interaction in the longitudinal direction when the Euler–Bernoulli beam is used. At
most the model with the Euler–Bernoulli beam deviates with a factor 9 at 70 km/h and a factor 4
at 200 km/h. For low frequencies, the displacement levels are remarkably higher than the present
model. At 70 km/h the differences are almost 10% in the frequency range 0–1Hz, whereas at
200 km/h the differences are between 10% and 80% higher in the range 0–7Hz. Mainly at 200km/h,
this appears as higher time domain amplitudes compared to the present model. In Fig. 10 the
results from Fig. 9 are shown in the time domain. At 70 km/h, the results are similar for all four
models. However, if the train propagates at 200 km/h, the amplitudes differ much more. The solid
curve is for the present model, the dashed for the model without rails and sleepers, the
dash–dotted for the model without longitudinal coupling to the rails and the dotted for the
equivalent Euler–Bernoulli beam. It is clear that the model without rails and sleepers provide a
response with a high frequency content, which was seen in Fig. 9 in the comparison to the present
model. Also the high displacement levels in the frequency range 0–7Hz for the Euler–Bernoulli
beam is confirmed. However, the response for the model without the longitudinal coupling to the
rails is not so clear. Knowing from Fig. 9 that it agrees with the dashed curve up to 7Hz, one can
distinguish that the dash–dotted curve constitutes the mean of the oscillating dashed curve.
It should also be mentioned that the coupling between the embankment and the rails in the

transverse direction has been investigated by replacing the boundary condition (10) by syze ¼ 0
and almost no deviation between that model and the present model could be observed.
Finally, to give an example of the importance of the modelling of the ground structure, the

thickness of layer 2, i.e. the organic clay layer, was changed from 3.0 to 3.5m. The results of
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Fig. 11. Simulated (solid curve) and measured (dashed curve) vertical displacement at y ¼ 0 and z ¼ �d. The train

speeds are: (a) 70 km/h and (b) 200 km/h, in southbound direction (travelling from left to right in the figures). On the

contrary to Fig. 7 the layer 2 that consist of organic clay is made thicker from 3.0 to 3.5m.
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the track displacements are seen in Fig. 11. The displacements at 70 km/h is slightly better with the
modified ground model, but as the speed is changed to 200 km/h the result becomes much more
accurate than in Fig. 7. The results are very sensitive to the thickness of at least the layer with
the soft organic clay at higher train speeds, which shows the difficulties in eliminating sources of
errors in geometrical parameters for the ground. Also the material parameters contribute to
uncertainties in the results.
6. Concluding remarks

The somewhat unnatural boundary conditions at the sides of the embankment has been
investigated using finite element models and comparing the displacement amplitudes given by
those conditions and the natural ones. It is seen that the constraints on the sides give very good
approximations of the displacements at least up to 40Hz when the loads are applied vertically.
The present track-ground model gives very good results at both 70 and 200 km/h. The

displacements are compared to measurements performed by the Swedish National Rail
Administration, BANVERKET, and at 70 km/h the displacements on top of the track agree
almost exactly. But as the train speed is increased to 200 km/h, the simulated track displacements
disagree a little. However, if the thickness of the organic clay layer is increased from 3.0 to 3.5m,
the results become very good.
The present track model has also been compared to those with more simplified track models.

Since the displacements are dominated by low frequencies (up to 3Hz) at the speed 70 km/h, the
track without rails and sleepers, the track without longitudinal coupling to the rails and the track
replaced by an equivalent Euler–Bernoulli beam, all give similar time domain results as the
present track model. Yet at higher frequencies than 1Hz, the simulations made with the track
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without rails and sleepers and the equivalent Euler–Bernoulli beam disagree much compared to
the present model. At the train speed 200 km/h the track represented by the Euler–Bernoulli beam
gives results that disagree much. Because of amplified displacement levels in the frequency range
0–7Hz, the time domain amplitudes become large. The other track models give reasonably good
displacement levels up to about 7.5Hz.
Due to simplifications such as no dynamics in the train, no inhomogeneities in the contact

between the rails and the wheels and no inhomogeneities in the ground, some important sources
that generate ground borne vibrations have not been considered. Therefore, some high frequency
mechanisms are disregarded.
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