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Abstract

In recent years, structures made up of functionally graded materials (FGMs) have received considerable
attention for use in high-temperature applications. In this article, a finite element formulation based on
First-Order Shear Deformation Theory (FSDT) is used to study the thermal buckling and vibration
behavior of truncated FGM conical shells in a high-temperature environment. A Fourier series expansion
for the displacement variable in the circumferential direction is used to model the FGM conical shell. The
material properties of the truncated FGM conical shells are functionally graded in the thickness direction
according to a volume fraction power law distribution. Temperature-dependent material properties are
considered to carry out a linear thermal buckling and free vibration analysis. The conical shell is assumed to
be clamped–clamped and has a high temperature specified on the inner surface while the outer surface is at
ambient temperature. The one-dimensional heat conduction equation is used across the thickness of the
conical shell to determine the temperature distribution and thereby the material properties. In addition, the
influence of initial stresses on the frequency behavior of FGM shells has also been investigated. Numerical
studies involving the understanding of the role of power law index, r=h ratios, and semi-vertex angle on the
thermal buckling temperature as well as on vibration have been carried out.
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1. Introduction

In recent years, functionally graded materials (FGMs) have been developed due to their
excellent mechanical and thermal properties. These materials are high performing and heat
resistant, capable of withstanding ultrahigh temperatures and extremely large gradients present in
spacecraft and nuclear applications. FGMs are microscopically inhomogeneous composite
materials. The concept of FGM was first proposed in 1984 by a group of materials scientists, in
Sendai, Japan, as novel materials with thermal barrier or heat-shielding properties. Research
activities have been accelerated within Japan and worldwide in the recent past [1–3]. Typically,
these materials are usually made from a mixture of metals and ceramic through a powder
metallurgy process. The advantage of using these materials is that they are able to withstand high-
temperature gradient environments while maintaining their structural integrity. For example, the
insulating tile for a re-entry space vehicle can be designed such that the outside is a refractory
(ceramic) material, and the inside a load-carrying structure made of a strong and tough metal [4].
It possesses properties that vary gradually and continuously with respect to the spatial
coordinates in order to achieve a required function. The composition is varied from a ceramic-rich
surface to a metal-rich surface with a desired variation of the volume fraction of the two materials
in between the two surfaces [5]. Initially, FGMs were designed as thermal barrier materials for
aerospace application and fusion reactors. Later on, FGMs were developed for military,
automotive, biomedical application, semi-conductor industry and general structural element in
high thermal environments.
A truncated conical shell is one of the main components of the propulsion system structure in

rockets. Truncated conical shells are also used to contain liquids. Instability of truncated conical
shells under thermal loading was studied by Lu and Chang [6,7]. They presented the para-
meter study on truncated conical shells for two cases of temperature distribution: temperature
gradient along the generator of the cone and temperature changes circumferentially and
meridionally. Evaluation of the critical temperature and its relation to geometric parameters
were discussed. It was found that axial compression or bending was the primary cause for
thermal buckling. Dumir et al. [8] have analyzed truncated conical caps for static and dynamic
buckling loads using first-order shear deformation and classical lamination theory. Stern
[9] derived the differential equations for the problem of thermal stresses in conical shells
subjected to axially symmetric temperature distribution. Huth [10] derived the equations
for the computation of thermal stresses in conical shells (applicable to conical missile tips
flying at zero angle of attack), which takes into account the aerodynamic pressure and thermal
gradient. Material properties used for the analysis, however, were independent of temper-
ature. Bushnell and Smith [11] have carried out experimental and computer software BOSOR
to analyze thermal buckling of conical shells. Tani [12] studied the effect of axisymmetric
initial deflections on the thermal buckling of shallow, truncated conical shells under uniform
heating. Lakis et al. [13] have carried out dynamic analysis of anisotropic fluid-filled conical
shells. Likewise, Jianping and Harik [14] presented thermal stress analysis on the axisymmetric
conical shells of tapered thickness subjected to aerodynamic pressure and thermal gradient.
An iterative finite difference technique was used to solve the governing partial differential
equations derived from thin shell theory. Temperature was assumed to vary along the meri-
dian and thickness of the shell and temperature-dependent material properties were used



ARTICLE IN PRESS

R.K. Bhangale et al. / Journal of Sound and Vibration 292 (2006) 341–371 343
in the analysis. Wu and Chiu [15] formulated asymptotic equations for laminated circular
conical shells subjected to static and periodic thermal loads, and using the differential quadrature
method and Bolotin’s method, the boundary frequencies of dynamic instability regions were
determined.
In recent years, studies on FGM structures in thermal environments are an attractive emerging

area in the research community. Reddy and Chin [16] have developed coupled as well as
uncoupled thermoelastic finite element formulation for analyzing the thermomechanical behavior
of functionally graded cylinders and plates subjected to abrupt thermal loading. Parametric
study involved the variation of the volume fraction index in order to evaluate the temperature
field and stress field. Numerical results were illustrated by simulating the start up period of the
cylindrical pipes carrying hot gases typical of a situation in advanced gas turbine plants. Liew et
al. [17] have derived an analytical model to carry out studies on functionally graded hollow
cylinders subjected to arbitrary steady state and transient temperature field. Steady-state
temperature distribution, thermal stresses and thermal displacements in a functionally graded
cylinder are illustrated. A comprehensive review on the literature related to thermally induced
bending, buckling and postbuckling behavior and vibration of plates at elevated temperature and
rapid heating can be found in the review article by Tauchert [18]. Praveen et al. [19] have
developed a thermoelastic finite element model to study the response of a functionally graded
cylinder subjected to rapid heating. The analysis takes into account the material properties
variations with temperature. Sofiyev [20] studied the stability of functionally graded truncated
conical shells subjected to aperiodic impulsive loading. Recently, Bhangale and Ganesan [21]
developed a decoupled thermoelastic finite element analysis for thermal buckling behavior of a
functionally graded beam.
However, studies on thermal buckling analyses of FGM shells are rare in the literature.

Shahsiah and Eslami [22] using Sanders nonlinear strain–displacement relation and first-
order shell theory derived the equilibrium and stability equations for a functionally graded
cylindrical shell. The authors [23] developed coupled fluid structure formulation for free vibra-
tion and buckling analysis of functionally graded cylindrical shells conveying hot liquid sodium
by finite element method. Thermal buckling analysis of FGM shells was carried out for a
thermal loading arising from a uniform temperature rise and a radial temperature difference.
Recently, Kadoli [24] has carried out thermal buckling analysis for FGM cylindrical shells
using the finite element method. Most recently, Bhangale and Ganesan [25] carried out thermal
buckling analysis of FGM hemispherical shells with a cut-out at the apex by the finite element
method.
Thermal buckling studies of conical shells, which take into account temperature-dependent

material properties, are rarely reported in the literature. To the best of the authors’ knowledge,
there are no studies in the open literature on thermal buckling and vibration behavior of truncated
FGM conical shells by the finite element method. In the present study, an attempt has been made
to do the same. The present studies consider temperature distribution, given the temperature
boundary conditions, based on the temperature-dependent material property and subsequently
considering the thermal loading to compute initial stresses and hence solving the static thermal
stability problem by using semi-analytical finite element. The iterative procedure has been
adopted for computing material properties dependent on temperature distribution for the
evaluation of thermal buckling temperature.
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2. Analytical model of FGM material properties

FGMs are typically made from a mixture of ceramic and metal or a combination of different
metals. The present study considers FGMs composed of metal and ceramic. The grading is
accounted for only across the thickness of the shell. The present approach adopts the smooth and
continuous variation of the volume fraction of either ceramic or metal based on the power law
index. The present work assumes no pores and makes use of only the smooth and continuous
variation of the volume fraction of the ceramic or metal based on the power law index. To start
with, a simple power law-type definition for the volume fraction of the metal across the radial
direction of the shell is assumed. This is defined as

Vf ¼
2zþ h

2h

� �n

. (1)

Based on the above definition, it follows that the inner surface of the conical shell will be ceramic
rich. The above definition and other definitions to follow are available in Ref. [16]. This simple
rule of mixture model does provide a reasonably accurate prediction of the mechanical as well as
thermal properties of these inhomogeneous materials. The sum total volume of the constituent
materials, ceramic (c) and metal (f), should be

Vc þ Vf ¼ 1. (2)

Based on the volume fraction definition and law of mixtures, the effective material property
definition follows:

ðMPÞeff ¼ ðMPÞotVf þ ðMPÞinVc. (3)

‘MP’ is a general notation for material property. Making use of Eqs. (1)–(3), the following
effective mechanical and thermal properties definitions can be written:

Eeff ¼ ðEot � EinÞ
2zþ h

2h

� �n

þ Ein, (4a)

neff ¼ ðnot � ninÞ
2zþ h

2h

� �n

þ nin, (4b)

reff ¼ ðrot � rinÞ
2zþ h

2h

� �n

þ rin, (4c)

keff ¼ ðkot � kinÞ
2zþ h

2h

� �n

þ kin, (4d)

aeff ¼ ðaot � ainÞ
2zþ h

2h

� �n

þ ain. (4e)

In the above Eqs. (4a)–(4e), the subscript ‘ot’ stands for outer surface and ‘in’ stands for inner
surface of the conical shell. In addition to the variation of material properties in the radial
direction based on the power law index, it is also possible to consider the above definitions of
material properties as a function of temperature. The temperature coefficients metals, such as
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stainless steel SUS304, Nickel, Ti–6Al–4V, and ceramics, such as zirconia (ZrO2), alumina
(Al2O3) and silicon nitride (Si3N4), have been taken from Reddy and Chin [16]. Based on
the temperature coefficients, the temperature-dependent material properties are evaluated as
follows:

P ¼ P0ðP�1T̂
�1
þ 1þ P1T̂ þ P2T̂

2
þ P3T̂

3
Þ, (5)

where T̂ represents absolute temperature in Kelvin and P�1, P1, P2 and P3 are coefficients
of temperature T̂

�1
; T̂ ; T̂

2
and T̂

3
, respectively, obtained after factoring out P0 from a

cubic curve fit of the property and are unique to a particular material. Thus, the effective
material properties of Eq. (3) can truly be represented as a function of thickness as well as
temperature:

MPeff ðT̂ ; zÞ ¼MPf ðT̂ÞVf ðzÞ þMPcðT̂ÞVcðzÞ. (6)

3. Finite element formulation

A finite element formulation based on first-order shear deformation theory (FSDT) is used to
study the thermal buckling and vibration behavior.
A Fourier series expansion for the displacement variable in the circumferential direction is used

to model the FGM conical shell. The (s; y; z) coordinate system for conical shells and finite
element discretization shown in Fig. 2 is as follows:

uðs; y; z; tÞ ¼ u0ðs; y; tÞ þ zcsðs; y; tÞ, (7)

vðs; y; z; tÞ ¼ v0ðs; y; tÞ þ zcyðs; y; tÞ, (8)

wðs; y; z; tÞ ¼ w0ðs; y; tÞ, (9)

where u0, v0 and w0 are displacements of mid-surface along the s, y and z direction and cs and cy
are rotations of the normal to the mid-surface along s and y axis, respectively. In the semi-
analytical method, the generalized displacement field is assumed to depend on the circumferential
direction and is expressed using Fourier series as follows:

u0

v0

w0

cs

cy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼
X1
m¼0

cosmy 0 0 0 0

0 sinmy 0 0 0

0 0 cosmy 0 0

0 0 0 cosmy 0

0 0 0 0 sinmy

2
6666664

3
7777775

u0m

v0m

w0m

csm

cym

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (10)

where ‘m’ indicates the harmonic number (or circumferential mode number). The kinematic
relation for a doubly curved shell of revolution in the (s; y; z) coordinate based on FSDT is
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as follows:

�ss ¼ qu=qs,

�yy ¼ ð1=rÞðqv=qyþ u sinbsv þ w cosbsvÞ,

gyz ¼ ð1=rÞ qw=qy� v cosbsv
� �

þ qv=qz,

gsy ¼ ð1=rÞ qu=qy� v sinbsv
� �

þ qv=qs,

gsz ¼ qw=qsþ qu=qz. ð11Þ

In the above equations, bsv represents the semi-vertex angle of the cone as shown in Fig. 1. The
total strains are denoted as �ss; �yy; gyz; gsz and gsy, which comprise the normal strains and the
Fig. 1. Schematic configuration of the FGM truncated conical shell analyzed in the present study with a semi-vertex

angle at the apex.
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Fig. 2. Schematics of the discrimination of the FGM conical shell using three-noded quadratic line elements.
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shear strains. Strain–displacement relations are used to formulate the stiffness and mass matrix. A
three-noded isoparametric line element is used along the s coordinate to generate the finite
element mesh for the conical shell (see Fig. 2). Each node has five degrees of freedom (DOFs). The
displacements parameters associated with the element are

dTe ¼ fu1; v1;w1;cs1;cy1; u2; v2;w2;cs2;cy2; u3; v3;w3;cs3;cy3g. (12)

The shape functions Ni in terms of the isoparametric axial coordinate b ¼ s̄=l (where s̄ denotes the
distance of a point on the element along the s-coordinate and l is the length of the element) are
given by

N1 ¼
ðb2 � bÞ

2
; N2 ¼ ð1� b2Þ and N3 ¼

ðb2 þ bÞ
2

. (13)

The displacement vector within the element is interpolated from the nodal DOF vector de

u ¼ Nde, (14)

where uT ¼ ðu v wÞ. Strains are obtained from displacements by differentiation. Thus, � ¼ ½q�u
yields � ¼ B�de, where B� ¼ ½q�N and [q] is the differential operator matrix given by the
strain–displacement relations. The semi-analytical finite element formulation for the stiffness
matrix, mass matrix, evaluation of the thermal load vector, initial stress resultants and moment
resultants and finally the initial stiffness matrix will be similar to the one discussed in Ref. [26].
4. Reduced stiffness matrix for functionally graded conical shells

The difference between the structural analyses of isotropic materials, laminated composite
materials and the FGMs lies in computing the material constitutive matrix, which contains the
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extensional, coupling and bending terms. In case of laminated composites, the reduced integrated
stiffnesses are evaluated independently for each lamina using the material properties in the
material coordinates and performing coordinate transformation to the structural coordinates and
summing the respective constants for all the plies or layers. In the present study, a similar
approach is also adopted for the case of FGM with the difference being that one need not carry
out any coordinate transformation. Considering the composition of the constituent material to
vary in the thickness direction smoothly and continuously, it is possible to consider the FGM
to be composed of a number of layers of very small thickness and apply the same procedure
of computing the reduced stiffness coefficient, as is followed for laminated composites.
The stress–strain relation for a generally isotropic material including the temperature effects is
given by

sss

syy
tsy

tsz

tyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

2
6666664

3
7777775

�ss

�yy

gsy

gsz

gyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
�

assDT

ayyDT

0

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA
, (15)

where sss and syy are the normal stresses, tsy is the in-plane shear stress, tsz and tyz are the
thickness shear stresses. �ss and �yy are the normal strains, gsy is in-plane shear strain and gsz and
gyz are the thickness shear strains. The coefficient of thermal expansion in the two principal
directions (s; y) is ass and ayy. DT is the temperature change from a stress-free state [28]. The
suffixes used are based on the shell mid-surface coordinate system (s; y; z). The stiffness
coefficients are defined as

Q11 ¼ Q22 ¼
Eeff

1� n2eff
; Q12 ¼

neffEeff

1� n2eff
; Q44 ¼ Q55 ¼ Q66 ¼

Eeff

2ð1þ neff Þ
. (16)

For a given power law index, the effective Young’s Modulus Eeff (Eq. (4a)) and effective Poisson’s
ratio veff (Eq. (4b)) need to be evaluated in order to obtain the elastic coefficients Qij. Banks Sills
et al. [27] have discussed the advantages and disadvantages of five functionally graded
architectures for dynamic analysis. It was concluded that both the layered model and continuous
model are suitable for the study of FGM. Each layer can be conceived as a homogeneous layer
and follows the definition of the effective material properties as described in Eqs. (4a)–(4e). The
methodology for computation of the reduced stiffness coefficients is incorporated into the semi-
analytical finite element formulation to compute the stiffness matrix. The stiffness matrix is
obtained from the strain energy; the element stiffness matrix corresponding to the mth harmonic is
computed as follows:

ke ¼

Z
A

B�
T

DB�rdsdy, (17)

where B� is the strain–displacement matrix (for details refer to Kadoli and Ganesan [26]) and D is
the reduced stiffness coefficient. In D, the extensional terms A, bending-extensional coupling
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terms B and bending terms D are evaluated as follows:

A ¼
Xnlay

ilay¼1

Qijðzilayþ1 � zilayÞ; (18a)

B ¼
1

2

Xnlay
ilay¼1

Qijðz
2
ilayþ1 � z2ilayÞ, (18b)

D ¼
1

3

Xnlay
ilay¼1

Qijðz
3
ilayþ1 � z3ilayÞ, (18c)

where (i, j ¼ 1; 2; 6). The details of various terms are given in Ref. [25]. The element stiffness
matrix is assembled using the standard assembly procedure in finite element analysis to obtain the
global stiffness matrix, Kuu ¼

P
ke. The mass matrix is obtained from the kinetic energy of the

FGM shell

KE ¼
r
2

Z
V

ð _u2 þ _v2 þ _w2ÞdV ¼
r
2

Z
V

uTudV ¼
1

2
dTme d, (19)

where u ¼ Nd and N is the shape function matrix for a three-node quadratic line element
expressed in terms of the isoparametric coordinate, described in Eq. (13), in which b ¼ �1, 0 and
+1 at nodes 1–3. d is a vector of nodal displacement and me is the element mass matrix given by

me ¼ r̄eff

Z
A

N
T
NdA, (20)

where

r̄eff ¼
Xnlay

ilay¼1

Z hilayþ1

hilay

reff dz.

The computation of the mass matrix involves the use of effective density of the FGM shell as
described in Eq. (4c). Now the formulation for linear static thermal buckling analysis of FGM
conical shell is presented. For a discussion on the classical initial stability problems, the reader is
referred to Zienkiewicz and Taylor [29]. The initial stiffness matrix (or geometric stiffness matrix)
due to thermal loading is first evaluated. The initial stiffness matrix is evaluated as follows:

kse ¼

Z
A

BiTN�thBi dA, (21)

where Bi is the strain–displacement matrix based on strains due to large deformation [30] and N�th

is a matrix of initial stress resultants Nth
ij , moment resultants M th

ij and resultants shear forces Q̄
th

ij

due to temperature effects; this matrix is defined later. Assembling the element geometric stiffness
matrix yields global geometric stiffness matrix, Kuu

s ¼
P

kse.
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After computing the thermal load, the total stress resultants and moment resultants are
determined [31] as follows:

N
th
¼ De0 �

Nth

Mth

( )
, (22)

where e0 is the strain vector due to mechanical deflection arising from thermal loading. The initial
stress resultants and moment resultants vector, N

th
, will be used to compose the initial stress

resultants matrix N�th. More details about stress resultant are provided in Ref. [25].
5. Temperature distribution across the thickness of the conical shell under steady-state heat

conduction

The thermal analysis involving computation of thermal stresses, thermal buckling temperature,
thermal static deflection and transient thermal response of FGM should consider heat transfer
analysis. This is essential in order to account for material properties as a function of temperature.
A steady-state one-dimensional heat conduction analysis is considered to evaluate the

temperature distribution across the thickness of the FGM shell based on specified temperature
boundary conditions. A typical situation encountered can be in pipes conveying hot gases. The
convective and radiation heat transfers are neglected. The finite element formulation used in the
present work is based on the procedure discussed by Reddy [32].
The governing differential equation for steady-state radial direction heat conduction is

�
d

dz
kðzÞ

dT̂

dz

 !
¼ 0, (23)

where k is the thermal conductivity of the material in kW/(m 1C). The temperature boundary
conditions are specified such that the Ti is the temperature on the inner surface and To is the
temperature on the outer surface, which is normally the ambient temperature. Applying the
variational principle to the governing equation, the following finite element equation to evaluate
the temperature across the thickness due to heat conduction can be arrived at [30]:

KconT̂ ¼ 0. (24)

The above equation is solved given the temperature at the inner surface and outer surface to
obtain the temperature distribution, T̂, across the thickness. This procedure has been extended to
compute the temperature distribution across the wall of the FGM shell by accounting for the
material properties as a function of temperature. An iterative procedure is followed in order to
obtain a converged temperature distribution in the subsequent studies. The procedure is well
understood through the flow chart reported in Ref. [25], and hence not reported here.
6. Results and discussion

In this section the authors presented the thermal buckling, and free vibration behaviors are
presented for a functionally graded conical shell having different semi-vertex angles at the apex.
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Different FGM materials made up of ceramic and metal combinations are analyzed to see relative
merit among them.
6.1. Thermal buckling studies

6.1.1. Convergence study

A convergence study is taken up in order to determine the finite element mesh and suitable
number of homogeneous layers to represent the FGM truncated conical shell thickness. An FGM
conical shell composed of SUS304-Al2O3 with r=h ¼ 292 and l=r ¼ 1:04, having a mean radius
equal to 0.876m with a semi-vertex angle (bsv) of 101 is considered for the convergence study. The
conical shell is clamped–clamped for both circular edges by arresting all the DOF. Four finite
element mesh models are considered with 10, 20, 30 and 40 for element convergence and 5, 10, 20
and 25 layer models for choice of layer-wise convergence across the thickness, accounted for in the
initial stage of the study. The converged lowest critical buckling temperatures are reported in
Tables 1 and 2 for different power law indexes for choice of element and layer, respectively. The
percentage difference between buckling temperature predicted by 30 element models and 40
Table 1

Convergence study for the choice of number of elements for FGM conical shell having semi-vertex angle 101

Power law index n Critical thermal buckling temperature Tcritical (1C)

10 elements 20 elements 30 elements 40 elements

0.0 (metal rich) 592.85 (9,1) 589.22 (9,1) 588.15 (9,1) 588.11 (9,1)

0.5 630.25 (9,1) 627.11 (9,1) 626.05 (9,1) 626.00 (9,1)

1.0 910.58 (9,1) 902.44 (9,1) 901.35 (9,1) 901.32 (9,1)

5.0 999.94 (9,1) 994.94 (9,1) 993.87 (9,1) 993.81 (9,1)

10.0 1091.47 (9,1) 1085.15 (9,1) 1084.08 (9,1) 1084.05 (9,1)

15.0 1140.92 (9,1) 1135.92 (9,1) 1134.78 (9,1) 1134.70 (9,1)

1000.0 (ceramic) 1253.81 (9,1) 1246.81 (9,1) 1245.78 (9,1) 1245.78 (9,1)

Table 2

Convergence study for the choice of number of layers for FGM conical shell thickness having semi-vertex angle 101

Power law index n Critical thermal buckling temperature Tcritical (1C)

5 layers 10 layers 20 layers 25 layers

0.0 (metal rich) 590.12 589.34 588.22 588.20

0.5 628.00 629.25 626.11 626.09

1.0 905.98 903.25 901.44 901.39

5.0 998.25 994.58 993.94 993.94

10.0 1089.48 1086.56 1084.15 1084.08

15.0 1143.45 1138.55 1134.92 1134.92

100.0 1243.25 1241.25 1240.04 1240.01

1000.0 (ceramic) 1248.45 1246.89 1245.81 1245.98
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element models is less than as compared to 10 and 20 element models. In case of the layer-wise
mesh model there is quite good convergence for 20 layers and 25 layers. In addition, it is noticed
that the circumferential mode number remains unchanged from model to model. Based on the
above observation and from the point of view of lesser computational time, it is reasonable to use
30 elements and 20 layers across the thickness.

6.1.2. Validation

As there is no literature available on thermal buckling of FGM truncated conical shells, the
results are validated with an isotropic conical shell [6] by setting the value of the power law index
equal to zero in the present formulation.
An attempt has been made to validate the buckling result with the experimental results reported

by Lu and Chang [6]. Details of the truncated conical shell considered for validation are as
follows: ratio of height (H) of the shell to radius (R) is equal to 2.0; ratios of radius (R) to
thickness of shell (h) are equal to 200,400,600 and 800; semi-vertex angles (bsv) equal to 101 and
301. Table 3 shows the comparison of the thermal buckling strains reported by Lu and Chang [6]
and those computed from the present method. Even though the absolute magnitude of thermal
buckling strains does not agree too well, the trends are in good unison. Lu and Change [7] do
report that the experimental values are higher by about 20–30% than the theoretical values.
In addition to ensuring the accuracy of the proposed finite element model, thermal buckling

results obtained by the computer code for FGM truncated conical shell were compared with those
reported by Ravikiran [22] for FGM cylindrical shell by incorporating semi-vertex angle of the
conical shell to 01 (equivalent to the cylindrical shell) and given in Table 4. From Table 4 it is seen
that there is excellent correlation between the results.
Table 4

Validation of critical buckling temperature (Tcritical) in 1C for cylindrical shell

Power law index n Present RaviKiran [22]

0.0 598.98 598.99

1.00 714.62 714.65

1000.0 1271.07 1272.06

SUS304-Al2O3 (r=h ¼ 100 and l=r ¼ 1:0438).

Table 3

Validation of critical buckling strains for a special case of isotropy

R=H Semi-vertex angle bsv ¼ 101 Semi-vertex angle bsv ¼ 301

Present Lu and Chang [7] % error Present Lu and Chang [7] % error

200 3.00 2.4 25.34 2.98 2.2 35.52

400 1.51 1.2 26.53 1.47 1.08 36.21

600 1.00 0.787 27.06 0.96 0.68 41.78

800 0.736 0.600 22.82 0.71 0.5 42.17
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Having validated the model, an attempt has been made to study the thermal buckling behavior
of the FGM truncated conical shell having different semi-vertex angles. The evaluation of the
thermal buckling temperature is based on the classical stability equation involving the structural
stiffness matrix, Kuu, and initial stiffness matrix, Kuu

s . The buckling eigenvalues and buckling mode
shapes are computed using the simultaneous iteration technique. A typical configuration of the
functionally graded truncated conical shell is assumed to be ceramic rich on the inner surface and
metal rich on the outer surface. The material properties are dependent on temperature. An
iterative procedure is implemented for the computation of the thermal buckling temperature. In
addition, the thermal buckling study has been done by accounting for the variation of material
properties with respect to temperature. As the problem becomes nonlinear, an iterative procedure
has been adopted. The converged value of buckling temperature has been reported in a
subsequent table. The overall procedure followed for the determination of the converged thermal
buckling temperature is explained in detail in Ref. [25], and hence is not repeated here. Thermal
buckling analysis of the FGM shell is carried out in two steps. First, the heat conduction equation
is solved for temperature distribution across the thickness of the shell, having specified the
temperature boundary condition. Variation of temperature along the length of the shell is
assumed to be negligible. The thermal material property is dependent on temperature, and hence a
converged temperature distribution is obtained. Based on the converged temperature distribution,
the mechanical and thermal properties are evaluated. The error between the critical buckling
temperature obtained between the previous step and the new step is chosen to be less than or equal
to 0.005. The loop for checking the convergence of buckling temperature is initiated by setting a
large error. The first critical buckling temperature obtained is set as the old buckling temperature.
This temperature is now set as the specified temperature on the inner surface of the conical shell
and the outer surface of the conical shell is always set to an ambient temperature of 27 1C.

6.2. Thermal buckling studies by accounting for different temperature loads

Having validated the present formulation for the isotropic (pure metal) truncated conical shell
to a certain extent in the present study, an attempt has been made to find out the thermal buckling
behaviors made up of a mixture of metal and ceramic FGM pairs with different material
combinations. In the present two combinations, SUS304-Al2O3 and Ti–6Al–4V–Al2O3 are used.
The following temperature distribution profile cases across the thickness for l=r ¼ 1:0438, r=h ¼

292 and clamped–clamped boundary conditions of the shell have been investigated:
1.
 Assuming uniform temperature distribution (Case A),

2.
 Linear temperature across the thickness (Case B),

3.
 Temperature distribution across the thickness considering temperature-dependent material

properties and follows iterative procedure [25].
Results are shown in Tables 5 and 6 for the two FGM material pair combinations.
It is found from Table 5 that the thermal buckling temperatures obtained by linear and

nonlinear variations across the thickness are higher than those of uniform temperature. This
behavior is as expected. In addition, it is found that in the case of SUS304-Al2O3 the thermal
buckling values obtained considering material property variation with respect to temperature are,
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Table 5

Critical buckling temperature Tcritical for truncated SUS304-Al2O3 FGM conical shells for different power law indexes

Power law index n bsv ¼ 15:0 bsv ¼ 30:0

Case A Case B Case C Case A Case B Case C

0.0 151.11 261.54 248.33 140.74 242.45 231.55

0.5 183.25 330.78 262.53 170.29 306.12 244.74

1.0 202.89 375.91 292.31 188.31 347.53 272.13

5.0 254.20 477.46 400.17 235.68 441.27 372.24

10.0 270.86 500.96 444.35 251.00 462.87 413.18

15.0 278.18 509.96 464.76 257.69 471.08 432.15

100.0 294.95 527.87 508.08 273.00 487.31 472.34

1000.0 296.35 529.11 510.42 274.28 488.42 474.52

l=r ¼ 1:0438, r=h ¼ 292 and clamped–clamped boundary conditions.

Table 6

Critical buckling temperature Tcritical for truncated Ti–6Al–4V–Al2O3 FGM conical shells for different power law

indexes

Power law index n bsv ¼ 15:0 bsv ¼ 30:0

Case A Case B Case C Case A Case B Case C

0.0 198.18 348.22 270.53 184.01 322.14 254.99

0.5 225.63 370.31 282.30 209.32 342.48 264.81

1.0 236.93 391.49 379.51 219.90 362.30 353.79

5.0 265.74 458.75 427.00 246.58 424.50 397.51

15.0 282.14 497.30 450.94 261.48 459.66 419.49

1000.0 296.35 529.11 510.94 274.28 488.42 474.52

l=r ¼ 1:0438, r=h ¼ 292 and clamped–clamped boundary conditions.

R.K. Bhangale et al. / Journal of Sound and Vibration 292 (2006) 341–371354
in general, lower than those obtained without accounting for material property variation. In
general, it is expected that for the isotropic case, Tcritical of shell subjected to linearly varying
temperature is twice that obtained for the shell subjected to uniform temperature. In contrast,
such a trend is not observed in the case of an FGM shell even for n ¼ 0:0 and 1000.0. In this case,
the Tcritical value obtained for a shell with varying temperature is not twice that of the shell
subjected to uniform temperature, but lower than the 2Tcritical. This can be due to the fact that
temperature-dependent material properties have been used in the present study. A similar
discussion holds good for another type of FGM material pair Ti–6Al–4V–Al2O3.
A further thermal buckling study has been carried out by accounting for converged temperature

distribution and thereby material properties and follows the iterative procedure as explained in Ref. [25].

6.3. Thermal buckling parameter studies

The lowest or critical buckling temperature of Ti–6Al–4V–Al2O3 with the associated mode for
different semi-vertex angles is listed in Table 7 for different r=h ratios. Here power law index
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n ¼ 0:0 corresponds to an isotropic shell with properties corresponding to that of metal and
n ¼ 1000:0 corresponds to a cylindrical shell purely of ceramic material. The power law index
value n other than two extreme values governs the distribution of properties of metal–ceramic
mixture in the FGM shell. Variation of the composition of metal and ceramic is linear for the
power law index n ¼ 1:0. From Table 7 it is found that as the value of the power law index
increases, the critical buckling temperature increases as it approaches the homogeneous ceramic
composition. The only exception is when n ¼ 0:5, which has a lower value.
Such a trend is expected because the coefficient of thermal expansion of ceramic is lower than

that of metal. In addition, it is observed that thermal buckling temperature decreases with an
increase in the semi-vertex angle for l=r ¼ 1:0. From Table 7, it is clear that as the r=h ratio is
increased, the critical buckling temperature decreases. This trend is also expected as the thickness
reduces. In addition, it is noticed that the lowest circumferential buckling mode decreases as the
semi-vertex angle of the cone increases, but for cone angle ¼ 601 it is higher. This behavior holds
good for all r=h ratios. As the n is increased from 1.0 to 5.0, there is a sudden rise in temperature
when compared to other cases. Another observation from Table 7 is that when the thickness of the
shell reduces, the buckling temperature decreases as expected.
To further understand the effect on magnitude of lowest or critical buckling temperature due to

semi-vertex angle, a study has been carried out by plotting the stress resultant along the meridian
of the FGM shell for special cases n ¼ 1:0 with different semi-vertex angle as shown in Fig. 3. The
meridional stress resultant Nss decreases for n ¼ 1:0 as the distance from the small end radius of
the shell increases, and is low in magnitude (i.e. less compressive) close to the big end radius of the
shell as shown in Fig. 3(a). The increase in the gradient of the stress resultant is large for the
truncated conical shell with 601 semi-vertex angle, then 451 and subsequently 301, 151 and 01. Semi-
vertex angle 01 represents the cylindrical shell. Fig. 3(b) illustrates the distribution of hoop stress
resultants Nyy for n ¼ 1:0. The hoop stress resultants are concentrated over a small length of the
(b)(a)

Fig. 3. (a, b) Distribution of stress resultant for truncated FGM conical shells Ti–6Al–4V–Al2O3 for power law index

n ¼ 1.
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meridian close to the clamp of the shell and are very large in magnitude. The magnitude of the
hoop stress resultants decreases drastically from the clamped edges of the shell and remains
constant over a large length of the meridian. From the study on the distribution and magnitude of
stress resultants, it is evident that the magnitude of meridional stress resultants is likely to provide
an indication of the critical buckling temperature. For bsv ¼ 60 has a large magnitude (compressive
in nature) of meridional stress resultant, there exists, more or less, half the length of the shell,
followed by truncated conical shell bsv ¼ 451, 301 and 151. Thus, the truncated conical shell with
bsv ¼ 60 has a low thermal buckling temperature compared to the shell with bsv ¼ 451, 301 and 151.
The critical thermal buckling study has been carried out for different FGM material pairs for

selected r=h ratios. Another pair of FGM conical shell made up of SUS304-Si3N4 is considered for
the evaluation of critical buckling temperature. The results are tabulated in Table 8. From Table 8
it is seen that as n increases, the critical thermal buckling temperature increases. The critical
buckling temperatures for SUS304-Si3N4 are high and increase marginally for n ranging from 5 to
1000. On the other hand, for n ¼ 0 the value of Tcritical is small, since larger the coefficient of
thermal expansion, lower the buckling temperature. For materials with a high coefficient of
thermal expansion (by consideration of the temperature gradient), the strains due to temperature
rise dominate the mechanical strains. Hence, the stresses due to temperature effects are larger
when compared to the stresses from mechanical deflection. This will lead to high initial
compressive stresses in the shell, which is likely to cause the shell to buckle at lower thermal
loading. Further, the buckling study has been carried out for another pair of FGM truncated
conical shells namely SUS304-Al2O3; results are shown in Table 9. For SUS304-Al2O3 FGM
shells the critical buckling temperatures are high for ceramic composition, i.e. n ¼ 1000. The
critical buckling temperatures increase with increase in power law index. When considering
ceramics like Si3N4 and Al2O3, in combination with SUS304, the FGM shells are best suited for
higher operating temperature since these exhibit higher buckling temperatures.
7. Critical thermal buckling temperature of FGM truncated conical shell based on average

coefficient of thermal expansion

In this section, an attempt has been made to look for an alternate procedure for the
determination of critical thermal buckling temperature for FGM truncated shells fabricated with
various power law index n. In general, it is easy to obtain the critical thermal buckling
temperature of the homogeneous isotropic ceramic or metallic FGM shell. Following the
assumptions that (i) geometrical parameters of the FGM shell and isotropic shell are the same, (ii)
for a given geometry, thermal strains at the critical buckling temperature remain the same for the
FGM shell and the isotropic shell and (iii) knowing the critical buckling temperature of isotropic
shell referred to as reference temperature, a method is proposed to evaluate the thermal buckling
temperature of an FGM shell for a given n. Since an FGM shell is assumed to consist of many
homogeneous isotropic lamina, it is appropriate to represent the coefficient of thermal expansion
of the FGM shell for a given power law index as an average of the effective coefficient thermal
expansion computed based on Eq. (4e). Then

�th
��
n�100:0

¼ �th
��
0:0p np100:0

or ðaref DT ref Þn�100:0 ¼ ðaavg DT criÞ0:0p np100:0.
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With the above relation, the evaluation of the critical buckling temperature for a given value of
power law index n is investigated. The left-hand side of the above equation represents the critical
thermal strain of a homogeneous isotropic material, ceramic or metallic, which is equivalent to an
FGM shell with n ¼ 1000 or 0.0, aref is the coefficient of thermal expansion of the isotropic shell
and DT ref refers to reference temperature, which is equal to the critical buckling temperature for
the isotropic shell. Given the critical buckling temperature for a homogeneous isotropic shell, and
evaluating the average coefficient of thermal expansion aavg for a given power law index say,
n ¼ 0:05 or 0.1 and so on, the above relation will yield the critical thermal buckling temperature
for the FGM shell corresponding to the choice of n. The above procedure is implemented for the
case of FGM shells composed of SUS304-Al2O3 constituent materials. For a shell with
l=r ¼ 1:0438, two ratios of r=h are considered. The results of the same are listed in Table 10 along
with the percentage error in the estimation of the critical buckling temperature by this alternate
procedure. From Table 10, it is seen that the percentage error is higher for first few n. This is
because buckling temperatures are evaluated at DT ref which is pure ceramic. It is to be noted that
the buckling temperatures evaluated by this procedure depend on the reference temperature
chosen as well as n. This procedure can be used for the estimation of the critical buckling
temperature during the preliminary design stage of an FGM shell. Thus, initially, this helps in
making a proper choice of the power law index of the FGM shell, and subsequently the iterative
procedure can be used to determine the buckling temperature.
8. Free vibration frequency studies of the truncated conical shell

Free vibration characteristics are presented for clamped–clamped FGM shells with various
values of the power law index. Apart from the free vibration studies, the effect of temperature on
the free vibration natural frequencies of FGM shells is also investigated.

8.1. Validation of natural frequencies for functionally graded conical shells

Once again, there is no literature available on the free vibration studies of FGM truncated
conical shells. An attempt has been made to validate the present formulations for the isotropic
case reported by Lakis et al. [13] by incorporating the value of power law index n ¼ 0:0. The
characteristics of the shell under study for validation purpose are bsv ¼ 14:21, t ¼ 2:56� 1024 m,
r ¼ 7800kg=m3, E ¼ 200� 109 Pa, v ¼ 0:3. Fig. 4 gives the nondimensional frequency (O) with
first 20 circumferential mode numbers.
After validating, the present formulation studies have been carried out for FGM conical shell

combinations made up of SUS304-Si3N4 and Ti–6Al–4V–Al2O3. The first axial mode frequencies
associated with first 20 circumferential modes for a clamped–clamped boundary condition are
presented in Figs. 5 and 6, respectively. The frequency characteristic is typical of homogeneous
isotropic or orthotropic shells, depicting a bathtub curve. The frequency characteristics do not
change with the power law index and follow the same behavior. The influence of the power law
index is mainly to change the magnitude of the first axial mode frequency. As the power law index
increases, the frequencies increase. The frequencies are low for power law index n ¼ 0:0 and high
for n ¼ 1000. This fact can be understood easily, as the Young’s Modulus of ceramics, Si3N4 and
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Al2O3, is much higher compared to their metal counterpart. The power law index does not have a
great influence in shifting the associated circumferential mode number for the lowest of the first
axial mode frequency. As the semi-vertex angle of the truncated conical shell increases, the
frequency reduces.
8.2. Effect of temperature on frequency behavior of truncated FGM conical shells

In order to understand the behavior of the natural frequency variation with respect to
temperature, studies have been carried out on SUS304-Si3N4 FGM truncated conical shells. The
FGM shells are ceramic rich on their inner surface. This configuration is best suited for shells
conveying fluids and hot gases at a high temperature. The evaluation of the natural frequencies is
conducted based on the specified temperature on the inner surface and the outer surface is always
at ambient temperature. The temperature on the inner surface is varied in steps of suitable
increments and the highest temperature for the study is limited to the lowest thermal buckling
temperature for the shell geometry and FGM composition (or power law index n). The lowest
buckling temperatures for SUS304-Si3N4 FGM shell with a geometry of l=r ¼ 1:048 and r=h ¼

292 for various power law indices are listed in Table 8. Study has been carried out for different
semi-vertex angles. Now given the temperature boundary condition on the inner surface and
ambient temperature on the outer surface, the converged temperature distribution is obtained.
Based on the converged temperature distribution, the thermal load vector, total initial stresses and
hence the geometric stiffness matrix are computed. This initial stiffness matrix is added to the
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FGM shell stiffness matrix and along with mass matrix, a system of second-order linear
differential equations are solved for free vibration frequencies for various circumferential modes.
The results are illustrated in Figs. 7–10.
It is clear from Fig. 7 that the natural frequencies decrease with an increase in temperature.

From the free vibration studies, it is clear that the natural frequencies are higher for higher values
of the power law index. Further, higher the power law index, higher is the buckling temperature;
of course, this depends on the constituent materials used for FGM. Further, the characteristic
variation of the natural frequency with respect to temperature depends on the mode numbers.
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Referring to Figs. 7(a) and (f), for modes (1,1) and (18,1), respectively, it is seen that the fall in the
natural frequency is not appreciable with an increase in temperature. This is probably due to the
membrane effects dominating over the meridional stress resultants due to temperature rise for
lower mode (1,1). For higher mode (18,1), the bending strain energy dominates the meridional
stress resultants. However, the sudden and gradual decrease in the natural frequencies for higher
temperature may be noted where probably the meridional stress resultants overtake the effect of
bending strain energy. For the mode like (10,1), which corresponds to the lowest natural
frequency of the shell, the membrane effect as well as the bending strain energy is minimal
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Fig. 7. (a–f) Effect of temperature on the free vibration frequencies of SUS304-Si3N4 truncated FGM conical shell

having semi-vertex angle bsv ¼ 15:0. l=r ¼ 1:0438, r=h ¼ 292.
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Fig. 8. (a–f) Effect of temperature on the free vibration frequencies of SUS304-Si3N4 truncated FGM conical shell

having semi-vertex angle bsv ¼ 30:0. l=r ¼ 1:0438, r=h ¼ 292.
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Fig. 9. (a–f) Effect of temperature on the free vibration frequencies of SUS304-Si3N4 truncated FGM conical shell

having semi-vertex angle bsv ¼ 45:0. l=r ¼ 1:0438, r=h ¼ 292.
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Fig. 10. (a–f) Effect of temperature on the free vibration frequencies of SUS304-Si3N4 truncated FGM conical shell

having semi-vertex angle bsv ¼ 60:0. l=r ¼ 1:0438, r=h ¼ 292.
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(Fig. 7(c)). Hence, the fall in frequency is smooth and gradual as the temperature increases, and for
temperature close to the buckling temperature, the frequencies take on very low values. Now mode
(15,1) is considered; it is the mode corresponding to the lowest thermal buckling temperature.
Hence, the meridional stress resultants are large and compressive in nature for a given rise in
temperature. Also, mode (15,1) is associated with reasonably high bending strain energy. But the
high meridional stress resultants dominate the bending strain energy and cause the fall in natural
frequencies gradually and continuously as the temperature increases (Fig. 7(d)), similar to that
observed for the case of mode (10,1). However, the magnitudes of the frequency are slightly higher
compared to mode (10,1). Thus, it is clear that the effect of temperature is felt more for the modes
corresponding to the lowest natural frequency and lowest thermal buckling temperature and more
so for the lowest natural frequency mode. Similar results were obtained for FGM truncated conical
shell having different semi-vertex angles. As we can see, as the semi-vertex angle of the cone
increases, the critical buckling mode and lowest natural frequency mode change. However, typical
results for the variation of natural frequencies for semi-vertex angle ¼ 301 are illustrated in Figs.
8(a)–(f) and are now considered for discussion. Here results are presented for modes (9,1) and (13,1),
which correspond to the lowest natural frequency of the shell. The smooth, gradual and continuous
fall in the natural frequencies may be noted (Figs. 8(c) and (d)) as the temperature increases. The
lowest buckling temperature mode is (15,1) and also another mode close to this is (13,1). For these
modes the variation of the natural frequencies with respect to temperatures is presented in Figs. 8(e)
and (f). For modes (15,1) and (19,1) the meridional stress resultants are high. Referring to Fig. 8(b),
the modes (15,1) and (19,1) are on the higher side, where the bending strain energy dominates.
Hence, for initial rise in temperature, the bending strain energy probably dominates the meridional
stress resultants due to temperature rise. However, for higher temperatures and temperatures close
to the buckling temperature, the magnitude of the meridional stress resultants overtakes bending
strain energy and causes the frequencies to fall drastically (Figs. 8(d) and (e)). A similar discussion
holds good for semi-vertex angles 451 and 601 illustrated in Figs. 9(a) and (e) and Figs. 10(a) and (e).
9. Conclusion

A linear thermoelastic thermal buckling analysis of functionally graded truncated conical shells
with different semi-vertex angles based on the semi-analytical finite element method has been
presented. The FGM conical shell is graded in the thickness direction and a simple power law
index governs the metal–ceramic constituents profile across the thickness. The converged
temperature distribution becomes the thermal loading on the shell with the thermal buckling
temperature being evaluated until convergence is obtained. The following conclusions are arrived
at from the investigation.
1.
 The magnitude of the lowest buckling temperature greatly depends on the composition of the
metal–ceramic constituent. The thermal buckling temperature depends on the power law
index. Materials with lower coefficient of thermal expansion will have high thermal buckling
temperature.
2.
 With an increase in the semi-vertex angle of the FGM truncated conical shell, the critical
thermal buckling temperature reduces.
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3.
 The critical buckling temperature decreases with increase in the ratios of r=h, as expected.

4.
 Thermal buckling strength is reduced when the temperature-dependent properties are taken

into consideration.

5.
 The critical buckling temperature for the FGM conical shell obtained by linear temperature

gradient across the thickness is not necessary to be twice that of the shells under uniform
temperature rise, but lower than 2Tcritical. This may be because the above study incorporates
the temperature-dependent material property.
6.
 The lowest critical buckling temperature mode decreases first with an increase in semi-vertex
angle then again increases for angle 601 for same r=h ratios.
7.
 The free vibration natural frequencies of FGM conical shells are typically characterized by the
bathtub curve, when the axial mode frequencies are plotted for various circumferential
harmonics. In addition, it is found that an increase in semi-vertex angle brings down the
natural frequency.
8.
 The effect of temperature on the natural frequency of FGM shell is to reduce the natural
frequency with an increase in temperature as expected.
9.
 The effect of temperature on the natural frequency is more for the modes with the lowest
natural frequency and for modes with the lowest critical buckling temperature.
10.
 It is important to check the strength of FGM for thermal buckling while considering design
aspects by taking into account temperature-dependent material properties.
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