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Abstract

A review of contributions and views on the second spectrum of Timoshenko beam theory (TBT) over the
past two decades, together with some new results, are presented. It is shown that the Timoshenko frequency
equation factorises not solely for hinged–hinged end conditions, as is often claimed, but also for
guided–guided and guided–hinged; these new cases may be regarded as portions of a multi-span
hinged–hinged beam. A higher-derivative Lagrangian that leads directly to the well-known fourth-order
Timoshenko beam equation is reviewed. A simple relationship between the so-called Ostrogradski energy
and the mechanical energy is derived for hinged–hinged end conditions. It is shown that the Ostrogradski
energy is positive for the first spectrum but negative for the second; within some branches of physics, this
would be sufficient to conclude that the second spectrum is ‘‘unphysical’’. A numerical example presented
by Levinson and Cooke is re-examined using both TBT and exact plane stress elastodynamic theory.
Agreement is excellent for the first spectrum. However, the second spectrum predictions are not in
consistent agreement with any single mode of vibration. For long wavelength it is very close to the second
asymmetric mode, but as wavelength shortens, it becomes closer to the second symmetric, then the third
asymmetric modes. The conclusion remains unchanged: the second spectrum predictions of TBT should be
disregarded.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The possibility of a so-called second spectrum of natural frequency predictions from
Timoshenko beam theory (TBT) was first raised by Traill-Nash and Collar [1] in 1953. Since
that time, two issues have attracted considerable research interest: the first is the validity of the
second spectrum frequency predictions, while the second is the existence of the second spectrum
for beam end conditions other than hinged–hinged. The present author concluded in 1982 [2] that
the second spectrum of TBT is ‘‘an inevitable but meaningless consequence of the structure of an
otherwise excellent approximate theory.’’ The basis of that conclusion was a comparison between
the phase velocity predictions from the exact (according to the spirit of the mathematical theory of
elasticity) Pochhammer–Chree (PC) theory for an infinite rod of circular cross-section, and the
equivalent predictions from TBT. Excellent agreement was found for the lowest flexural mode of
vibration over a wide range of wavelength. However, no consistent agreement could be found for
the second spectrum (TBT2) predictions; at long wavelength the TBT2 prediction was close to the
second flexural mode of PC theory, as one would wish, but at shorter wavelength TBT2 agrees
more closely with the second longitudinal mode of PC theory.
In a similar analysis [3], the author has also considered the validity of the higher spectra

predictions of Mindlin plate theory, and concluded that the so-called w2-mode should be
disregarded, again since consistent agreement with exact predictions from Rayleigh–Lamb plate
theory could not be found; on the other hand, the lowest w1-spectrum has best agreement when
one employs the shear coefficient k ¼ 5=ð6� nÞ, and the so-called H-mode is in exact agreement
for k ¼ p2=12.
Here, the comparison made in Ref. [2] for wave propagation in an infinite beam of circular

cross-section, is extended to standing waves in a thin rectangular (plane stress) beam of finite
length, having hinged–hinged end conditions; the example chosen is that considered by Levinson
and Cooke [4]. For the first spectrum, it is seen that agreement between the plane stress
elastodynamic prediction and TBT1 is better than �0.4% and +0.55% for the first 20 natural
frequencies, when one uses the shear coefficient k ¼ 5ð1þ nÞ=ð6þ 5nÞ. In contrast, the second
spectrum predictions are not in consistent agreement with any one mode; the first two natural
frequencies, and the cut-off frequency, are in good agreement with the second asymmetric
predictions from the plane stress theory, but the higher modes are in better agreement with the
second symmetric, and then the third asymmetric predictions. Once again, it is concluded that the
second spectrum frequencies should be disregarded.
The second issue, whether the second spectrum exists for beams having other than

hinged–hinged end conditions, is described by Levinson and Cooke [4], and further discussed
by Prathap [5]. Levinson and Cooke, along with many other researchers, were of the view that a
second spectrum could exist only for hinged–hinged ends, when the frequency equation factorises,
but regarded the two spectrum terminology as ‘‘tenuous’’ and, ‘‘at best, an aid to computation’’.
Finite element simulations have produced conflicting conclusions: according to Bhashyam and
Prathap [6] ‘‘for end conditions other than hinged–hinged, with a finite element procedure one can
detect two kinds of spectra and can suitably classify them.’’ On the other hand, Abbas and
Thomas [7] only found evidence of a second spectrum of frequencies for a hinged–hinged beam.
The present author has not, until now, entered that particular debate, but has always taken the

view that if, above some cut-off frequency, there are new modes of vibration whose character
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differs in some way from what one is familiar with below this cut-off (the first spectrum) then it is
entirely legitimate to describe the new modes as a second spectrum, irrespective of whether the
frequency equation factorises. Further, one would then wish to identify these new frequencies so
that they may be disregarded, in the light of the conclusion in Ref. [2].
In 1999, Han et al. [8] provided a brief discussion on the second frequency spectrum as part of a

wider study of beam theories in general, and claimed that the bending moment and shearing force
are in phase for the first spectrum, but out of phase for the second. This conclusion may be
erroneous, as the authors employ the expression M ¼ EIc, rather than M ¼ EIqc=qx, for the
bending moment. Nevertheless, if true, this would be an example of character difference, as
alluded to above. Despite noting that ‘‘the two pairs of modes, are indeed distinct and correspond
to distinct natural frequencies’’, Han et al. state that there is ‘‘no need to refer to them as separate
frequency spectra’’ and go on to quote Levinson and Cooke: ‘‘ythe two spectra interpretation of
the predictions of TBT is rather a matter of taste and not even a particularly fruitful interpretation
at that.’’ An earlier observation of character difference was made by Downs [9], who stated that
‘‘deformations due to shear and bending are of the same phase and are summed to give the total
transverse deflection’’ for the first spectrum, but ‘‘the shear and bending deformation are opposed
with the net transverse deflection equal to their difference’’ for the second. In Section 2, it is shown
(and one suspects Han et al. intended to claim) that the ratio of cross-sectional rotation to shear
angle ðc=gÞ is of a different sign for the two spectra, at least for hinged–hinged end conditions.
This character difference was first noted by Traill-Nash and Collar [1].
In a 2001 contribution, Ekwaro-Osire et al. [10] provided a scheme which facilitates a

progressive ordering of all of the natural frequencies, and their mode shapes, and claimed that this
‘‘eliminates the remaining argument for the two spectra interpretation’’, and ‘‘puts to rest the last
remaining criticism of the single-spectrum interpretation of the Timoshenko beam model
structure.’’
The present author remains surprised that so many researchers should favour this single-

spectrum interpretation: for problems in wave propagation, a frequency–wavenumber (disper-
sion) diagram will show several branches for each of the family of waves for which the nature of
the lowest branch (for example, flexural, torsional or extensional—or, more technically,
asymmetric, torsional axisymmetric and torsionless axisymmetric, respectively) is often adopted
as the descriptor. Thus Miklowitz [11] writes ‘‘The basic advantages of the Timoshenko theory
over the Bernoulli–Euler are (1) it has closer agreement with the exact over a greater domain of
the lowest branch, and (2) it has a second branch (flexural thickness–shear) which compares very
favourably with the exact theory, at and near cut-off and over the imaginary loop’’. It seems quite
natural to transfer the concept of a first and second branch for wave propagation, to a first and
second spectrum when considering a standing wave problem.
Here, it is shown that the frequency equation also factorises for guided–guided (or

sliding–sliding, or roller skate according to Miklowitz [11]) and guided–hinged end conditions.
Factorisation occurs because the mode shapes are (co)sinusoidal, so the standing wave may be
regarded as the superposition of forward and backward travelling waves within a beam of infinite
length; the boundary conditions do not induce evanescent waves. As will be seen, beams having
both guided–guided and guided–hinged conditions can be regarded as portions of a multiple span
hinged–hinged beam. Applying wave-train phase closure principles, Wang and So [12] have noted
the special nature of these combinations of end conditions, and describe the waves as degenerate.
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A third issue, related to the validity of the second spectrum, has arisen from the seemingly quite
unrelated areas of field and particle physics. Although the Timoshenko beam equation is, most
often, presented as a partial differential equation (PDE) that has fourth-order derivatives in both
space and time, it is usually derived through application of Newton’s second law for transverse
and rotational acceleration, with variables v and c as transverse displacement and cross-sectional
rotation, respectively, leading to two coupled PDEs containing second-order derivatives in time.
These coupled equations may also be determined using Hamilton’s principle by variation of the
Lagrangian function L ¼ T � V , where T and V are the kinetic and strain energies, respectively.
The Lagrangian function contains only first derivatives in time, for example velocity squared. In
the absence of damping, the Hamiltonian function, H ¼ T þ V , equal to the total mechanical
energy, is an integral of the motion, that is, a conserved quantity. More often than not, one
of the variables, say cross-sectional rotation c, is then eliminated in favour of transverse
displacement v, leading to the familiar PDE of fourth order in both space and time. Chervyakov
and Nesterenko [13,14] have shown that this fourth-order equation can also be found by
variation of an appropriate Lagrangian function which now contains higher time derivatives.
The Hamiltonian function may be constructed employing methods developed by Ostrogradski
(see Ref. [15]) specifically for higher-derivative field theories, and again this Ostrogradski
Hamiltonian is a conserved quantity, in some way equivalent to energy, although its precise
meaning is unclear.
Within the field and particle physics community, it is understood that such higher time

derivative theories can, according to Simon [16], ‘‘lead to undesirable properties’’, and may arise
through quantum corrections to general relativity, or rigidity correction to string theory. TBT
includes the second (shear deformation) correction to Euler–Bernoulli beam theory, the first being
the less important rotary inertia correction introduced by Rayleigh. This is entirely consistent with
Simon’s statement [16]: ‘‘Quite often the higher-derivative terms are added to a more standard
(lower-derivative) theory as a correction.’’ On the other hand [16], ‘‘There is a large class of
theories naturally containing higher derivatives that do not suffer the above problems’’, the
problems being runaway solutions, ‘‘qualitatively quite different from those of a related lower-
derivative theory’’, and ‘‘ghost fields’’; within classical continuum mechanics, coupled
tension–torsion vibration provides an example of a higher-order derivative theory not beset with
‘‘undesirable properties’’.
In two 1993 papers, Chervyakov and Nesterenko [13,14] considered the formulation of

TBT as a possible way of avoiding some of these issues; from Ref. [13]: ‘‘Here there
arises a very typical picture for higher-derivative theories: in addition to the basic mode of
oscillations ?? there emerge additional, as a rule, higher-frequency modes. The contribution to
the energy of the second mode has the opposite sign as compared with the basic one.’’ These
negative contributions to the so-called Ostrogradski energy, EO, are regarded as physically
unacceptable; on the other hand, the structure of TBT may be useful in the interpretation of
higher time derivative theories, as it has the virtues of a well-defined positive definite mechanical
energy.
In Ref. [14], Nesterenko noted that ‘‘the quantity EO is not the same as the mechanical energy

of the Timoshenko beam and its precise physical meaning is still unclear’’, indicating a need for
further research. However, Nesterenko’s views on the second spectrum were perfectly clear: ‘‘in
the Timoshenko theory it is natural to regard as physical only those frequencies which turn into
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frequencies of the Bernoulli–Euler equation when the coefficients

a2 ¼
I

A
1þ

E

kG

� �
and a3 ¼

rI

kAG

vanish’’, indicating that only the first spectrum satisfies this natural condition, and is ‘‘the only
region where the theory under consideration is applicable.’’ In contrast, the second spectrum
frequencies ‘‘tend to infinity as a3!1.’’ In Section 3, a simple relationship between the
mechanical and Ostrogradski energies for TBT is derived, and it is shown that EO is always
positive for the first spectrum, and always negative for the second.
Last, the numerical example discussed by Levinson and Cooke is re-considered using both TBT

and exact plane stress theory; the latter is developed within the appendix. Agreement between the
frequency predictions is excellent for the first spectrum; however, the second spectrum prediction
of TBT does not provide consistent agreement with any single mode of vibration. Overall, the
conclusion remains the same: the predictions of TBT2 should be disregarded.
2. Timoshenko beam theory, and factorisation of the frequency equation

Following the notation and sign conventions of Levinson and Cooke [4], with the exception
that the shear coefficient is written as k rather than k2, and the transverse displacement is
written as v rather than w, the coupled equations of free vibration of a uniform Timoshenko beam
are

kAG
q
qx

cþ
qv

qx

� �
¼ rA

q2v
qt2

; kAG cþ
qv

qx

� �
� EI

q2c
qx2
¼ �rI

q2c
qt2

. (1a,b)

Elimination of the cross-sectional rotation c leads to the single differential equation of the fourth
order in both space and time

EI
q4v
qx4
þ rA

q2v
qt2
� rI 1þ

E

kG

� �
q4v

qx2qt2
þ

r2I
kG

q4v
qt4
¼ 0; (2)

alternatively, elimination of v leads to an identical equation in c. Assuming vðx; tÞ ¼ V ðxÞeiot,
cðx; tÞ ¼ CðxÞeiot, then one has

V ðxÞ ¼ B sinh l1xþ C cosh l1xþD sin l2xþ F cos l2x,

CðxÞ ¼ �ða1=l1ÞðB cosh l1xþ C sinh l1xÞ þ ða2=l2ÞðD cos l2x� F sin l2xÞ, ð3a;bÞ

where

a1;2 ¼
ro2

kG
� l21;2

� �
; l21;2 ¼

b4o4

4
þ ao2

� �1=2

�
b2o2

2
,

a ¼
r
E

A

I
�

ro2

kG

� �
; b2

¼
r
E

1þ
E

kG

� �
ð4a2dÞ

and B, C, D and F are arbitrary constants.
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At a guided end, both the shearing force Q ¼ kAGðcþ qv=qxÞ, and cross-sectional rotation c
are equal to zero; applying these conditions at x ¼ 0 and L leads to the matrix equation

�a1=l1 0 a2=l2 0

ðl1 � a1=l1Þ 0 ðl2 þ a2=l2Þ 0

�ða1=l1Þ cosh l1L �ða1=l1Þ sinh l1L ða2=l2Þ cos l2L �ða2=l2Þ sin l2L

ðl1 � a1=l1Þ cosh l1L ðl1 � a1=l1Þ sinh l1L ðl2 þ a2=l2Þ cos l2L �ðl2 þ a2=l2Þ sin l2L

2
666664

3
777775

�

B

C

D

F

2
666664

3
777775 ¼ 0 ð5Þ

and for a non-trivial solution, a zero value of the determinant leads to the frequency equation

ða1l
2
2 þ a2l

2
1Þ

2

l21l
2
2

sin l2L sinh l1L ¼ 0. (6)

For guided–hinged conditions, for which one now has v ¼ 0 and qc=qx ¼ 0 at x ¼ L, the
matrix equation becomes

�a1=l1 0 a2=l2 0

ðl1 � a1=l1Þ 0 ðl2 þ a2=l2Þ 0

sinh l1L cosh l1L sin l2L cos l2L

�a1 sinh l1L �a1 cosh l1L �a2 sin l2L �a2 cos l2L

2
6664

3
7775

B

C

D

F

2
6664

3
7775 ¼ 0, (7)

leading to the frequency equation

ða1 � a2Þ
ða1l

2
2 þ a2l

2
1Þ

l1l2
cos l2L cosh l1L ¼ 0. (8)

An equivalent process for the hinged–hinged beam, for which the boundary conditions are
v ¼ 0 and qc=qx ¼ 0 at x ¼ 0 and x ¼ L, leads to

ða1 � a2Þ
2 sin l2L sinh l1L ¼ 0. (9)

Thus, we see that factorisation of the frequency equation is not confined to hinged–hinged end
conditions, as is the conventional wisdom, although these new cases are related. Fig. 1 shows a
three span hinged–hinged beam, for which the frequency equation would be the same as that of a
single span. The addition of mass-less guides at the mid-point of each span would not affect the
system, as the required conditions at a guide are guaranteed by symmetry. Portions AB and AC
represent the first and second modes for the guided–guided case; higher modes of vibration are
accommodated by increasing the number of spans. For the guided–hinged case, the first mode is
represented by portion A2 of the system; the change from trigonometric and hyperbolic sine
functions in the frequency Eq. (6) to equivalent cosine functions within the frequency Eq. (8), is
the consequence of a change in the effective length of the beam, Leff, according to the scheme
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Fig. 1. Three-span hinged–hinged beam with guides at mid-span. Portions AB and AC represent the first and second

modes, respectively, for guided–guided end conditions. Portions A2 and A3 represent the first and second modes for

guided–hinged.
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Leff ¼ ð2n� 1ÞL=ð2nÞ. Thus for n ¼ 1, Leff ¼ L=2, as represented by portion A2. For n ¼ 2,
Leff ¼ 3L=4, as represented by portion A3 (the beam length now taken as portion 13 for the
second mode of the hinged–hinged case), and for n ¼ 3, Leff ¼ 5L=6, as represented by portion A4
(the beam length now taken as portion 14 for the third mode of the hinged–hinged case).
Having seen that the guided–guided, and guided–hinged cases may be regarded as portions of a

multi-span hinged–hinged beam, we now focus solely on the latter. The first spectrum of
frequencies is defined by the factor sin l2L ¼ 0, and hence l2L ¼ np, when the mode shapes are

V ðxÞ ¼ D sin
np
L

x and CðxÞ ¼
a2
ðnp=LÞ

D cos
np
L

x (10a,b)

with

a2 ¼
ro2

kG
�

np
L

� �2
.

Above the cut-off frequency defined by o2
co ¼ kAG=rI , expression a, Eq. (4c), becomes negative,

in which case from Eq. (4b), l21 becomes negative, and l1 becomes imaginary. This leads to the
second spectrum of frequencies defined by the factor sinh l1L ¼ 0, or i sin jl1jL ¼ 0 and hence
jl1jL ¼ np, for which the mode shapes are

V ðxÞ ¼ iB sin
np
L

x and CðxÞ ¼
ia1
ðnp=LÞ

B cos
np
L

x. (11a,b)

Note that the constant B is assumed imaginary; moreover, the term a1 ¼ ro2=ðkGÞ þ l21 becomes
equal to a2, since l1 ¼ iðnp=LÞ. Thus, if one replaces iB by D in Eqs. (11), the first spectrum mode
shapes, Eqs. (10), apply equally to the second spectrum.
For both spectra, the ratio of cross-sectional rotation to shear angle, R, for hinged–hinged end

conditions, may be determined as

R ¼
c
g
¼

c
ðcþ qv=qxÞ

¼ 1�
kG

ro2

np
L

� �2
, (12)

which is independent of the axial coordinate. Now for a given n there are two possible frequencies
o1 and o2, so one may define

R1 ¼ 1�
kG

ro2
1

np
L

� �2
and R2 ¼ 1�

kG

ro2
2

np
L

� �2
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and since we know o2
24o2

1, it follows that R24R1. If one inserts numerical values into Eq. (12)
from the example considered in Section 4, it is found that R is negative for the first spectrum and
positive for the second. More generally, if the frequency equation for the hinged–hinged case is
written in the algebraic form

EI
np
L

� �4
� rAo2 � rI 1þ

E

kG

� �
o2 np

L

� �2
þ
r2I
kG

o4 ¼ 0, (13)

then after some manipulation, one can embed R into this equation to give

R2 � 1�
kG

E
�

L

np

� �2 kAG

EI

" #
R�

L

np

� �2 kAG

EI
¼ 0; (14)

this equation has the two roots R1 and R2 allowing one to write

ðR� R1ÞðR� R2Þ ¼ R2 � ðR1 þ R2ÞRþ R1R2 ¼ 0. (15)

Since the coefficient of R0 in Eq. (14) is negative (assuming k40), then by comparison with
Eq. (15) one sees that the two values of R must have opposing signs, irrespective of the sign of the
coefficient of R1. Thus one may conclude that R1 is negative, and R2 is positive; moreover (1�R)
must always be positive. We also note the relationship a2 ¼ ðro2=kGÞR, so a2 is negative for the
first spectrum and positive for the second.
3. Higher-derivative Lagrangian, and the Ostrogradski and mechanical energies

Chervyakov and Nesterenko [13,14] have shown that the fourth-order PDE describing the
Timoshenko beam may be determined directly from the higher-derivative Lagrangian function

L ¼
1

2
rAð_vÞ2 � EIðv00Þ2 �

r2I
kG
ð€vÞ2 þ rI 1þ

E

kG

� �
ð€vÞðv00Þ

� �
(16)

and use of the variational principle d
R t2

t1

R L

0 L dx dt ¼ 0; in the above, dot and prime denote
differentiation with respect to t and x, respectively. Performing the variation leads to Eq. (2),
together with conditions at the beam ends

either EIv000 �
rI

2
1þ

E

kG

� �
€v0 ¼ 0 or dv ¼ 0; v is specified; (17)

either EIv00 �
rI

2
1þ

E

kG

� �
€v ¼ 0 or dðv0Þ ¼ 0; v0 is specified: (18)

The physical meaning of these natural boundary conditions is not at all obvious; on the other
hand, they are not inconsistent with some of the more familiar boundary conditions. For example,
at a pinned end, v is specified as equal to zero, in which case €v is also equal to zero, and from
Eq. (18), so too is v00; last, from Eq. (1a), one has c0, in which case the bending moment is zero. At
a clamped end, both v and v0 can be specified as equal to zero; however, the alternative clamping
of v ¼ c ¼ 0 is not accommodated. At a free end, the moment and the shearing force are both
zero, and again these conditions are not accommodated.
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According to the canonical formalism developed by Ostrogradski for higher-derivative theories
(see Ref. [15]), the generalised coordinates q1 ¼ v and q2 ¼ _v have conjugate momenta defined by
the expressions

p2 ¼
qL

qð€vÞ
; p1 ¼

qL

qð_vÞ
�

d

dt

qL

qð€vÞ

� �
, (19a,b)

where this scheme is defined by the highest time derivative within the Lagrangian. While the
physical meaning of q1 and q2 is clear, the momenta become

p2 ¼
rI

2
1þ

E

kG

� �
v00 �

r2I
kG

€v; p1 ¼ rA_vþ
r2I
kG

€v�
rI

2
1þ

E

kG

� �
_v0 (20a,b)

and their physical meaning is not at all clear. The Hamiltonian is defined by

H ¼

Z L

0

ðp1 _q1 þ p2 _q2 � LÞ dx (21)

and is a conserved quantity, or an integral-invariant of the system, and is usually regarded as an
energy. The values of this Hamiltonian for solutions of the relevant equations of motion have
been termed the Ostrogradski energy by Nesterenko [14], and is here denoted as EO. For the
Timoshenko beam, one finds

2EO ¼ rA

Z L

0

ð_vÞ2 dxþ EI

Z L

0

ðv00Þ2 dx� rI 1þ
E

kG

� �Z L

0

ð_vÞð_v00Þ dxþ
r2I
kG

Z L

0

ð2ð_vÞð _ _ _vÞ � ð€vÞ2Þ dx.

(22)

For hinged–hinged end conditions, substitute

vðx; tÞ ¼ D sin
npx

L
sin ot, (23)

which is acceptable for both spectra. We can see that
R L

0 sin2ðnpx=LÞ dx ¼ L=2 for integer n, gives

2EO ¼
LD2

2
cos2ot rAo2 þ rI 1þ

E

kG

� �
o2 np

L

� �2
�

2r2Io4

kG

� �

þ
LD2

2
sin2ot EI

np
L

� �4
�
r2Io4

kG

� �
. ð24Þ

Now employ the algebraic frequency Eq. (13) to modify the first part of the right-hand side, to
give

2EO ¼
LD2

2
cos2ot EI

np
L

� �4
�
r2Io4

kG

� �
þ

LD2

2
sin2ot EI

np
L

� �4
�
r2Io4

kG

� �
(25)

and hence

EO ¼
LD2

4
EI

np
L

� �4
�

r2Io4

kG

� �
. (26)
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The mechanical energy Em is defined by

2Em ¼ rA

Z L

0

ð_vÞ2 dxþ rI

Z L

0

ð _cÞ2 dxþ EI

Z L

0

ðc0Þ2 dxþ kAG

Z L

0

ðv0 þ cÞ2 dx. (27)

Again substitute for vðx; tÞ as above, and

cðx; tÞ ¼
a2
ðnp=LÞ

D cos
npx

L
sin ot with a2 ¼

ro2

kG
�

np
L

� �2
, (28)

which is valid for both spectra, and note that
R L

0 cos2ðnpx=LÞ dx ¼ L=2 for integer n, to give the
rather lengthy expression

2Em ¼
LD2

2
cos2ot rAo2 þ

rIo2

np=L
� �2 ro2

kG

� �2

� 2
ro2

kG

� �
np
L

� �2
þ

np
L

� �4( ) !

þ
LD2

2
sin2ot EI

ro2

kG

� �2

� 2
ro2

kG

� �
np
L

� �2
þ

np
L

� �4( )
þ kAG

ro2

kG

� �2
1

np=L
� �2

 !
.

ð29Þ

Again by employing the algebraic frequency equation this can be simplified as

Em ¼
LD2

4
EI

np
L

� �4
�

r2Io4

kG

� �
1�
ðro2=kGÞ

ðnp=LÞ2

" #
, (30)

leading to the relationship between the two energies

Em ¼ EO 1�
ðro2=kGÞ

ðnp=LÞ2

" #
. (31)

Nesterenko [14] has shown that the Ostrogradski energy EO, Eq. (26), can be expressed in terms
of the Euler–Bernoulli prediction for the simply supported beam, which is

oEB ¼
np
L

� �2 ffiffiffiffiffiffiffi
EI

rA

s

and the second spectrum cut-off frequency, oco ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAG=rI

p
, as

EO ¼
rALD2

4
o2

EB �
o4

o2
co

� �
¼

rALD2

4
oEB �

o2

oco

� �
oEB þ

o2

oco

� �
; (32)

he then employed an asymptotic expansion, valid for a long beam, to show that EO is positive for
the first spectrum of frequencies, and negative for the second. One might suspect this to be the
case from the following arguments: the factor ðoEB þ o2=ocoÞ is always positive. For the first
spectrum, the Timoshenko frequency prediction o1 is always smaller than the Euler–Bernoulli
prediction, so the factor ðoEB � o2=ocoÞ is positive at least over the range, where o1 is smaller
than the cut-off frequency. For the second spectrum, the Timoshenko frequency prediction o2 is
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greater than the cut-off frequency, so this factor is negative at least when o2 is greater than the
Euler–Bernoulli prediction.
A more rigorous approach is to note that the algebraic frequency equation must factorise as
ðo2 � o2

1Þðo
2 � o2

2Þ ¼ 0, so one has o4 � ðo2
1 þ o2

2Þo
2 þ o2

1o
2
2 ¼ 0; now multiply this throughout

by the term r2I=kG, and comparing with Eq. (13), one must have

EI
np
L

� �4
¼

r2I
kG

o2
1o

2
2.

The Ostrogradski energy, Eq. (26), becomes

EO ¼
LD2r2I
4kG

ðo2
1o

2
2 � o4Þ. (33)

Now for a given n, we know that o2
24o2

1; for the first spectrum one may write

EO1 ¼
LD2

1r
2I

4kG
ðo2

1o
2
2 � o4

1Þ ¼
LD2

1r
2I

4kG
o2

1ðo
2
2 � o2

1Þ40, (34)

while for the second

EO2 ¼
LD2

2r
2I

4kG
ðo2

1o
2
2 � o4

2Þ ¼
LD2

2r
2I

4kG
o2

2ðo
2
1 � o2

2Þo0. (35)

Thus one sees quite unequivocally that EO is positive for the first spectrum and negative for the
second. If both modes are present simultaneously, then adding gives

EO ¼
Lr2I
4kG

ðo2
2 � o2

1ÞðD
2
1o

2
1 �D2

2o
2
2Þ, (36)

a result presented previously by Chervyakov and Nesterenko [13].
An alternative approach focuses on the factor relating EO and the mechanical energy, Em, in

Eq. (31), noting that Em is always positive. For both spectra, the ratio of cross-sectional rotation
to shear angle, R, for hinged–hinged end conditions, is determined as

R ¼
c
g
¼

c
ðcþ qv=qxÞ

¼ 1�
kG

ro2

np
L

� �2
, (37)

allowing one to re-write Eq. (31) as

Em ¼ EO
R

R� 1
(38)

or equivalently

Em ¼ EO
c

c� g
¼

c
�ðqv=qxÞ

. (39)

Now R is negative for the first spectrum (using the above sign conventions), and positive for the
second; it is also always smaller than unity for na0. From Eq. (37), (1�R) is always positive.
Thus again one concludes that EO is positive for the first spectrum, and negative for the second.
Although the physical significance of the Ostrogradski energy remains uncertain, it provides a
clear indication of a character difference between the two spectra.
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An example of an uncontroversial higher time derivative theory is the coupled tension–torsion
coupling of pre-twisted structures such as a turbine blade; the static behaviour is assumed to be
governed by coupled equations of the form

Tx

Mx

" #
¼

EA Ktt

Ktt GJ

" # qu

qx
qy
qx

2
664

3
775 (40)

and the dynamic equations are

EA Ktt

Ktt GJ

" # q2u
qx2

q2y
qx2

2
6664

3
7775 ¼

rA
q2u
qt2

Jx

q2y
qt2

2
6664

3
7775. (41)

Note the symmetry of the stiffness matrix. For the straight beam there would be zero coupling,
that is Ktt ¼ 0, and the above reduces to two uncoupled equations of the second order

EA
q2u
qx2
¼ rA

q2u
qt2

and GJ
q2y
qx2
¼ Jx

q2y
qt2

. (42)

Elimination of one of the variables, say u, in favour of y, would lead to a fourth-order equation in
both time and space, as

ðEAGJ � K2
ttÞ

q4y
qx4
� ðEAJx þ rAGJÞ

q4y
qx2qt2

þ rAJx
q4y
qt4
¼ 0. (43)

Eliminating y in favour of u would give an equivalent equation; assuming sinusoidal time
dependence leads to

ðEAGJ � K2
ttÞ

d4Y
dx4
þ o2ðGJrAþ EAJxÞ

d2Y
dx2
þ o4rAJxY ¼ 0. (44)

Typically, uncoupled extensional frequencies are larger than torsional, for the same wavelength.
Coupling has the effect of bringing these close together—the torsional frequency is raised, and the
extensional is lowered, although not by so much; the higher spectrum is predominantly
extensional with a small amount of torsion, the lower is predominantly torsion with a small
amount of extension. For (co)sinusoidal mode shapes (free–free and fixed–fixed end conditions),
the natural frequency predictions are
predominantly torsional

o ¼
np
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAJx þ GJrA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEAJx � GJrAÞ2 þ 4rAJxK2

tt

q
2rAJx

vuut
, (45)

predominantly extensional

o ¼
np
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAJx þ GJrAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEAJx � GJrAÞ2 þ 4rAJxK2

tt

q
2rAJx

vuut
(46)
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and setting Ktt ¼ 0, leads to familiar expressions for the two established uncoupled theories; this
contrasts with ‘‘uncoupling’’ of the Timoshenko equations, as described above, when one branch
tends to the Euler–Bernoulli frequency prediction, the other to infinity. Moreover, one can show
that the Ostrogradski energy is positive for both modes.
4. Numerical example

We now extend the calculations presented by Levinson and Cooke [4]; the beam has length
L ¼ 0:5m, depth h ¼ 0:125m, Young’s modulus E ¼ 210� 109 N=m2, density r ¼ 7850 kg=m3,
Poisson’s ratio n ¼ 0:3, and unit thickness consistent with plane stress conditions. First,
note that the Euler–Bernoulli prediction for the fundamental frequency ðn ¼ 1Þ is o1 ¼ 7368 rad=s
which is some 9.5% in excess of the exact value, so for this short beam a Timoshenko
model should always be used. Two values of the shear coefficient are employed in the com-
parison: k ¼ 5

6
as in [4], and k ¼ 5ð1þ nÞ=ð6þ 5nÞ. The exact plane stress theory is presented in

Appendix A.
From Table 1, one concludes initially what has been reported several times over—TBT1 can

provide excellent agreement with exact theory when one uses the best shear coefficient
k ¼ 5ð1þ nÞ=ð6þ 5nÞ, as in column 5; the error is better than �0.4 and +0.55%. On the other
hand, the value k ¼ 5

6
provides a prediction always lower than the exact, at least over the range

considered, with a maximum error of �2%. Experimental evidence in support of the value
k ¼ 5ð1þ nÞ=ð6þ 5nÞ has recently been provided by Méndez-Sánchez et al. [17], although they
also note that a two-coefficient theory presented by Stephen and Levinson [18], and which
incorporates both this, and Cowper’s value [19] of k ¼ 10ð1þ nÞ=ð12þ 11nÞ, provides marginally
better agreement with their experimental results.
The behaviour of both the first and higher spectra of the (a)symmetric cases is shown in Fig. 2;

first note that the differences between TBT1 and the lowest exact asymmetric (flexural) prediction,
denoted A1, are not discernable on this scale. The second spectrum prediction TBT2, is very close
to the second exact asymmetric prediction (A2) for np2, which is consistent with Miklowitz [11].
However, TBT2 is closest to the second symmetric prediction (S2) for 3pnp8, and closest to the
third asymmetric (A3) for 9pnp11. This capricious behaviour is the same as was found in Ref.
[2] for the beam of circular cross-section, and for the w2-mode of Mindlin plate theory [3]—at
various wavelengths (equivalently mode numbers), it agrees perfectly with exact theory, but
never the same mode! Also note that the lowest symmetric (extensional) frequency (S1) and the
lowest asymmetric (flexural) frequency (A1) converge as the wavelength becomes small
(equivalently n becomes large); one would expect as much, as both cases should predict wave
propagation at Rayleigh surface velocity at very small wavelength. From a standing wave
viewpoint, the data shown in Fig. 2 are strictly only true for integer n. However, the figure can
also be interpreted as a dispersion diagram for wave propagation in an infinite beam when the
wavelength is l ¼ 2L=n.
In passing, it is instructive to compare the exact extensional frequency predictions, with those of

the classic theory, and that of Rayleigh–Love, which includes a Poisson’s ratio correction, Table
2. It is clear that the Rayleigh–Love theory is better than the classic, but it cannot rival the level of
accuracy that TBT1 provides for the asymmetric case.
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Table 1

Lowest exact asymmetric, and first TBT spectrum frequency predictions

n Exact-asymmetric k ¼ 5
6

k ¼ 5ð1þ nÞ=ð6þ 5nÞ Percentage error

1 6730 6712 6729 �0.015

2 22 296 22 136 22 279 �0.076

3 41 166 40 701 41 094 �0.175

4 61 051 60 170 60 890 �0.264

5 81 163 79 806 80 896 �0.329

6 101 226 99 375 100 856 �0.366

7 121 149 118 812 120 693 �0.376

8 140 907 138 112 140 396 �0.363

9 160 503 157 287 159 974 �0.330

10 179 948 176 355 179 443 �0.281

11 199 253 195 333 198 820 �0.217

12 218 433 214 236 218 118 �0.144

13 237 501 233 077 237 351 �0.063

14 256 469 251 864 256 529 +0.023

15 275 350 270 608 275 660 +0.113

16 294 156 289 314 294 752 +0.203

17 312 898 307 987 313 810 +0.291

18 331 585 326 634 332 838 +0.378

19 350 227 345 256 351 842 +0.461

20 368 833 363 859 370 823 +0.540

mode number n
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Fig. 2. Natural frequency predictions for a hinged–hinged beam of narrow rectangular cross-section for a range of

mode numbers, n. TBT1 and TBT2 denote the first and second spectrum predictions, respectively, of Timoshenko beam

theory. A and S are the asymmetric (flexural) and symmetric (extensional) predictions, respectively, from plane stress

elasticity theory; numerals indicate first, second, etc. The difference between TBT1 and A1 is not discernable.
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5. Conclusions

Recent contributions to the debate on the second frequency spectrum of Timoshenko beam
theory have been reviewed, and several new results are presented. In particular, it is shown that
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Table 2

Comparison of extensional (symmetric) frequency predictions

n Exact-symmetric Classic Rayleigh–Love

1 32 418 32 498 32 423

2 64 214 64 996 64 403

3 93 518 97 494 95 525

4 114 010 129 991 125 432

N.G. Stephen / Journal of Sound and Vibration 292 (2006) 372–389386
the frequency equation factorises not only for hinged–hinged end conditions, as is often claimed,
but also for guided–guided and guided–hinged end conditions. These new beam end combinations
may be regarded as portions of a multi-span hinged–hinged beam.
A higher-derivative Lagrangian which, through Hamilton’s principle, leads directly to the well-

known fourth-order Timoshenko beam equation is also reviewed; the meaning of the natural
boundary conditions leading from the variational process is not clear, and can be reconciled with
just some of the familiar beam end conditions. Likewise the canonical momenta associated with
the generalised coordinates do not have any obvious physical meaning. A simple relationship
between the so-called Ostrogradski energy and the mechanical energy is derived for
hinged–hinged end conditions. Both are integral-invariants of the system. While the latter is
positive definite, it is shown that the Ostrogradski energy is positive for the first spectrum but
negative for the second; within some branches of physics, this would be sufficient evidence to
conclude that the second spectrum in ‘‘unphysical’’.
The numerical example of a short hinged–hinged beam of thin rectangular cross-section

considered by Levinson and Cooke is re-examined. It is seen that agreement between the
Timoshenko first spectrum frequency prediction and exact plane stress elastodynamic theory is
excellent. However, the Timoshenko second spectrum prediction does not provide consistent
agreement with any single mode. Again it is concluded that these second spectrum predictions
should be disregarded.
Appendix A. Plane stress elastodynamic theory

The plane stress equivalent of the plane strain Rayleigh–Lamb theory of plate flexural vibration
was developed first by Timoshenko [20] and more recently by Cowper [21]. Here, the theory is
extended to include both asymmetric (flexural) and symmetric (extensional) cases. Cut-off
frequencies are also included. The governing equations are

qsx

qx
þ

qtxy

qy
þ ro2u ¼ 0;

qtxy

qx
þ

qsy

qy
þ ro2v ¼ 0, (A.1a,b)

together with Hooke’s law

sx ¼
E

ð1� n2Þ
ð�x þ n�yÞ; sy ¼

E

ð1� n2Þ
ð�y þ n�xÞ; txy ¼

E

2ð1þ nÞ
gxy ¼ Ggxy. (A.2a2c)
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These are subject to traction-free boundary conditions on the upper and lower edge of the strip
y ¼ �h=2.

A.1. Asymmetric case

The displacement field

u ¼ A sinh
ay

h
þ B sinh

by

h

� �
cos

npx

L
sinot,

v ¼ C cosh
ay

h
þD cosh

by

h

� �
sin

npx

L
sinot ðA:3a;bÞ

satisfies the conditions of a simple-support, as both v and sx are equal to zero on x ¼ 0 and x ¼ L
for integer n. In order that the dynamic equilibrium Eqs. (A.1a,b) are satisfied, one requires

C ¼
nph

aL

� �
A and D ¼

bL

nph

� �
B

and the relationships

a2 ¼
nph

L

� �2

�
ro2h2

G
; b2 ¼

nph

L

� �2

�
ro2h2

ð1� n2Þ
E

. (A.4a,b)

Traction-free boundary conditions on the lower and upper edges are sy ¼ txy ¼ 0 on y ¼ �h=2,
leading to the matrix equation

ð1� nÞ sinh
a
2

bL

nph

� �2

� n

 !
sinh

b
2

np
L

� �2 h

a
þ

a
h

� �
cosh

a
2

2b
h

cosh
b
2

2
66664

3
77775

A

B

� 	
¼ 0 (A.5)

and for a non-trivial solution, one requires that the determinant should be zero. Note the error in
Eq. (4b) of Cowper [21], which has a minus sign in the element below the leading diagonal.
The asymmetric cut-off frequency is defined by the special case of n ¼ 0, when the displacement

component v, and both the direct strains �x and �y, and hence the direct stress components, are
equal to zero; thus the stress field is free of dilatation, and involves shear only. The shearing stress
txy is independent of x, so the dynamic equilibrium Eq. (A.1b) is satisfied identically. Equilibrium
Eq. (A.1a) becomes

A sinh
ay

h

Ga2

h2
þ ro2

co

� �
þ B sinh

by

h

Gb2

h2
þ ro2

co

� �
¼ 0 (A.6)

and is satisfied if one sets A ¼ B, a ¼ b, when a non-trivial solution requires a2 ¼ �ro2
coh2=G.

The traction-free requirement txy ¼ 0 on y ¼ �h=2 leads to the requirement coshða=2Þ ¼
cosðia=2Þ ¼ 0, hence ro2

coh2=G ¼ p2; 9p2; 25p2; . . . ; etc, and radian frequencies

oco ¼ ð2m� 1Þ
p
h

ffiffiffiffi
G

r

s
; m ¼ 1; 2; 3; . . . ; etc:
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A.2. Symmetric case

The displacement field

u ¼ A cosh
ay

h
þ B cosh

by

h

� �
sin

npx

L
sin ot,

v ¼ C sinh
ay

h
þD sinh

by

h

� �
cos

npx

L
sin ot ðA:7a;bÞ

now requires

C ¼ �
nph

aL

� �
A and D ¼ �

bL

nph

� �
B

with a and b as defined previously. Displacement u is now equal to zero on x ¼ 0 and x ¼ L for
integer n; stress sx and displacement v are non-zero on these ends, so this field is consistent with a
fixed end that allows Poisson’s ratio contraction effects. Again traction-free conditions on the
lower and upper edges lead to the matrix equation

ð1� nÞ cosh
a
2

bL

nph

� �2

� n

 !
cosh

b
2

np
L

� �2 h

a
þ

a
h

� �
sinh

a
2

2b
h

sinh
b
2

2
66664

3
77775

A

B

� 	
¼ 0; (A.8)

note that this is identical in form to the asymmetric case, except that the sinh and cosh functions
are interchanged. Again, a non-trivial solution requires the determinant to be zero.
The symmetric cut-off frequency is defined by the special case of n ¼ 0, when the displacement

component u is now zero, and v is independent of x. Immediately, the shearing stress txy is zero.
The dynamic equilibrium Eq. (A.1a) is satisfied identically, while Eq. (A.1b) yields

C sinh
ay

h

Ea2

ð1� n2Þh2
þ ro2

co

� �
þD sinh

by

h

Eb2

ð1� n2Þh2
þ ro2

co

� �
¼ 0 (A.9)

and is satisfied if one sets C ¼ D, a ¼ b, when a non-trivial solution requires a2 ¼
�ð1� n2Þro2

coh2=E. The traction-free requirement sy ¼ 0 on y ¼ �h=2 again leads to the
requirement coshða=2Þ ¼ cosðia=2Þ ¼ 0, hence ð1� n2Þro2

coh2=E ¼ p2; 9p2; 25p2; . . . ; etc:, and
radian frequencies

oco ¼ ð2m� 1Þ
p
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

ð1� n2Þr

s
; m ¼ 1; 2; 3; . . . etc.
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