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Abstract

We introduce a method for the estimation of the eigenfrequencies for separable Kirchhoff thin-plate problems on a
rectangle, particularly those involving the free boundary condition. We believe that this paper is the first to give such a
treatment for the low end of the spectrum. The method is an adaptation of an asymptotic/perturbation method used for
the treatment of various beam problems and, in the setting of the plate, is shown to be a generalization and refinement of
the asymptotic methods of Bolotin and Keller and Rubinow (the wave propagation method). We compare our results with
those of our own Legendre-tau approximation and, where available, with numerical results extant in the literature.
Excellent agreement is found in each case.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the very important model of the Kirchhoff thin plate on a rectangle, subject to one of the four
naturally occurring energy-conserving boundary conditions along each edge. Thus, we have the PDE

we(x, y, 1) + V4w(x,y, =0, (x,9)el=(0,a)x(0,b), >0, (D

where V* is the biharmonic operator, along with one of the following boundary configurations along each
vertical edge x = constant and each horizontal edge y = constant.
Boundary conditions along edges x = constant:

C (clamped) w=w,=0, >0, 2)

S (simply supported) w=wy +vwy, =0 (= wy =0), >0, 3)

R (roller-supported) Wy = Wy + (2 = VWi =0 (= Wy =0), >0, 4)
F (free) wyoo+vwy = woe + (2 = v)wy,, =0,  >0. (5)
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Nomenclature A vibration frequency
C clamped boundary condition
Uy Ou/0x S simply supported boundary condition
v Poisson’s ratio R roller-supported boundary condition
€ perturbation variable F free boundary condition
P, Legendre polynomial of degree n
Boundary conditions along edges y = constant:
C w=w,=0, >0, (6)
S w=w, =0, >0, @)
R w,=w,, =0 >0, ®)
Fowy +vwee=wy + 2 =)W, =0, >0. 9)

Note that in Eq. (3), we have that w(t,y)=0= w,(f,y)=0; similarly, in Eq. (4),
wx(t,y) = 0 = wy,(¢,y) = 0. Of course, similar reasoning leads to the second equation in each of Eqgs. (7)
and (8). In each case, v is the constant Poisson’s ratio, 0 <v <%, and we have used the notation w, = 0w/0t, etc.
We identify the various boundary configurations using Leissa’s convention [1]. For example, the sequence
S—C-F-C indicates that the edges x =0, y =0, x = a and y = b are simply supported, clamped, free and
clamped, respectively, as shown in Fig. 1.

Of course, crucial to the understanding of the behavior of any vibration problem is an accurate computation
of the vibration spectrum. It is well known that, if each edge of the plate is either simply supported or roller
supported, then each frequency is just the square of the corresponding frequency for the clamped membrane.
In the case at hand, as we shall see, two opposite sides will be such that each is either simply supported or
roller-supported, while at least one of the other edges is clamped or free. Here, the frequencies can be
computed to any desired degree of accuracy, using numerical methods. In fact, nowadays, there are various
commercial software packages, like MSC/NASTRAN and FEMLAB, which will solve these problems.

Instead, we would like to extend the ideas used in Refs. [2,3]. There, a perturbation method was treated as
an add-on to the asymptotic wave propagation method (WPM) of Keller and Rubinow [4,5], the perturbations
being necessary to ensure accuracy at the low end of the spectrum, corresponding to the highest energies of
vibration. Here, we extend that method to those plate problems for which it is applicable; however, we treat it
as the stand-alone method that it is, with WPM, as well as Bolotin’s asymptotic method [6], appearing as
special cases.

y
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Fig. 1. S-C-F-C plate.
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So, in Section 2, we look at the boundary configurations for which the approach is applicable. Here, we
choose three representative configurations, while we lay out the method for each case in Section 3. Section 4
sets up the actual equations to be solved and how to solve them and also briefly describes the Legendre-tau
spectral method, which we apply to the problem for the sake of comparison. The results are presented in
Section 5, along with a comparison of the Legendre-tau results and other numerical results from the literature.

Now, in Section 3, the third configuration was chosen so as to highlight not only the power, but also the
limitation, of the method. Therefore, in Section 6, we show how to circumvent this one limitation.

While providing an elegant solution to these plate problems, this paper’s important contributions are (1)
that it is the first step in generalizing a successful one-dimensional method to the solution of problems in
higher dimensions; (2) that it supplants two well-known asymptotic methods for solving these problems, as it
contains each as a special case; and (3) that this method, if generalized to arbitrary rectangular plate problems
(and, thus, we assume, to shallow shell problems on rectangular domains), and made rigorous, may in fact
become part of the arsenal of routines used by various commercial software packages.

2. Separation and applicable boundary configurations

First we separate time from the other variables. Letting

w(x, y, 1) = ¥ p(x, y), (10)
the PDE becomes

Vi —2Pp=0 (x,3)eQ, (11)

while the new BCs are identical to Egs. (2)—(9), but with w replaced by ¢ (and, of course, here there is no need
for the statement ¢>0).

Now, the problem is to determine which plate boundary configurations will allow us to apply the method
from Refs. [2,3]. It is easy to see that the method was successful for beam problems because a complete
“general solution” could be found. Thus, the same should be true in the case of the plate and, as we shall see,
this will be the case exactly when the plate problem is separable. Indeed, when the problem is not separable we
find that whatever linear combination of solutions we begin with, application of the boundary conditions leads
to an overdetermined system which has only the trivial solution.

So, we separate the variables,

P(x,y) = X()Y(»)
and the PDE (11) becomes
xX@ ox'y” y®w
Y Txv Ty
Thus, it is separable exactly when
X'=—-*X or Y'=-dY

for some real constant a.. Aside from the degenerate case o = 0, one of these conditions will apply exactly when
a pair of opposite sides is such that each is simply supported or roller-supported. Neglecting those cases which
are trivial (S or R along each edge), we have the following configurations to consider:

S-C-S-C, S-C-S-S, S-C-S-R, S-C-S-F, S-S-S-F, S-R-S-F, S-F-S-F,
S-C-R-C, S-C-R-S, S-C-R-R, S-C-R-F, S-S—-R-F, S—-R—-R-F, S—-F-R-F,
R-C-R-C, R-C-R-S, R-C-R-R, R-C-R-F, R-S—-R-F, R-R-R-F, R-F-R-F.
Rather than treating all 21, we wish to choose three representative cases. We may cull the list by realizing that
a number of configurations are impractical, physically (e.g. R—-C—R—-C). Further, the C, S and R boundary

conditions for the plate are essentially the same as for the beam (to be more precise, see the end of Section 5),
while the F condition is more complex, due to the presence of the Poisson’s ratio term.
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We have decided to look at the three cases S—C-S—C, S—C-S—F and S-F-S—F. The first is the “easiest’” and
will allow us clearly to illustrate the method. In addition, the first and third have been treated elsewhere in the
literature (via numerical methods), so there are results, at least for the lowest few frequencies, with which we
can compare ours. Finally, in our experience, the asymmetry of cases involving C-opposite-F tends to make
that problem the most difficult to deal with.

3. Application of the perturbation method

We begin by writing 2> = k* and forming the following “general solution” of Eq. (11):
D(x, y) = Ajeikivthen | goitkix—kan L goeiteixtion | g oit-kixth
4 Ble—mx—ikzy +Bze—m(a—x)—i/qy n B3e—mx+ik2y
+ 346*«//m(a7x)+ikzy + Cle*iklex/my + Cze*iklex/mwfy)
T C3eik1x—\/my T C4eik1x—W(1;—y) 4 Dyekivkoy
4 Dyefi@-ky 4 poehixkab-n) 4 p ehi@-kab-», (12)

Here, k% = k% + k3, and we search for values of k| and k for which Eq. (12) survives the boundary conditions.

3.1. Case 1: S—-C-S-C

We apply boundary condition (3) to the edges x = 0 and ¢ and boundary condition (6) to the edges y = 0
and b. For example, along x = 0,

$(0,y) =0 = ek [Al + A, + B+ Bze‘*/’m“}
e [y + Ay + By + Bre VI
+ e VIR 4 O] 4 e VRGO, 4+ €]
+ e RV [D| 4+ Dye ™ 9 4 e IDy + Dye 9, 0<y<b,
implying that we must have

Ay + Ay + By + ByeVHkitha — ¢,

As + Ay + By + Bye Vit — g,
Ci+C3=0, Cr+Cs4=0,

D+ Dye 9 =0, D;y+ Dy =0.

We proceed similarly for the remaining seven BCs. It follows immediately, from the fact that the edge y = 0 is
clamped, that

By =B, =B3;=B;=0.
Then, the two S conditions imply that

k="" n=1,23,...
[4)

and also that

Ay =—4), As=-43, C=-C, C3=-C
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and
Dy =Dy, =D3; =Dy =0.

So the system of 16 equations in 16 unknowns very quickly reduces to the 4 x 4 system

1 1 1 :
A 0
ik ik M 2R || 4, 0
e*ikzb elkzb e 1 C] = 0 5
ekt ikt [+ I3e -2+ 13 | LG 0

M

where & = ¢=V2i+kb and k, = nn/a. The system has nontrivial solutions if and only if

0 = det M = 2[e"*"z — e "2] 4 ¢8iky\ [ 2kT + k3 + 26772z — &¥'2), (13)

z = 2(ky, ko) = k3 — ik /23 + k3.

For this complex transcendental equation, or the corresponding real system of two transcendental equations,
we have been unable to obtain acceptable solutions using numerical routines.

Instead, realizing that ¢ is indeed quite small when b/a~1, even when n = 1, we treat ¢ as a perturbation
variable. First let us write

where

kr=x, M=M, and klzrn:n—n, nezZt
a

(where we have abused the notation, as this x has nothing to do with the original Cartesian variable, of
course). So we must solve

0=1detM,

="z — 77 4 edixy /212 4 x2 + 2(e7 Pz — €¥3)

z = z(ry, X).

with

Next, we expand x as

X = X0+ X6+ x28> 4.

In principle, we may go out to " for any m € Z*. However, as we shall see, we need only consider & and &!.
So, we write

X = X0 + x16 + O(£?),
from which we also have

otibx _ e:l:ibxo[l + ibx ] + 0(32),

XoX
\/2;’,21 +x2= \/21’,% + 34— e+ O),
\/2r2 + x3
etc. After much computation, we arrive at

%det M, = ¥z — e7iPYoz5 4 8{[eibx‘]w0 — e PYo35]xy + dixgy/ 2r2 + x%} + 0(&%),
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where zy = z(r,, X9) and

)
wo = w(ry, Xo) = bxoy/2r2 + X3 +1 | bri — \/2r% + x3 S
\/2r2 + x3

Now, the coefficient of each power of ¢ must be zero. So we solve for xy from the Oth-order approximation
P02y — e Pz5 = 0. (14)
Then, in turn, we solve for x; in terms of xo from the coefficient of ¢!, the result being

2x04/2r2 + x3

x| =— A
! Im(ei®>owy)

Again, we could proceed to do the same thing for higher powers of &. However, instead, we begin with the
approximation

XD = Xo + €oX1,
where the obvious choice for ¢ is
_ 22
£ =gy =e VIitNP,
Next, we may improve x() by updating our choice of ¢. So, let
/272512 _ 2
=g =e 2r24+x7p —e 2r2+(xo+e0x1)"b
and our improved estimate is
x? = X0 + €1X1.
We may continue the process as needed. In general, we have
g = e~V 224x0%h — ef«/2rﬁ+(xo+zg,-_|x1)2b
with improved estimate

X(I+1) = Xp + &jX1.

3.2. Case 2: S—-C-S-F

Here, again, we form the “‘general solution” (12) and apply the boundary conditions. Again, it follows
almost immediately that

ki=r="2 nezt,
a

Ay =—A1, Az =—Ay,

By =By =By= B, =0,

Cy=—-C), Ci=-Cy

D =D;=Dy=D;=0. (15)
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Our final matrix is

1 1 1 £
ix —ix /22 + x? —\/2r2 + x%¢
Mz; - —1 i 5
fie bx f1€bx —f1e —f>
ixfre P —ixfoel™  — /22 + X216 \/2r2 + X2f
where
S1= 10, x) = Vr,2, + xza
Sr =L x) = Q2= vy + X7 (16)
and again,
e—e" 2r%+x2b.
Then,
det M, = ez — e "2 4 &8ixf | f11/212 4+ x2 + O(?)
with
2= 2(rp, X) = X3 — (212 + XA +ixy /202 + X2(fT +13). (17)

Letting x = x¢ + &x, and after much computation, we have

det M, = e?zy — e ¥z
+ 3{[eibx° wo — e 7P 35g]xy + 8ixgy/2r2 + xéfl(rmxo)fz(’”n,xo)} + 0(&%). (18)
Here, zy = z(r,, xo) and

wo = W(ry, Xo) = x0{8(1 — 2v)r§(rﬁ + x(z)) — 2xg —2by/2r2 + x(z)[xg + 2rﬁx(2) +C2—-2v+ vz)ri]}
+1i¢ 2(1 — 2v)brix§(2rﬁ + xﬁ) +24/2r2 + x%[ng + 6rﬁx5 +Q2-2v+ vz)ri]

2
2x;

\/2r2 + X3

+ [xg + Zrﬁxé +Q2—-2v+ vz)ri]

3.3. Case 3: S—F-S-F

Once more, we apply the appropriate BCs to the general solution (12). Here it takes much more work to
show that B| = B = B3y = B4, =0 and D; = D, = D3 = D4 = 0, whence Eq. (15) again follows.
Now the coefficient matrix is

fi /1 /> —f5e
ixf, —ixf, —\/2;’3 + X231 \/2;’% + x3f ¢
Mc = > —ibx PN g g
fie b flebx —f2¢ —f

ixfe Y —ixfe®™ /22 +x¥f e /22 + X
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with f| = f,(ry, x) and [, = f,(r,, X) again given by Eq. (16), and
det M, = ez — 7" 4 &8ixff34/212 4+ X2 + O(&).
Here,
2= 2(rp, X) = Q2 + XA T — X3 — 2ixy /212 + X233, (19)
Letting x = x¢ + &x;, and after much computation, we arrive at
det M, = eP¥z) — e 1%z,
+ a{i[eibxow() — e P yig]xy + 8ixgy /212 + X3 %(rn,xo)fg(rn,xo)} + 0(8%), (20)
where zy = z(r,, x¢) and
wo = w(ry, Xo) = b(Zrﬁ + xé)f?(r,,, Xg) — bxéfg(r,,, X0)

— 24/ 202 + X2 1y X0) 5 (s X0)[f 2 (P, X0) + 4]
_ zxéfl (VI’U xO)f%(”na X())

\/2r2 + x3

+ Zi{xof?(rn, X0 1 (7 X0) + 4277 + x3)]

[f 1 (rns X0) + 4277 + x3)]

- xOf%(rm xo)[fZ(rns XO) + 4x(2):| + bx() \/ 2'% + x2 %(rm xo)f%(rl’l, xo)}'

4. Implementation

In each case, our baseline estimates come from the Oth-order approximation
det My = 0.

And in each case—indeed, for every such separable plate problem—it can be shown that this equation is
equivalent to the corresponding WPM and Bolotin approximations.

4.1. Case 1: S—-C-S-C

We begin by solving Eq. (14). We have

2.2 22 2.2 22
: n-m . n-m _ n-m . n-m
0= ele[) (2 —ixo 272 + xé) —e ibxg (2 —+ 1x9 272 + X%)
a a a a

or

2bxy + 2nm = arg
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2
n*n? .
2~ + x5 —ixo
= arg o
[ 22
n-Tm 2 .
2—2+x0+1x0
i ) o)
nm n°m
2—+Xx 2 IX() 2——+ X 2 IX()
2 2
=2arg
n’n? n’r? 2
2—2+ +1X0 2—2+ 0 I)C()
L a a
r 2
n*n? )
274‘.}(0 1X¢
=2arg b )
) 2
2,2
nm
=2arg 27+x(2)—1x0
2.2
n°m
_4a1‘g 274—)6(2) IX()
X
= —4tan”! 7 02
nm
2
2t
Thus we must solve
-1 X0 +
F(xp,n,m) = 2tan +bxo+mn=0, meZ neZ".
L 2
X
a? 0

4.2. Case2: S—-C-S-F
Setting the & term in Eq. (18) to zero, with zy = z(r,, xo) given by Eq. (17), we have
0 = eiP¥z, — e-ib¥ozg
or
2bxy + 2nm = arg (Z—O>
20
= 2arg(zo)

_2 arg{Xﬁf%(rn, 30) = (22 4+ 2221w x0)

—_ i.x() \/ 2}’;21 + X% [f%(rl’l, xO) +f§(rn, xo)] }
(X027 A x5 [ 1 x0) + 150, x0)]
= 2tan

(22 + X3)f 1 (rny X0) — X3f 3(rus X0)

21)
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So we must solve

(%0023 + X3 [£10, x0) + /3, x0)]

(2}’% + x%)f%(}"n, xO) - x%f%(rm )C())
—bxg—mn=0, meZ nelZ". (22)

F(xg,n,m) = tan™

4.3. Case 3: S—F-S-F

Here the ¢* term in Eq. (20) is set to zero and z is given by Eq. (19). Thus, we have
2bxy + 2nm = 2 arg(Zp)

= 2 arg |:f111(7n, xo)(zri + x%) - x(z)fg(rn, XO)
+ 2ixp \/ 27‘3 + x3 %(Vn: xO)f%(rm XO):|
2
= arg [f%(r,,, xXo)\/2r2 + x3 + ifo%(r,,, xo)]

I X0/ 3, %0)
S0 x0)\/ 202 + x5

= 4tan”

So, we solve

2
1 xof 5(ru, X0)

—bxg—mn=0, meZ nelZ". (23)
S0, x0)1/2r2 + X3

F(xg,n,m)=2tan™

Now, in the literature, we have found numerous data for the cases S—-C—S—C and S—-F-S—F, but only for the
first few frequencies. Meanwhile, we have not found any data for S-C-S-F. Thus, we have also written a
Legendre-tau spectral approximation [7] to the problem. The algorithm is, in principle, the same as that
described in Ref. [5] (though in practice, noticeably more complex), so we provide only a brief description
here.

The Legendre-tau approximation entails transforming PDE (11) and the boundary conditions to a problem
on the square [—1, 1] x [—1, 1], where we then expand the unknown function ¢(x,y) in the form

N M
$x.3) = Y dumPu(x)Pp(y).
n=0 m=0
Here, P, is the Legendre polynomial of degree n. Substituting the sum into the PDE and BCs allows us to form
an (N+ 1)(M + 1) x (N + 1)(M + 1) linear system in the unknowns «,, and A. Thus, we are led to a
generalized matrix eigenvalue problem in the frequency A.

5. Results and comparisons

In each case we have considered the square plate with ¢ = b = 1. The Oth-order equations (21)—~(23) were
solved using a standard Newton’s method, and in these three cases the worst error is |F(xg,n,m)| ~
1078, |F(xg,n,m)| ~ 1077 and |F(x9,n,m)| ~ 1079, respectively.

The generalized eigenvalues of the Legendre-tau matrix were computed using the IMSL routine DEVLRG
[8]. In each case, we have used N = M = 18 Legendre polynomials in each independent variable.
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Computations for N = M = 20 show all frequencies appearing in the tables to have converged to at least
seven decimal places. All computations were performed on the DEC Alpha 2100 at Fairfield University.

5.1. Casel: S-C-S-C

As we have set the coefficient of the biharmonic operator in Egs. (1) and (11) to be unity, Poisson’s ratio v
does not play an explicit role unless at least one BC is F. Table 1 gives the first five frequencies, after which the
Oth-order perturbation results match those from Legendre-tau. The first four columns give the frequencies
A" = (nm)* 4+ (x™)?, for appropriate n, resulting from the perturbation calculation. The column labelled L-T
gives the Legendre-tau computations while the column labelled B lists those values which have been computed
by Bardell [9], using the hierarchical finite-element method. Note that Bardell’s paper also gives the values
computed by Leissa [1] and Liew et al. [10], all computed numerically, and all of which are near to exact
matches with Bardell’s.

In this table, and in Tables 2 and 3, we have carried through the perturbation process until the results show
no further improvement or until they match the Legendre-tau results.

Table 1

Comparison of the first five frequencies for the 1 x 1 S-C-S—C plate

20 2 2@ L-T B
28.9145 28.9509 28.9508 28.9508 28.95
54.7423 54.7437 54.7431 54.74
69.3313 69.3270 69.3270 69.33
94.5856 94.5853 94.5853 94.59
102.216 102.216

Table 2

Comparison of the first seven frequencies for the 1 x 1 S-C—-S-F plate, for v = 0.25

20 2 2@ L-T
12.8302 12.8614 12.8614 12.8618
33.3410 33.3189 33.3188 33.3174
41.9575 41.9576 41.9578
63.4349 63.4345 63.4345
72.6019 72.6052 72.6054
90.9709 90.9708 90.9707 90.9707
103.670 103.670

Table 3

Comparison of the first six frequencies for the 1 x 1 S-F-S-F plate, for v = 0.3

20 20 2@ 23 L-T B
9.86960 9.86960* 9.62641 9.63
16.1659 16.1350 16.1349 16.1348 16.1323 16.13

36.7071 36.7257 36.7256 36.7255 36.73
39.4784 39.4784* 38.9448 38.95

70.7392 70.7401 70.7401

75.2824 75.2824

Those frequencies marked ~* show no improvement.



M.P. Coleman, L.A. McSweeney | Journal of Sound and Vibration 292 (2006) 474-487 485
5.2. Case 2: S-C-S-F

Here Poisson’s ratio does appear explicitly in the free boundary condition. We take a typical value of
v = 0.25 for our computations. Table 2 is set up exactly as Table 1, except that there are no results in the
literature with which to compare. Also, we need to go down to the 7th frequency before the Oth-order and
Legendre-tau results match.

5.3. Case 3: S—F-S-F

In this case, we use v = 0.3 as that is the value used in all relevant references in the literature. Table 3 is set
up exactly as Table 1. Here we include the first six frequencies, until the Oth-order and Legendre-tau results
match. However, the asterisked entries jump out, as they show no improvement. The problem here is that the
actual Oth-order solution is xo = 0. Thus, as the Newton’s method gives us a value x; =~ 0, the &-coefficient in
Eq. (20) then gives us x; = 0. (The same thing happens if we try to consider ¢ terms of higher power.) Note
that we cannot have k, #0 because the problem has no solution of the form w(x,y, ) = g(x, f), due to the
presence of at least one F boundary condition.

Thus, the perturbation approach fails for those configurations which have zero as a Oth-order, y-direction
wave number, and it is not hard to see that this occurs exactly when the edges y = constant are R-opposite-F
and F-opposite-F (and also R-opposite-R, but that case can be solved exactly).

We will solve this problem in the following section, then in Table 5 we provide a list of the first 20
frequencies for each of the three configurations. We do so in order to provide benchmarks for those not
appearing elsewhere in the literature.

Before moving on, it is instructive to compare these plate problems with the ‘“‘corresponding” beam
problems. Specifically, we compare the S—-C-S—C plate with the C—C Euler—Bernoulli beam, S-C-S-F with
C-F, and S-F-S-F with F-F. First, it is easily seen that, if we let k; = 0, each plate matrix M, becomes
identical to the corresponding beam matrix (C—C and C-F can be found in Ref. [2]). Now k; =0 is not a
solution to the plate problem with S-opposite-S or S-opposite-R, but it is when we have R-opposite-R.

It is also interesting to compare them asymptotically. By letting xo — oo in the Oth-order equations
(21)—(23) we get, in each case,

2m + 1
2

X0~ n, mel<z,
which is the same as for the corresponding beams. (Again, C—C and C-F are given in Ref. [2], while F-F is
easy, as well.)

6. The case when zero is a Oth-order solution

The perturbation method fails in this case and there seems to be no way to modify it so that it will work.
However, led by the perturbation results for other frequencies, we are in a position where we can solve for the
troublesome frequencies “‘exactly” (similar to what is done in Ref. [11]). Specifically, the least positive value
for x = k; for the configuration is k&, = 2.50305, so we have a nice bounded interval on which to search for the
unknown k>. How?

For those cases when k, is near zero, we expect the solutions to be “almost constant” along the lines
x = constant, that is, we expect the solutions not to be sinusoidal in the y-direction. So we form, instead of Eq.
(12), the “‘general solution™

¢(x,y) :Ale—1nnx+k2y+Azemnx-HQy+A3em7rx—k2y+A4e_mnx_k2y

+ Bje /212 =2k x+kay + Bze—innx—« /2272 —k3(1—y)
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Table 4

Results of solving Eq. (24) using the bisection method

n ks )= + ik L-T B

1 0.493303 9.62626 9.62641 9.63

2 0.730483 38.9448 38.9448

3 0.916378 87.9867 87.9867

4 1.07758 156.753 156.753

Table 5

The first 20 frequencies for the S—-C-S-C, S—-C-S-F and S-F-S-F plates

S-C-S-C S-C-S-F (v =0.25) S-F-S-F (v =0.3)
28.9508 12.8618 9.62641
54.7431 33.3174 16.1323
69.3270 41.9578 36.7255
94.5853 63.4345 38.9448
102.216 72.6054 70.7401
129.096 90.9707 75.2824
140.205 103.670 87.9867
154.776 112.381 96.0672
170.346 131.592 111.025

199.811 153.435 122.040

206.697 162.867 133.700

208.392 180.974 156.752

234.585 210.391 164.695

258.614 213.415 164.866

265.196 222.271 169.536

279.651 241.577 191.871

293.756 248.354 212.099

307.316 261.901 224.723

333.953 269.358 236.262

344.538 282.892 245.242

+ B2674/n2n272k%(17x)+k2y _’_B4einnx7«/2n2nsz%y
+ Cle—«/nznz—ﬂ(%x—kzy + Cze—innx—«/annz—k%y
+ CSe—«/n2n2—2k%(l—x)—kgy + C4einnx—«/2n2n2—k§(l—y)

In fact, this is just Eq. (12) with k; = nn, a = b = 1 and, interestingly, with k, replaced by ik;.
Now we can proceed as before and apply the boundary conditions, in this case S-F-S—F. After all is said
and done, we are left to solve the equation

0=¢" [\/ 2n2n2 — X2f3(nm, x) — xf2(nnm, x)] g e [\/ 2n212 — X2f3(nm, x) 4 xf2(nm, x) ’ (24)

on the closed interval [0,2.50305]. Here, again, f| and f, are given in Eq. (16). This problem is quite easy to
solve using a Newton’s method or even the bisection method. We have done so, using the latter, and the results
are presented in Table 4. Again, L-T and B are the Legendre-tau and Bardell results, respectively, and we also
list the value of k, in each case.

We end with Table 5, in which we give benchmark data by listing the first 20 frequencies for each of the
S-C-S-C, S-C-S-F and S-F-S-F plates. Where the asymptotic and Legendre-tau results do not match
exactly, we have used the latter. It should be noted, however, that for high enough frequencies, the
Kirchhoff-Love conditions are violated. Thus, results for the higher vibration modes may be unreliable.
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