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Abstract

To investigate the physical properties of fields reflected by time-reversal mirrors, one resorts to a gedanken experiment
where a mirror realizes exactly the time inversion of the incident field. Working with incident rectangular and windowed
harmonic pulses and using an integral equation approach recently developed to deal with scattering from obstacles, the
reflection of plane and spherical pulses on time-reversal mirrors is analysed. It is proved that according to the form of the
incident field, such mirrors may be transparent or behave as a dual source of pulses propagating in the opposite direction
to incident pulses.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Time-reversal mirrors (TRM) described by Fink [1] and Deroche et al. [2], are used to convert an acoustic
wave field from a source into a wave field at the source position. The areas of applications include medical
imagery, lithotripsy and nondestructive testing. The practical realization of TRM is discussed at length in Fink
[1] and mathematical works on their properties are flourishing, among the most recent ones being Bardos and
Fink [3], Bal and Ryzbik [4] and Klibanov and Timonov [5].

This work is concerned with the theoretical properties of TRM waves and, as in the gedanken experiment
devised by Stokes many years ago, mentioned in Fink [1] and Hecht [6], an ideal TRM carrying out exactly the
inversion of time 7 is devised to investigate plane wave reflection and transmission at a time-reversal interface.
Using an integral equation approach to deal with scattering from obstacles, investigations focus on
rectangular-windowed harmonic plane and spherical pulses with as objective the reflection laws of these
acoustic pulses on TRMs.

The integral equation approach in this work is not the conventional one. This point is made clear on the
scattering of harmonic plane waves, solutions of the Helmholtz equation V?y + k*) =0, by a perfectly
reflected surface located in the z = 0 plane. The Sommerfeld terminology is used: x = (x, y,2),x = (', )/, Z/),
denote, respectively, the action and source points for the Green’s functions G(x,x’; k) acting as kernels in
integral equations; similarly, X, 2, denote the surface .S of action and source points.
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Then, assuming 0.(x’, k) known on the plane 2’ = {z/ = 0}, the classical formalism, used for instance by
Sneddon [7], starts with the integral equation

byx. k) = / / A dy [0, (X, )G (x, X, )]

where the Green’s function satisfies the Neumann boundary condition on X', [0, Gy (X, X', k)] = 0. If Y(X', k)
is known on 2’ the integral equation is defined with 0, Gp(x,x’, k), Z'Gp satisfying the Dirichlet boundary
condition [Gp(x,X/, k)]y = 0.

In the approach recently developed by Hillion [8], the total field ¥(x, k) = y,(x, k) + ¥.(x, k) and the Green’s
function gy (x, X/, k) satisfy the Neumann boundary condition on the plane X = {z =0} and the integral
equation is

k) = — / / A Ay (X', 0z g (%, X', K]

If Y and g, satisfy on X the Dirichlet boundary condition, the integral equation is defined with 0.4 and gp,.

In short, fields and Green’s functions are imposed on 2’ in the conventional approach and on X in the
second approach.

Now for acoustic pulses as considered here, solutions of the wave equation Vi — c‘zéflp = 0 it is better to
work with the Laplace transform y(x,s) of fields and V?y — ¢ 2s% = 0 of the wave equation to avoid
mathematical difficulties. Then, changing formally ik into s in the previous integral equations provides an
approach to the scattering of pulses by planes on condition to justify the formal exchange k = is and to
perform the inverse Laplace transform of y(x, s).

This paper is organized as follows: Section 2 is devoted to a presentation of the integral equation approach
used to analyse reflection from surfaces on which the total field satisfies the Neumann or the Dirichlet
boundary condition. Section 3 is concerned with the reflection of 2D-rectangular, unit step and windowed
plane harmonic pulses both on conventional and TRMs while the reflection of windowed harmonic spherical
pulses is discussed in Section 4. Conclusive comments are given in Section 5 and Appendix A and B complete
this paper.

2. Integral equation approach

Since the time inversion 7 : ¢ = —t is exactly carried out by the ideal TRM considered here and since
rectangular and truncated pulses require unit step functions U, it is needed to analyse the behaviour of U not
only under 7 but also under the parity operator P : x = —x. That the Dirac distribution ¢ is an even function
implies

T{6(ct — z)} = d(—ct — z) = §(ct + z) = P{o(ct — z)}, €]

so that PT = I the identity operator. For the unit step function U, the following definition is used:

Ux) = /xé(f)df =0 for x<0, 1 for x>0, 2)

which entails U(—x) = 1 — U(x), so
T{U(ct—z)} =U(—ct—z)=1—U(ct +z)=1— P{U(ct — 2)}. 3)

From now on, pulses are supposed launched at z = 0 from a source located at zo>0 above a mirror in the
plane z = 0: so, along this work ¢z and z are positive and the Sommerfeld terminology defined in the
introduction is used, ¢ is the sound velocity and acoustic pulses are solutions of the wave equation
V2 — ¢ 2%y = 0.

Then, the total field, incident plus reflected is denoted Y(x, ¢)

Y(x, 1) =YX, 0) + ,(x, 0), (4)
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y and the Green’s function g are supposed to satisfy on the plane ¥ = {z = 0} the Neumann (hard) boundary
condition

[P-4(x,0]ly =0, [0:9(x,;x, 7))y =0. )

The integral equation approach summarized in the introduction (see Ref. [9] for an application to acoustics) is
in fact a technique to solve boundary-value problems of the wave equation for which integral equations with
Green’s functions as kernels are known for a long time: see, for instance, Courant and Hilbert [10]. For a field
satisfying the Neumann boundary condition on the plane z = 0, the integral equation is given by Hillion [8] as

1) = - / dr / [ Y, D08, X O (©)

where g(x,; X', ') is the inverse Laplace transform of the space Green’s function G(x, x’;s) given by Schlegrov
and Scott Carney [11] and justifying the formal change ik = s

g(x,;x,¢) = (ic/167%) | dsexp[s(ct — ct)G(x,X';5), 7
Br

G(x,X';s) = //00 dpdys;texplif(x — X') + ip(y — y){exp(s:|z — 2|) + exp(s.|z + 2'|)} (7a)

with 5. = (s> 4+ 2 + )2, The Bromwich contour Br in integral (7) is made of a line L parallel to the
imaginary axis of the s-plane with all the singularities of the integrand on its left and of a half circle.
A simple calculation, see Hillion [8], gives on the plane 2’ = {z/ = 0}

[0.9(x, X, ).y = (ic/87°) dsexp[s(ct — ct)]Go(x, X5 ), (8)
Br
Gux.xi9) = [ " dBdy explif — ) + in(y — )] cosh(s-2) (82)
and taking into account Eq. (8) relation (6) becomes for 0 << o0
Y(x, 1) = (1/8in3)/ ds exp(sct)//oodﬁ dy exp(ifix + iyy) cosh(s.2)F(f3, 7, 5), 9)
Br —00
F(B,7,s) = //_ dx' dy exp(—ifx’ — iyy’)/_ cd? exp(—set) (X', ). —o- (9a)

Introducing the symbol L~! of the inverse Laplace transform, Eq. (9) may be written

Y(x, 1) = L] {(PY(x,s)}, Y(xs5) = //_OO dpfdyexp(ifx + iyy) cosh(s.z)F (B, v, s). (10)

The integral equation for a scalar field satisfying the Dirichlet (soft) boundary condition [W(X,?)]x_,
[g(x, t;x’, )]s = 0 is obtained by changing in Eq. (9) cosh(s.z) into sinh(s.z) and in Eq. (9a) [y(X, )], _, into
[s210.¥(X, 1)) —y- But from now on, the Dirichlet boundary condition is left aside.

This integral equation approach requires three steps

1. the definition of the total field [y/(X’, 7')],_, on the X’ surface,
2. the use of Eq. (92) to obtain the form factor F(f,y,s),
3. the substitution of F(f,y,s) into Eq. (9) to get the total field outside obstacles.

Then, supposing as just said, an acoustic point source located at (0,0, zy), zo>0 and launching at 1 =0
either a rectangular or a windowed harmonic pulse, the integral equation (9) is used to get the total field after
reflection on a TRM located in the z =0 plane. Reflection of 2D-planar pulses is first analysed before
considering spherical pulses.
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3. Reflection of 2D-planar pulses
To investigate the TRM reflection of 2D-planar pulses, propagation is supposed to be in the (x, z)-plane so

that the coordinates y and y do not intervene. Then, with u = (x,z) and s. = (s> + /32)'/ 2, integrals (9) and (9a)
reduce for 0<t<oo to

Y(u,t) = (1/4in2)/B dsexp(sct) /:X) dpexp(ifx) cosh(s.z)F(f, s), (11)

o0 [e.¢]
F(B,s) = / dx’ exp(—iﬁx/)/ cdt exp(—sct) (', )], —o- (11a)
—00 —00
In addition to make calculations easier, pulses are assumed to impinge normally on the mirror.
3.1. Rectangular pulses

A rectangular pulse of duration ¢y, launched at t = 0 by a source located at x = 0, z = zy, which impinges
normally on a mirror in the z = 0 plane has the form in which U is the unit step function

Yi(z,t) = Ulct — zo + z) — Ulet — cty — zo + 2). (12)
Then, on the plane 2’ = {z' = 0} the incident field reduces to
Vi(0,1) = Ulet' — zp) — Ulct' — cty — zp) (13)

and to complete the first step of the integral equation approach, the expression of the reflected field on this
plane is required.
On a conventional mirror ,(0,?) = ;(0,7) and the total field is

W(0,7) = ,.(0,1) + (0, 1) = 2,0, £). (13a)
So using Eq. (13), the second integral in Eq. (11a) with a = zy, b = ¢ty + z¢ bounds of the interval inside which
(0,1)+£0, takes the form

00 b
/ cdt’ exp(—sct W(0,1) = 2/ exp(—sct)cdr

=25 Lexp(—szo)[l — exp(—scto)] (14)
and integral (11a) becomes
F(B,s) = 4nd(B)s~" exp(—sz0)[1 — exp(—scto)]. (15)
Taking into account the definition of s., the f-integral in Eq. (11) is
/ dp exp(ifx) cosh(s.2)F(B, s) = 2ms~ " exp(—szo)[exp(—sz) + exp(sz)][1 — exp(—scto)] (16)
and using Eq. (16) expression (11) may be written
l//(Z, Z‘) ZL_I{'II,(Z,S)} +L_I{W+(Z,S)}, (17)
V.o(z,5) = s exp(—szo £ s2)[1 — exp(—scty)]. (17a)

But from the well-known property of the Laplace transform, see, for instance, Doetsch [12] and Erdelyi [13]
for a>0, t=0

L™ YF(s)} = f(ct) = L Y{exp(—as)F(s)} = f(ct — a)U(ct — a) (18)
and since L™'{1/s} = U(ct) a simple calculation gives

L YYi(z,5) = U(ct — zo £ z) — U(ct — ¢ty — zo £ 2). (19)
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Finally, substituting Eq. (19) into Eq. (17) supplies the total field with , obtained from y,; by changing z
into —z

l//(Z3 Z‘) = lﬁ,—(Z, Z) + lpr(zs Z)' (20)

This result, in agreement with the Descartes—Snell law, proves the consistency of the integral equation
approach of Section 2.

Now what happens on a TRM? According to Eqs. (3) and (13) the reflected field on the z/ = 0 plane for
incident pulse (12) is

¥70,7) = TY,(0,1) = U(—ct' — z9) — U(—ct' + cto — z0)
= —[U(ct' + z0) — U(et’ — cty + z0)] 21

and from now on, all the quantities pertaining to TRM reflections are starred. Note that U(ct' + zy) = 1 since
¢t and z are positive and similarly U(ct' — cty +z9) = 1 if zo>cty. In this case y(0,7) = 0: there is no
reflection and the TRM appears as transparent.

So, assuming cty>zg, and taking into account Egs. (13) and (21), the total field on the X’-plane which
completes the first step of the integral equation approach, has the form

Y (0,7) = (0,7) = [1 = Ulet' — cto + 20)]

= (1/24(0,7) + (1/2)$(0, 1) (22)
in which (0, 7) is given by Eq. (13a) and
$(0,7) = =2[1 — U(ct’ — cty + 20)]- (22a)
Relation (22) implies that the total field outside the mirror is
Yz, 0) = QY 0 + Rz, 1) (23)

with y(z, 1) supplied by Eq. (20) so that it is sufficient to look for the contribution of ¢(0,¢) to Eq. (11).
Now according to Eq. (22a), the second integral in Eq. (11a) where Z = ¢ty — z is since ¢p = 0 for ¢/ >Z

/oo cdr exp(—sct)p(0,£) = —2 /Z exp(—sct)cdt
0 = - 2S_01{1 — exp[—s(cto — zo)]} (24)
and with Eq. (24), integral (11a) becomes
F(B,s;¢) = —4nd(B)s™" {1 — exp[—s(cto — z0)]}. (25)
Substituting Eq. (25) into the f-integral of Eq. (11) gives the contribution ¢(z, ) to the total pulse in the form
¢z, 0) = LD _(z,9)} + L {D1(2,9), (26)
Do (z,5) = —s " exp(dsz){1 — exp[—s(cty — zo)]}. (26a)
With Eq. (18) and L'{1/s} = U(ct), the inverse Laplace transform of @_(z,s) is easy to perform
¢_(z,t) = L™H{D_(z,5)} = —[Ulct — z) — U(ct — cty + zo — 2)], (27a)
but the inverse Laplace transform L~!'{®,(z,s)} is more difficult to obtain because
P (z,1) = LY@, (z,9)) = L~ {s Y exp(sz)} + U(ct — cty + zo + 2) (27b)

and because the only relation obtained from tables of inverse Laplace transforms for ¢ >0 is given by Doetsch
[12]

L! {exp(as) [F(s) — /a exp(—sct)f (t)c dt] } =f(ct+a), a=0, (28)
0

which is of no help to get L~'{s~! exp(sz)}. Then, using elaborate properties of the Laplace transform given in
Ref. [13] and the analytical representation of Dirac distributions due to Bremermann [14], the following simple
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result is obtained in Appendix A (where to simplify calculations ¢ is made unity)
L~ Yexp(as)} = 20(ct +a), a=0 (28a)
satisfying Eq. (28) since F(s) = 2 and f(;l exp(—sct)d(t)cdr = 1 for f(f) = 2d(ct) so that since z, =0

ct
L~ Ys Yexp(sz)} = 2c/ (et +z)dr = 0. (28b)
0
Then, substituting Eq. (28b) into Eq. (27b) gives
¢, (z,0) = L P1(z,5)) = Ulet — cty + 29 + 2), (29)
which implies together with Eq. (27a)
¢(z,t) = Ulet — cto+ 20 + z) + Uct — cty + zo — z) — U(ct — 2). (29a)

Substituting finally Egs. (20) and (29a) into Eq. (23), the total pulse due to the TRM reflection of a rectangular
pulse is

V() =z, 0) + Y, (z,0]/2 + {U(ct — cty + zo + z) + U(ct — cto + zo — z) — U(ct — 2)}/2. (30)
The physical meaning of Eq. (30) valid for ¢ty >z, is discussed in Section 5.

3.1.1. Remark

It has been stated that there is no TRM reflection for cty<zy and that the TRM mirror becomes trans-
parent. In this situation, integral equation (11) cannot be used since boundary condition (5) is not fulfilled by
V(z, t). Instead, the convenient integral equation is defined with the free space Green’s function gy(u, #;u’, ¢')
used in Ref. [8], so that

Y(u, ) = (1/2i7r2)/ ds exp(scl)/ dpexp(ifix — sz)F(ps) 3D
Br —00
with F(f, s) still given by Eq. (11a). For the rectangular pulse (12), F(f5, s) is expression (15) divided by two and

in Eq. (16) the exponential exp(sz) does not exist. Then, the same calculations leading from Eqgs. (17) to (20)
show that Eq. (31) supplies ¥,(z, 1), in agreement with the previous statement.

3.2. Unit-step plane harmonic pulse

A unit-step plane harmonic pulse launched at ¢ = 0 from (0, z¢) in the z-direction has the form

V,(z, 1) = explio(ct — zg + 2)]U(ct — 29 + 2), (32)
which becomes on the z/ = 0 plane
V0, 1) = explio(ct’ — zp)]U(ct’ — zp). (32a)
On a conventional mirror: ¥,(0,7) = (0, ), so that the total field is
(0, 1) = 2explim(ct’ — zo)]U(ct’ — zo) (33)

with ¢ = s — iw and the lower bound a = z; since U = 0 for ¢t <z, the second integral in Eq. (11a) becomes

[o¢] [o¢]
/ cdrt exp(=sct' W(0,7) = 2exp(—iwzo)/ exp(—at)cdrl
—00 a
= 2exp(—zos)/o. (34)
Substituting Eq. (34) into Eq. (11a) gives

F(B,s) = 4nd(p) exp(—szo) /o (35)
and with Eq. (35), the f-integral of Eq. (11) may be written

Wiz, 0= L HY_(z,9)) + L P+ 9), (36)
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Y. (z,s) = exp[—s(zo £ 2)]/0. (36a)

Then, still using Eq. (18) the inverse Laplace transform of ¥.(z,s) is since L~{(1/0)} = exp(iwt)
LYW _.(z,5)} = explio(ct — zo £ 2)|U(ct — zo % 2) (37)
and as expected from the Descartes—Snell law, i, being obtained by changing z into —z in ; the total field is
Wz, 0) =iz, 0+ (2, 0). (37a)

Now on a TRM mirror, the reflected field is according to Eqgs. (3) and (32a)

Y7(0,1) = T;(0, 1) = exp[—ia(ct’ + z0)]U(—ct’ — z)
= exp[—iw(ct’ + zo)][1 — U(et’ + zp)] (38)

and ¥ (0,7) = 0 since U(ct' + zp) = 1: a TRM mirror is transparent to a unit step plane harmonic pulse.
3.3. Rectangular plane harmonic pulse

A rectangular harmonic pulse of duration ¢y launched at t = 0 from (0, zy) and impinging normally on the
mirror in the plane z = 0 has the form

Wi(z, 1) = explio(ct — zo + 2)]V (2, z; to, 20), (39)
V(t,z;ty,z0) = U(ct — zo + z) — Ulct — cty — zp + 2), (39a)

so that on the z/ = 0 plane
¥(0,7) = explio(ct’ — zo)]V(, 05 to, 20) (40)

and, as in the previous two sections, the first step for using the integral equation approach of Section 2 is to
obtain the total field (0, 7) on the z/ = 0 plane.
For a conventional mirror, ,(0,¢) = {,(0,¢) and the total field is

W(0,1) = 2explim(ct’ — zo)]V(Z,0; o, 20), (41)

so with ¢ = s —iw and a = zy, b = zy + cty bounds of the interval inside which ¥V #0, the second integral in
expression (11a) of F(f3,s) becomes

00 b
/ cdr exp(—sct W(0,1) = Zexp(—iwzo)/ exp(—at)cds

= 2Exp.(—acty) exp(—zos) /0, (42)
in which Exp, is the function
Exp.(x) =1 — exp(x). (42a)
Substituting Eq. (42) into Eq. (11a) gives at once
F(,s) = 4nd(p) Exp (—acty) exp(—zos)/a (43)
and the f-integral in Eq. (11) becomes with Eq. (43)
Yz ) = LHY (2,9} + LY. (2,9)), (44)
Y.(z,s) = Exp(—acty) exp[—s(zo £ 2)]/0. (44a)
Using Eq. (42a) and the definition s — iw of ¢ gives
V,o(z,s) = exp[—s(z £ z0)]/0 — exp(iwcty) exp[—s(cty + z £ zp)]/ o, (44b)
while according to Eq. (18) and since L{l/g} = exp(iwct)
L expl—s(z0 % 2)]/0} = expliofct — (2 + N Ulet — (20 + 2)] = 74, 1), (45a)

L™ {exp[—s(cto + z £ z0)]/0} = yolz, (t — t0)]. (45b)
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Then, taking into account Eqs. (44) and (44a)

Yoz, 1) = y4(z,1) — expliocto) gz, (1 — 10)]
= explio(ct — zg £+ 2)|V (¢, £z; to, z0) (46)

in which V is function (39a), so that | =, \y_ =, still in agreement with the Descartes—Snell law
l//(Z:v Z‘) = lpi(z’ Z) + lpr(zr Z‘) (47)

3.3.1. Remark

Due to the properties of the V" function, y; exists only for 0<<z <z at times in the interval 0<<¢ <t + 7 with
11 = zo/c while y, propagates in the region z>0 at times >1¢,.

Now for a TRM, the reflected field on the z/ = 0 plane is according to Eq. (40)

¥7(0,1) = Ty(0, 1) = exp[—io(ct’ + z0)]V (=1, 0; —to, z0) (48)
with from Egs. (3) and (39a)
V(=t,0,0; —t0,29) = —[Ulct' + z9) — Ulet' — ctg + 29)] (48a)

in which ¢ty > zp, otherwise V' = 0 and the TRM mirror would be transparent.
Then, with (0, 7) given by Eq. (41), the total field on the mirror ¥* =, + ¢ may be written

Y (0,7) = QY(0,7) + G)p(0, 1) (49)
with according to Egs. (48) and (48a) in which U(ct + zp) =1
$(0,1) = =2 exp[—iw(ct + zo)|[1 — U(ct’ — cty + zp)], (49a)
so that the total pulse outside the mirror takes the form
VD) = Y 0/2+ bz 02 (50)

where (z, 1) is expression (47). So, it is just sufficient to look for the contribution of Eq. (49a) to form factor
(11a). Introducing the variable 6" = s 4 iw and substituting Eq. (49a) into the second integral of Eq. (11a)
gives with the upper bound Z = ¢ty — zy

/ ~ cdr exp(—sct)p(0,7) = — 2exp(—iwzy) [ / ’ exp(—a'et)edt

0 = — 2[exp(—iwzo) —Oexp(—aTczo + s20)]/0”. (51)
With Eq. (51) the form factor (11a) becomes

Fy(B,s) = —4nd(B)lexp(—iwzo) — exp(—iwcty) exp{—s(cto — z0)}]/o" (52)

and the contribution ¢(z, ) to the total pulse is with Eq. (52) substituted to F(f, s) in the f-integral of Eq. (11)
using the definition of cosh z in terms of exp(+£z)

()b(z’ l) = Lil{(‘p—(za S)} + L71{¢+(Za S)}a (53)

Dy(z,5) = — exp(—iwzo) exp(Lsz)/ ol + exp(—a’cty) expls(zo £ 2)] / al. (53a)

Then, using Egs. (18), (28a) and L~'{1/6"} = exp(—iw?) the expressions of ¢, (z,?) are as in Eqs. (27a) and
(29a)

¢ _(z,1) = L"YP_(z,5)} = — exp[—io(ct + zo — 2)[[U(ct — z) — U(ct — cty + zo — 2)],

¢.(z,0) = LD, (z,5)} = exp[—iw(ct + zo + 2)]U(ct — ctg + zo + 2). (54)
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Substituting Eqs. (47) and (54) into Eq. (50) gives the total pulse due to the TRM reflection of a rectangular
plane harmonic field provided that cty >z

V(1) = Qi )+, 01+ Q- (20 + ¢ (2, ). (59)
3.3.2. Remark
A pulse incident from (0, zo) in the O-direction has the expression with Z = xsin 0 + (z — zg) cos 0
Y(u, 1) = explio(ct — Z)[U(ct — Z) — U(ct — cty — Z)] (56)

leading just to change z and zj into zcos 0 + xsin 0 and zp cos 0 in the previous results.
The physical meaning of these results is discussed in Section 5.

4. Reflection of windowed spherical harmonic pulses

The acoustic point source still on the z-axis at the altitude zy is now supposed to launch at = 0 a truncated
spherical harmonic pulse with duration ¢,

Vip,z, 1) = explio(ct — r )V (t,r-)/r—, V(t,r-) =[U(ct —r_) — U(ct — cty — r-)], (57)

ry = r:t(psz) = [p2 + (Z + 20)2]1/2’ V:I:(Os Z) =20 + z, p2 = x2 +y2 (573)

3D-integral equation (9) has now to be used and the first step to get form factor (92) is to define the total field
Vi(p',0,¢) on the plane ' = {z’ = 0}. According to Eq. (57), the incident field is

Vi(0',0,1) = expliw(ct — IV, ¥)/F, (58)

F =%+ )" V()= Uleld — ) — Ulet —cty— 1) (58a)
and, for the reflected field v,(p’,0, ¢'), conventional and TRMs are considered apart.

4.1. Reflection on a conventional mirror

The reflected pulse on the z/ = 0 plane is ¥,(p’,0,7) = ;(p’,0,¢) and the total field according to Eq. (58)

W(p',0,7) = 2explict — V(1)) (59)
Then, with ¢ = s —iw and a = ', b = + cty, bounds of the interval inside which V' #0, the second integral

in Eq. (9a) is

00 b
/ cd? exp(—sct)W(p',0,7) = (2/F) exp(—ia)r/)/ exp(—act’)cdr
—0Q a

= 2 Exp(—acty) exp(—sr')/ar (60)
in which Exp, is function (42a). Substituting Eq. (60) into Eq. (9a) gives

F([))s V’S) = (1/0-) Expc(_O-CZO)FO(.Bs y,S), (61)

o0
Fo(B,y,s) = 2// dx'dy exp(—ifx’ —iyy' — st')/r. (61a)
Introducing the polar coordinates

X' =p'cosu/, y =p'sini/, x=pcosu, = psinu, = ucos0, = usin0, 62
p y=p p y=p u y=n
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integral (61a) becomes

[} 2n
Fo(B,7,s) = 2/ o' dp" exp(—sr')/r d? exp[ipr’ cos(u/ — 0)]
0 0

—dn / exp(—s')o(up')p’ dp' /1 63)
0

in which Jj is the Bessel function of the first kind of order zero. But, taking into account the definition (58a) of
¥ implies that Eq. (63) is a Sonine—Gegenbauer integral and according to Watson [15]

Fo(B,7,8) = 4n(s> + )2 exp[—(s” + i)' *z(] (63a)
and form factor (61) becomes

F(u,s) = 4no™ (5" + 1) ™"/? Exp (—octo) exp[—(s” + 1)), (64)

Now, with coordinates (62), since s. = (s> + u2)'/?

be written

and cosh(s.z) = [exp(s.z) + exp(—s.2)]/2 integral (9) may
Y(p,z,0) =¥ (p, 2,0 + ¥ _(p,z,1), (65)

[e9) 2n
Vi(p,z, 1) = (1/16in) / dsexp(sct) / M / dOexpliup cos(u — 0)] exp[£z(s*> + u)'/*1F (u, 5)
Br 0 0
= (1/sir?) [ dsexpiscn) [ nduotup) explEa(s’ + i) I Ges (65a)
Br 0
and substituting Eq. (64) into Eq. (65a) gives

Vi(p,z,t) = (1/2in) / o~ dsexp(sct) Exp.(—acty) P=(p, z, ), (66)
Br

Pi(p,z,5) = /0 ) pdu(s® + 1)~ 2 Io(up) expl—(s> + 12) ' (z0 £ 2)], (66a)

which is still a Sonine—Gegenbauer integral with according to Watson [15]

Vi(p,2,8) = exp(=sr+)/re, 1+ =[p"+(z£2)]"/? (67)
and with Eq. (67) integral (66) becomes
Yalp,z,0) = (1/re)L" o exp(—sr+) Exp (—octo)} (68)
in which
Exp (—octy) = 1 — exp(—scty) exp(iocty). (68a)

Then, according to Eq. (18) and to L~'{1/c} = exp(iwct)
L™ {exp(—srs)/ors} = explio(ct — r)]U(ct — re)/re = 14(r, 2, 1),
L™ Yexp(—sry)exp(—scty)/ors) = y4(r,z,t — to). (69)
Taking into account Eqs. (68a) and (69) relation (68) has the final form

lpi(pﬂ Z, t) = X:I:(p’ Z, l) - exp(iwclo)xi(p, Z,t — lO)‘ (70)
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Using definition (69) of the y, functions it is easily checked that y_ =1, =y,, so that substituting

Eq. (70) into Eq. (65) gives, for the total field generated by a windowed harmonic pulse impinging on a
conventional mirror

l,b(p,Z, t) zlpi(paz’ t)+lpr(pvza t) (71)

sum of the incident and reflected waves as expected from the Descartes—Snell law, a result justifying the
consistency of integral equation (9).

4.2. Reflection on a time-reversal mirror

Now the reflected pulse on the z/ = 0 plane ¥ (p,0,7) = Ty;(p',0,7) is according to Eq. (58)

Yi(p',0,7) = exp[—iw(ct + )]V (—ct,r) /¥ (72)
with Egs. (3) and (58a)
V(—ct',r'y= —[U(ct +7)— Ulct' — cty + 1)), (72a)
so that since Y(p’,0,¢) = 2y;(p’,0, ¢') the total field on the mirror is
Y0, 0,0) = W', 0,) + D', 0,7) (73)
with y(p’,0,1) given by Eq. (59) while using Eq. (70a) in which U(ct’ ++¥) =1
d(p',0,7) = —(2/r)exp[—iw(ct’ + ¥)][1 — Ulet’ — cty + 1)) (73a)

In these relations cty>zp, otherwise V(—¢,r)=0 for any x’,): there is no reflection and the TRM is
transparent to the spherical pulse.
According to Eq. (73), the total pulse outside the mirror has the form

Vi (p,z0) =Y(p,2,0/2+ ¢(p,2,1)/2 (74)

with Y(p, z, ) given by Eq. (71) so that it is sufficient to look for the contribution ¢(p, z, ) due to ¢(p’,0,?).
Using Eq. (73a) where ¢" = 5+ iw and the bounds a,b of the interval inside which ¢ #0, with @ = 0 since
U(ct +7)=1 for >0 and b = cty — v’ provided that cty>r’, the second integral in the form factor (9a)
becomes

/ cdt exp(—sct)p(p',0,1) = — (2/r) exp(—ia)r’){ / cdr exp(—a'et) — / cdr exp(—a'et) U(b)}
—00 0 b
= — (2/c") exp(—ior)[1 — exp(—a'b)U(b)]. (75)
Substituting Eq. (75) into Eq. (9a) gives the ¢-contribution to the form factor noted F(f,7,s; ¢)
F(B,y,s; §) = Fo(B,7,s; ) + F1(B, 7,55 §). (76)
Fo(B,y,s; ¢) is the contribution of the first term in Eq. (75)

Fo(B,y,s; &) = —2/(7*//oo dx'dy exp(—ifx’ —iyy' —iwr') /¥, (77)
which is Eq. (61a) with s changed into iw and divided by —a' so that according to Eq. (63a)
Fo(B.y.5: ¢) = —4n(* — )P expl—z(® — )" ?/a". (78)
Now taking into account the definition of the lower bound b, the second term of Eq. (75) is
Fi(B,7,s; ¢) = 26:Xp(—(;Tct0)/aT//OO dx'dy exp(—ipx’ —iyy' + st') /¥ U(cty — ¥). (79)
—o0

The integrations in Eq. (79) may be performed with cylindrical coordinates (62) but the unit function U(cty —
") imposes an upper bound p on p’-integration and p = (czl% - z%)'/ 2 according to definition (58a) of ' so that
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integral (79) becomes

. P
Fi(B,y,s; ¢) = —4n*exp(—a'cty) /o’ /0 p' dp exp(sr)Jo(up') /7. (79a)

Assuming p/zy small, the O(p*/z3) approximation of F\(B,7,s; ¢), where O is the Landau symbol is obtained
in Appendix B

Fi(B,y,s; ¢) = —4n? /sa" exp(—imcty) Exp [—s(ct — zo)o(up) (80)

in which Exp.(x) is function (42a).
Now, using Eq. (76), integral equation (9) which supplies ¢(r, z, t) can be written

d)(p’z’ t) = ¢0(p,Z, l)+¢j(p,Z, [)9 (81)

di(p.z.0) = LD, _(p,2,9)} + L H{P;4(p.z,9)}, j=0,1 (81a)
Then according to Egs. (9) and (78), still using coordinates (62)

Bo(p,z,5) = /o' /0 pdp( — ) P Io(up) expl—(i — ) Pz + 2)]

= exp(—iors)/rea’, re=[p + (20 £ 21" (82)
obtained from Eqgs. (66a) and (67) with s changed into iw so that according to Egs. (81a) and (82)
do(p, z, 1) = exp[—iw(ct + r_)]/r- + exp[—iw(ct + ry)/ry]. (83)
Now, substituting Eq. (80) into Eq. (9) gives with coordinates (62)
D1 _(p,z,8) = (1/675)b(s; 20, 10)K(s,2),  b(s; 20, to) = exp(—iwety) — exp[—s(cty — zo)], (84)
K2 = [ nddon) o) expl— (2 + 1)), (s42)

Unfortunately, approximation (80) does not make possible to define @, 1 (p, z, s) since the exponential in the
integrand of K(s, z) would have a positive sign. So numerical computations are required to get @, ;(p, z, s) and
ultimately ¢, , (p, z,?); this problem is now left aside.

Conversely, the inverse Laplace transform ¢, _(p,z,1) = L™ Y& _(p,z,5)} of Eq. (84) requires an
approximation of Eq. (84a) supplied by the Laplace approximating technique of integrals developed by
Olver [16]. Succinctly, let I(z) be the following integral in which w'(«) >0 and g(x)+#0:

b
I(z) = / doexp[—zw(a)]g(x). (89)
a
If the peak value of the factor exp[—zw(«)] occurs at o = a then

1(2) ~ g(a) exp[—zw(a)]/zw'(a). (85a)

Now, K(s,z) is an integral of type (85) with o« = g2, w(x) = (s* + 0)"/%, q(x) = Jo(p/%)Jo(p/2) and since in

Eq. (82a) the lower bound of the integral is @ = 0 and since J(0) = 1, approximation (85a) applied to Eq. (84)
gives

K(s,z) ~ sz~ exp(—sz). (86)

Then, substituting Eq. (86) into Eq. (84) and making explicit b(s, ty, z9), the approximation of @;_(p,z,s) is
D1 _(p, z,5)~ (1 /" 2) exp(—iweto{exp(—sz) — exp[—s(cto — 20 + 2)]} (87)
and the inverse Laplace transform of Eq. (87) is obtained at once using Eq. (18) and L~!{1/a"} = exp(—iwct)

¢1_(p,z,0) ~ z7Yexp[—iw(ct + cty — 2)]U(ct — z) — exp[—iw(ct — zo + 2)]U(ct — cty + zo — 2)} (88)

1/2

an approximation valid for small (¢?#3 — z3)'/*/zy and large :.
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To sum up, the contribution ¢(p, z, ¢) to total field (74) outside the mirror, due to component (73a) of the
reflected field ¢(p’,0,7) on the TRM, is made according to Eq. (81) of two parts: the first one supplied by
Eq. (83) does not require any unit step function while only the approximation (88) of the second part could be
obtained. Finally, according to Eq. (74), to get the total TRM pulse the field y/(p, z, ) given by Eq. (71) must
be added to ¢(p, z, t).

5. Discussion

Using the notations ¥ = y; and _ = i/, to denote the incident and reflected fields, incident rectangular
pulse (12) impinging on a conventional mirror generates the total pulse

Yz =y (2,0 +y_(z10) (89)
with according to Eq. (19)
Vo(z,t) = Ulct —zp £ z) — Ulct — ¢ty — zo £ 2). (89a)

Conversely, on a TRM, there is no reflection at all when czy < zy while if ¢#) > z, the total field after reflection is
given by Eq. (23)

V(1) = [z )+ d(z,0]/2, (90)
in which (z, ¢) is pulse (89) and
P(z,0) = ¢ (z,0)+ ¢_(2,0) o1
with from Eqgs. (27a) and (27b)
¢ (z,t) = —[U(ct £ z) — Ulct — cto + zo £ 2)]. (91a)
Then, it is natural to compare ¥,(zo, ¢) and ¢(0, r) with Egs. (89a) and (91a)
Vi(z, 1) = U(ct) — Ulet — cty),

$.(0,1) = —[U(cr) — Ulet — cto + z0)l,  cto> 2o, 92)
so that the TRM acts as a source, launching at 7 = 0 a rectangular pulse with a reduced duration 7y — zy/c in
the opposite direction to the incident pulse. Exchanging the roles of zy and zero in Eq. (92) and assuming
cty <2z so that ¢_ (zo, t) = 0 since in this case the argument of both unit step functions in Eq. (91a) is positive,
we have

V;(0,1) = Ulet — zp) — Ulct — cty — zp),
¢_(z0,1) = —[U(ct — z0) — Ulct — cto)]. (93)
Relations (92) and (93) display the dual character of both sources.

For a rectangular plane harmonic source, the fields ¥, ¢, in Egs. (89) and (91) are now supplied by Egs.
(39) and (54) giving instead of Egs. (92) and (93)

Vi(20,2) = explioet)[U(ct) — Ulet — cto)),

¢.(0,1) = —exp[—iw(ct + zo)|[U(ct) — U(ct — cto + 20)] (94)
and still assuming ¢ty <2z
(0, 1) = explio(ct — zo)[U(ct — zo) — Ulet — ¢ty — zo)],
¢ _(z9,1) = —exp(—iwct)[U(ct — zp) — U(ct — ctyp)]. (95)
In this case also, the TRM acts as a dual source launching at = 0 a rectangular harmonic pulse with reduced
duration in the opposite direction to the incident pulse.
No doubt that a similar situation prevails for truncated spherical harmonic pulses, but it is difficult to assess

the exact form of the pulse launched by the TRM dual source since rather drastic approximations had to be
made to get analytical expressions such as Egs. (83) and (88).
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To sum up, the Stokes-like gedanken experiment suggests that TRMs behave as a dual source of pulses in
agreement with real experiments analysed by Finch [1] but that they may also become transparent when the
pulse duration is smaller that the time needed to go from the source to the mirror. It is not known whether this

last property has been observed.

It is assumed in this work that the total field on the mirror satisfies the Neumann boundary condition,
similar calculations can be performed with Dirichlet boundary conditions but they are less simple because the

form factor F(f,y,s) requires the derivative of the total field on the plane 2’ = {z’ = 0}.
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Appendix A

Here, to simplify calculations the sound speed ¢ = 1, the following result is proved:
Lemma. exp(as) with a>0 has the inverse Laplace transform
L~ 'Y{exp(as)} = 26(t +a), a>0, t=0.
Proof. The following relations given by Erdelyi [13], valid for a>0
L~'{s7"2 cosh(a/s)} = (4nt)~"/*[cos(2+/at) + cosh(2y/at)],
L~'{s7"?sinh(a/s)} = (4nt)""/[cosh(2/at) — cos(2+/at)]
supply the inverse Laplace transforms
L~ {s7 2 exp(a/s)} = (nt)"'* cosh (2 /at),
L= s~ exp(—a/s)} = (nt)~!/? cos(2/at).
But, if L™'{F(s)} = f(¢) then according to Doetsch [12]

LY 2F(s™ ")) = (re) ™12 / h cos(24/17)f(7) dr.
0

Applying Eq. (A.4) to Eq. (A.3) gives for a>0

L Y{exp(as)} = (n°1)'/? /Oo 1712 cos(2/17) cosh(2/at) dr,
0

L Yexp(—as)} = (z*0)~'/? /oo 112 cos(2/17) cos(24/ar) dr.
0

Then, using the variables t = x?, t = E a=10p, Eq. (A.6) becomes

/OO 112 cos(24/17) cos(2y/at) dt = /OO dx{cos[2x(b + ¢)] + cos[2x(b — )]}
0 0

_ ol / " delexpl2ix(s + O] + expl2ix(b - O))

and
(A7) = n{o[2(b + O] + o[2(b — O]}
= 1/2{0(b + &) + 3(b — &)} = n&o(b” — &).
Substituting Eq. (A.8) into Eq. (A.6) and coming back to the variables 1, z, a, give
L~ Yexp(—as)} = d(t — a)U(t — a), a>0,

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)
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which is the usual result (see, for instance, Ref. [12]). Changing a into —a, that is b into ib transforms Eq. (A.6)
into Eq. (A.5) leading instead of Eq. (A.7) to

/oo 112 cos(2/t7) cosh(2/at) dt = {(1/2) /oo dx[exp{ix(2¢ + 2ib)} + exp{—ix(2¢ + 2ib)}] + {*}}’ (A.10)
0 0

where {*} denotes the complex conjugate term. Then, using the relation given by Bremermann [14] for the
asymmetrical Dirac distribution 0.

/ dzexp(itz) = 21, (z), Imz>0 (A.11)
0
and the similar expression for d_(z), relation (A.10) becomes

/ h 12 cos(2/t7) cosh (2/at) dt = 2r{S[2(ib + &)] + S[2(ib — )]}
0
= 2n&s(b* + &2). (A.12)

Substituting Eq. (A.11) into Eq. (A.4) and coming back to the variables 1, ¢, a, give Eq. (A.1).

Appendix B
With p? = ¢?13 — z} integral (79a) is written
F1(B.7.5: §) = —4n exp(—o'cto) /" (. 5), (B.1)
b /
1) = [0/ df explor o) (B.2)
0
Lemma. The integral F\(B,7,s; ) has the O(p*/z§) approximation
Fi(B.7.5: §) = —4n’ /50" exp(—iwcto) Exp[—s(cto — z0)o(up), (B.3)

Exp [—s(cto — z0)] = exp(—iwcty)[1 — exp[—s(cty — zo)]] (B.4)
in which O denotes the Landau symbol.

Proof. Introducing the p’ variable p’ = zysinh o and since ' = zy cosh o, I(p, s) becomes

1
I(u,s) = — 2z / sinh o da exp(szo cosh o)Jo(pzp sinh o)
0

1
= —g5! / d{exp(szy cosh a)}Jo(uzg sinh o) (B.5)
0
with
sinhn = p/zy, coshy = cty/zp. (B.6)
Integrating by parts and taking into account Eq. (B.6) give
1(u,5) = 5~ {exp(scto)o(up) — exp(sz0)} + 11 (i, 5), (B.7)
1
Ii(u,8) = uzo/s / cosh o do exp(szo cosh o)J 1 (uzo sinh o) (B.8)
0

Assuming # small, we may use the O(«*) approximations sinh a~a, cosh a~1, in the integrand of Eq. (B.8) so
that

1(ts5) = pzos™" explszo) /0 " 4 (uzom) + 0. (B.9)
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And using the integral f(;l Ji(x)dx =1 — Jy(a) (see, for instance, Ref. [15]) reduces Eq. (B.9) to

L, 8) = s~ exp(szo)[1 — Jo(up)]- (B.10)
Taking into account Eq. (B.10), relation (B.7) becomes
I(u,5) = —s~ " Jo(up){exp(scto) — exp(szo)} (B.11)

and substituting Eq. (B.11) into Eq. (B.1) gives finally Eq. (B.3).

References

[1] M. Fink, Time reversal mirrors, Journal of Physics D: Applied Physics 26 (1993) 1333-1350.
[2] A. Deroche, P. Roux, M. Fink, Robust acoustic time reversal with high order multiple scattering, Physical Review Letters 75 (1995)
4206-4209.
[3] C. Bardos, M. Fink, Mathematical foundation of the time reversal mirror, Asymptotic Analysis 29 (2000) 57-82.
[4] G. Bal, L. Ryzbik, Time reversal for classical waves in random media, Comptes Rendus Académie des Sciences 333 (2000) 1041-1046.
[5] M.V. Klibanov, A. Timonov, On the mathematical treatment of time reversal, Inverse Problems 19 (2003) 1299-1318.
[6] E. Hecht, Optics, Addison-Wesley, New York, 1987.
[7] I.N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill, New York, 1957.
[8] P. Hillion, Diffraction of scalar waves at plane apertures: a different approach, Journal of Electromagnetic Waves and Applications 14
(2000) 1677-1699.
[9] P. Hillion, Scattering of an acoustic plane wave by a corrugated cylinder, Journal of Sound and Vibration 240 (2001) 765-768.
[10] R. Courant, D. Hilbert, Methods of Mathematical Physics, Interscience, New York, 1962.
[11] A.V. Schlegrov, P. Scott Carney, Far field contribution of evanescent modes to the electromagnetic Green’s tensor, Journal of the
Optical Society of America A 16 (1999) 2583-2584.
[12] G. Doetsch, Guide to the Applications of the Laplace and Z-transforms, Van Nostrand, New York, 1971.
[13] A. Erdelyi, Tables of Integral Transforms, vol. 1, McGraw-Hill, New York, 1954.
[14] H. Bremermann, Distributions, Complex Variables and Fourier Transforms, Addison-Wesley, Reading, MA, 1965.
[15] G.N. Watson, Theory of Bessel Functions, University Press, Cambridge, 1962.
[16] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.



	Acoustic pulse reflection at a time-reversal mirror
	Introduction
	Integral equation approach
	Reflection of 2D-planar pulses
	Rectangular pulses
	Remark

	Unit-step plane harmonic pulse
	Rectangular plane harmonic pulse
	Remark
	Remark


	Reflection of windowed spherical harmonic pulses
	Reflection on a conventional mirror
	Reflection on a time-reversal mirror

	Discussion
	Acknowledgements
	References


