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Abstract

In this paper, an analytical solution for the propagation of sound in circular ducts in the presence of Poiseuille mean flow

is derived. This solution uses Kummer’s functions and it generalizes the results found by Gogate and Munjal. Links

between this solution and already-known solutions for more specific cases (no mean flow, uniform flow) are made. Results

for calculation of the propagation constant and pressure profiles are presented and compared with the literature. The effect

of shear on multimodal acoustic propagation, including modes of higher radial order is discussed.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The acoustic propagation in ducts having parallel mean shear flow is one of the research topics with wide
engineering applications. When a pipe contains a non-uniform flow, the convected wave equation which
governs acoustic propagation does not generally allow any simple analytical solution as in the no flow and
uniform flow cases [1,2]. Therefore, analysis of wave propagation in ducts with shear mean flow has been
done, in most cases, numerically [3–5]. But the analytic modal description of the sound field which we are
concerned with in this study can provide more physical insight into global behaviour than a numerical
solution.

Pridmore-Brown [6] first established the modal equation governing transverse mode propagation in ducts
containing parallel shear flow. Mungur and Plumbee [7] derived the convected wave equation for acoustic
wave propagation in a fully developed duct flow, which corresponds to a turbulent flow confined to the axial
direction. An analytical solution for sound propagation in the presence of Poiseuille mean flow was derived by
Gogate and Munjal [8,9] in the particular case of axi-symmetric modes. Pagneux and Froelich [10] studied
both theoretically (by means of a perturbation expansion at a low Mach number of the Pridmore-Brown
equation, like Peube and Jallet [11]) and experimentally (by means of pressure measurements) the multimodal
acoustic propagation in low Mach number shear flow ducts.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Numerical studies on propagation of sound in a duct in the presence of a mean flow and/or a temperature
gradient were conducted in the last few years [12–16]. Agarwal and Bull [12] solved the convected wave
equation for acoustic wave propagation in a fully developed duct flow numerically, for both upstream and
downstream wave propagation. They determined the cut-off frequency and the propagation constant of any
specified acoustic mode as well as the radial distribution of the acoustic pressure and velocity for this
configuration. Also, many studies in the field of flow duct acoustic propagation are concerned with the
question of attenuation in lined ducts such as encountered in silencers and mufflers (e.g. Ref. [17]). Concerning
this problem, Kakoty and Roy [18] recently presented a general formulation for the analysis of sound in a
uniform flow duct lined with bulk-reacting sound-absorbing material. They used a Newton–Raphson scheme
whereas most of the previous works on this subject were based on the finite-element formulation which does
not include all types of modes or does not include mean flow effects.

In this paper, we are concerned with the analytical study of multimodal acoustic propagation in circular
hard wall ducts in the case of a low Mach number and low Reynolds number mean flow (laminar subsonic
mean flow). The available solution for such a problem, proposed by Gogate and Munjal [8,9], which is valid
for axi-symmetric modes only, is extended to other modes of propagation. In Section 2, the wave equation is
derived and the already-known Pridmore-Brown equation is established. A solution of this equation is then
obtained in the case of a laminar mean flow profile. In Section 3, this solution is linked with solutions of sound
propagation in more specific cases. Section 4 outlines the eigenmodes found for a hard wall duct. In Section 5,
results of the calculation of the propagation constant and acoustic pressure profiles are compared with
previous results of numerical calculation and the effect of shear flow is discussed.
2. Governing equations

We consider sound propagation in a circular duct with a laminar mean velocity profile u0ðrÞ (see Fig. 1) that
is independent of x. In such a configuration, the Pridmore-Brown equation that governs wave propagation is
obtained from the mass continuity and momentum equations. If the effect of viscosity is neglected and if it is
assumed that the thermal conductivity of the fluid is negligible so that the entropy perturbations of the system
can be taken to be zero, these equations, written to the first order in cylindrical coordinates (x, r, y), are (e.g.
Ref. [8])
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Fig. 1. Configuration of the problem.
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for the x, r and y components of the momentum equations. Here the x, r and y components of the fluid
velocity are

u ¼

u0ðrÞ þ uðx; r; y; tÞ

vðx; r; y; tÞ

wðx; r; y; tÞ

0
B@

1
CA,

c0 is the speed of sound, r0 the mean density, p the acoustic pressure. The subscript 0 refers to zero-order, that
are constant quantities. D=Dt is the material derivative, expressed as

D

Dt
¼

q
qt
þ u0

q
qx

.

Combining the divergence of momentum equation with the material derivative of continuity equation leads to
the following equation [10,12,19]:

r2p�
1

c20

D2p

Dt2
þ 2r0

qu0

qr

qv

qx
¼ 0 (5)

with r2 the Laplacian operator. This is the classic equation for sound propagation together with an additional
term (the third one) that represents the effect of shear flow. Developing each term and introducing the Mach
number, defined as MðrÞ ¼ u0ðrÞ=c0, yields

r2p�
1

c20

q2p
qt2
� 2

M

c0

q2p

qxqt
�M2 q2p

qx2
þ 2r0c0

qM
qr

qv
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¼ 0. (6)

We consider a harmonic wave propagating either in the direction of flow (downstream propagation) or in the
opposite direction (upstream propagation). Acoustic pressure and velocity are proportional to exp½iðgx�

otþmyÞ� (or exp½ið�gx� otþmyÞ�) in the case of downstream propagation (respectively, upstream
propagation), where m is the circumferential mode order and g is the propagation constant (which can be
complex). When introducing the non-dimensional propagation constant defined as G ¼ c0g=o, the material
derivative becomes

D

Dt
¼

q
qt
þ u0

q
qx
¼ �ioð1�MGÞ,

where here and henceforth, upper/lower signs are to be taken for the downstream/upstream propagation,
respectively. Using the momentum equation over r, Eq. (3), it follows that [7]

2r0c0
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¼
�2G

1�MG
qp

qr
, (7)

which, replaced in Eq. (6), gives
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The pressure can be written as p ¼ BPðrÞ exp½ið�gx� otþmyÞ�, where B is a constant that depends
on the initial conditions and PðrÞ is the acoustic pressure profile. Using this expression, introducing
non-dimensional parameters x ¼ r=R, O ¼ oR=c0 and using MðxÞ ¼ u0ðxÞ=c0 leads to the Pridmore-Brown
equation [6]
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For a typical laminar mean flow, that is for a low Reynolds number, the profile of the mean velocity over the
duct section can be expressed as MðxÞ ¼M0ð1� x2Þ with M0 defined as the centreline Mach number.
Introducing this equation into Eq. (9) leads to the wave equation for laminar mean flow

q2P

qx2
þ

1

x
�

�4M0Gx

1� GM0ð1� x2Þ

� �
qP

qx
þ O2 ð1� GM0ð1� x2ÞÞ2 � G2 �

m2

O2x2

� �
P ¼ 0. (10)

This equation, together with the hard-walled duct boundary conditions, consists in the problem to be solved.
It cannot be solved analytically. However, we show in the following that it allows an analytical solution in the
case of a low Mach number.
3. Low Mach number solution and its link with already-known solutions

Using jM0Gj2 � 1, the coefficients of the differential equation (10) can be developed as

1

x
�

�4M0Gx

1�M0Gð1� x2Þ
�

1� 4M0Gx
2

x
,

ð1�M0Gð1� x2ÞÞ2 � G2 � ð1� 2M0G� G2Þ � 2M0Gx
2, (11)

which leads to the differential equation

q2P

qx2
þ

1� ax2

x

� �
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qx
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m2

x2

� �
P ¼ 0 (12)

with a ¼ �4M0G, b ¼ O2ð1� 2M0G� G2Þ and c ¼ �2M0GO2.
Then, introducing a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4c
p

, it appears that this differential equation allows an analytical solution (see
appendix for more details)

PðxÞ ¼
a
2

� �ðmþ1Þ=2
eð½ða�aÞ=4�x

2
ÞxmK

ðmþ 1Þa� ðaþ bÞ

2a
;mþ 1;

a
2
x2

� �
, (13)

where K is the Kummer’s M-function. This is the general analytical solution for sound propagation in a
circular duct with laminar mean flow that is valid for a low Mach number.

Notice that this solution is available for low Mach number, according to jM0Gj251. This restriction is
frequency independent, that is the solution of acoustic pressure profile is available for all frequencies.
Typically, values of G are of order of magnitude of 1. Therefore, the solution is available for Mach number less
than 0:3.

In the following, links between this solution and already-known solutions for more specific cases are
outlined.
3.1. Link with Gogate and Munjal solution

Gogate and Munjal [8] derived a solution for sound propagation in circular ducts in the specific case of axi-
symmetric modes (m ¼ 0). The solution given by Eq. (13) is a generalization of this solution. Indeed, axi-
symmetric modes are given by setting m ¼ 0 in Eq. (13), leading to the following expression for the pressure
amplitude:

PðxÞ ¼
a
2

� �1=2
eðða�aÞ=4ÞK

a� a� b

2a
; 1;

a
2
x2

� �
,

which is exactly the solution derived by Gogate [8] (see [8, Eq. (29)]).
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3.2. Link with the no flow solution

In the case of no mean flow (Mach number equals zero), the Pridmore-Brown equation (Eq. (9)) can be
simplified and gives the Bessel equation

q2P

qx2
þ

1

x
qP

qx
þ O2 � ðOGÞ2 �

m2

x2

� �
P ¼ 0.

Solutions of this differential equation are, for a physical problem, the Bessel functions of the first kind JmðxÞ.
The pressure can then be expressed as a combination of the eigenmodes as [1,2]

pðx; x; y; tÞ ¼
X1

m¼�1

X1
n¼0

Cm;nJmðkm;nxÞeiðot�gxþmyÞ (14)

with

J 0mðkm;nÞ ¼ 0 and k2m;n ¼ O2ð1� G2Þ, (15)

where the coefficients Cm;n depend on the initial conditions of the physical problem. Here, n is the radial mode
order, km;n is the non-dimensional radial wavenumber. Nodal representation of these eigenmodes is shown in
Fig. 2.

The solution (14) can be compared with the limiting case of solution (13) that corresponds to M�! 0,
which implies a�! 0, c�! 0 and a�! 0. Using the following Kummer function limit property (see (13.5.13)
of Ref. [20]):

lim
r!1

Kðr;m;bÞ ¼ GðmÞeð1=2Þbð1
2
mb� rbÞðð1=2Þ�ð1=2Þ mÞJm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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,

m = 0 m = 1 m = 2

n = 0

n = 1

n = 2

Fig. 2. Nodal representation of the mode profiles in the (m,n) coordinate system.
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the no flow pressure profile (13) can be written as

PðxÞ ¼ lim
a;c;a!0
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b
p

x
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with Jm the mth Bessel function of the first kind. Since b ¼ O2ð1� G2Þ this solution is in fact the well-known
analytic solution for modal propagation of sound in a circular duct.

In the case where the mean flow is supposed to be uniform over the duct section, that is in the case of a
constant Mach number over the cross-section, the governing equations do not yield to Pridmore-Brown
solution but to a Bessel equation (e.g. Ref. [1])

q2P

qx2
þ

1

x
qP

qx
þ ðO�M0OGÞ

2
� ðOGÞ2 �

m2

x2

� �
P ¼ 0.

The solution for the pressure profile is the same as in the case of no mean flow except that the eigenfrequencies
are shifted by the Mach number, according to

k2m;n ¼ O2½ð1�M0GÞ
2
� G2�. (16)

At this stage it is possible to determine the eigenmodes and the corresponding eigenfrequencies in the cases of
both the no flow and uniform flow configurations as well as in the case of laminar shear flow. This is done in
the next section.
4. Eigenmodes of the solution

4.1. Dispersion equation

For each eigenmode (m, n), the propagation constant G can be determined by writing the boundary
conditions for a given flow, that is for a given Mach number and frequency excitation (O). This is done by
means of the dispersion equation: Eq. (15) in the case of no flow and Eq. (16) in the case of uniform flow. In
the case of laminar shear flow, it is first necessary to establish the dispersion equation. In any case, roots of the
dispersion equation can be real or complex. Real roots correspond to the propagative eigenmodes, whereas
complex roots correspond to evanescent eigenmodes. The case G ¼ 0 represents the cut-off frequency of the
mode. If the working frequency is lower than the cut-off frequency then the wave is evanescent, whereas if it is
larger then the wave propagates.

As stated above, in the case of a laminar shear flow, the dispersion equation should be determined. This is
done using the hard-wall condition, which can be written as (using Eq. (2))

½vðxÞ�x¼1 ¼
i

or0R
qPðxÞ
qx

� �
x¼1
¼ 0.

Using Eq. (13) yields an expression of the transverse velocity at the wall as
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with

A ¼
ðmþ 1Þa� ðaþ bÞ

2a
.

It follows that the propagation constants are found by solving the following dispersion equation in G:

F ðGÞ ¼
aA

mþ 1
K Aþ 1;mþ 2;

a
2

� �
þ

a� aþ 2m

2
K A;mþ 1;

a
2

� �
¼ 0, (18)

where the property of derivation of Kummer functions (see (13.4.8) of [20])

qKða; b; zÞ
qz

¼K0
ða; b; zÞ ¼

a

b
Kðaþ 1; bþ 1; zÞ

has been used. Eq. (18) does not allow any analytical solution for G. Numerical calculations will be derived in
the next section. Before giving these results, we study the compatibility of this dispersion equation (18) with
the no flow configuration.

4.2. Compatibility of solution with the no flow configuration

Using the Taylor development of Kummer functions (see (13.1.2) of [20])

Kða; b; zÞ ¼
X1
n¼0

ðaÞnzn

ðbÞnn!

and the following definition and properties of the Pochhammer coefficient ðxÞn:

ðxÞn ¼ xðxþ 1Þ . . . ðxþ n� 1Þ ¼
Gðxþ nÞ

GðxÞ
¼
Yn�1
i¼0

ðxþ iÞ and ðxÞ0 ¼ 1,

ðxþ 1Þn ¼
ðxÞn � ðxþ nÞ

x
and ðxÞn � an ¼

Yn�1
i¼0

½aðxþ iÞ�

allows us to develop Eq. (18) in the Taylor series

X1
n¼0

ðAÞn
ðmþ 1Þn

a
2

� �n 1

n!

2mþ a� a
2

þ
ðAþ nÞa

mþ nþ 1

� �
¼ 0.

If M�!0 this series reduces to

ðm!Þ
X1
n¼0

ð�1Þnbn

4nðmþ nÞ!n!
m�

b

2ðmþ nþ 1Þ

� �
¼ 0,

which is a development of Bessel functions of the first kind (see (9.1.10) of Ref. [20]). Indeed, this equation can
also be written as (making use of Bessel functions properties (9.1.27) of Ref. [20])

2mm!ffiffiffi
b
p� 	m�1

mffiffiffi
b
p Jm

ffiffiffi
b
p� �
� Jmþ1

ffiffiffi
b
p� �� �

¼
2mm!ffiffiffi
b
p� 	m�1

J 0m
ffiffiffi
b
p� �

¼ 0.

These solutions are exactly those found without flow (zeros of the derivative of Bessel functions of the first
kind). This shows that the dispersion equation (18) converges to the well known no flow one when the Mach
number tends towards zero.

5. Effect of laminar shear flow

In this section, the effect of laminar shear flow on the cut-off frequency, propagation constant and pressure
profiles is discussed. Then, dispersion curves are plotted in an attempt to isolate effects of refraction.
Whenever possible, results are compared with the literature to validate the proposed analytical solution.
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5.1. Cut-off frequency

After the expression of the dispersion equation has been established, the analysis of the evolution of cut-off
frequencies against the Mach number is generally studied. Among others, Agarwal and Bull [12] showed that
turbulent shear flow makes cut-off frequencies of each mode decrease with an increasing Mach number, in
downstream configuration. They found that cut-off frequencies for laminar subsonic flow shift less than
turbulent ones but still shift slightly compared with the no flow ones. This has been confirmed by Pagneux and
Froelich [10].

Cut-off frequencies are found from the dispersion equation (Eq. (18) in the case under study) by imposing a
propagation constant (G) equal to zero. This operation leads to

2mm!ffiffiffi
b
p� 	m�1

mffiffiffi
b
p Jm

ffiffiffi
b
p� �
� Jmþ1

ffiffiffi
b
p� �� �

¼
2mm!ffiffiffi
b
p� 	m�1

J 0m
ffiffiffi
b
p� �

¼ 0.

This equation shows that the zeros found are also those of no flow configuration. In others words, cut-off
frequencies in laminar subsonic flow are found to be the same as no flow ones. This contradiction with
previous results [10,12] can be explained by the fact that the coefficients of the differential equation (10) have
been approximated at first order to get a solvable equation. Therefore our development is not able to handle a
calculation of the cut-off frequencies accurate enough to obtain the expected shift in frequencies. Accordingly,
Pagneux and Froelich [10] showed that the deviation of cut-off frequencies increases with jGMj2. This term is
of order two and we restrict ourselves to the first order when approximating the differential equation. This
explains why we cannot describe the shift in cut-off frequencies induced by laminar shear flow.

Nevertheless, our model allows us to calculate the propagation constant, to derive pressure profiles and
dispersion curves and to compare our results with the ones available in the literature. This is done in the
following.
5.2. Propagation constant

In order to obtain the propagation constant in the presence of a laminar shear flow, the function F ðGÞ (Eq.
(18)) is plotted numerically for a set of parameters O, M and m, that is for a given working frequency, Mach
number and circumferential order. Approximated values of roots Gm;n are given by zeros of the function F. In
order to facilitate comparison of the present results with previous works, the Mach number has been
transformed into a Mach number associated with volume flow according to

Mv ¼
1

S

Z
S

MðxÞds ¼ CM0, (19)

where S is the section area and C is a coefficient which, in the case of laminar shear flow in a circular duct, is
equal to 1

2
.

Table 1

Downstream wavenumber Gd for propagative modes against Mv, for O ¼ 1 and 3.5 in the case of laminar shear flow and uniform flow

Gd O ¼ 1 O ¼ 3:5

Mv G0;0 Gunif :flow
0;0

G0;0 Gunif :flow
0;0

G1;0 Gunif :flow
1;0

G2;0 Gunif :flow
2;0

0 1.0000 1.0000 1.0000 1.0000 0.8505 0.8505 0.4884 0.4884

0.01 0.9899 0.9901 0.9900 0.9901 0.8413 0.8406 0.4794 0.4785

0.05 0.9498 0.9524 0.9508 0.9524 0.8055 0.8029 0.4451 0.4414

0.10 0.8999 0.9091 0.9036 0.9091 0.7622 0.7597 0.4056 0.4001

0.15 0.8511 0.8696 0.8583 0.8696 0.7207 0.7203 0.3699 0.3638

0.20 0.8039 0.8333 0.8151 0.8333 0.6813 0.6843 0.3379 0.3319

0.25 0.7589 0.8000 0.7742 0.8000 0.6441 0.6513 0.3094 0.3039

0.30 0.7163 0.7692 0.7354 0.7692 0.6092 0.6208 0.2841 0.2792
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Some results of this computation are reported in Table 1 in the case of downstream propagation for O ¼ 1
and 3.5 and for different Mach numbers. In this table, for a given working frequency, the values of G for the
(m,n) mode, noted Gm;n, are given in the column on the left, while values of G for uniform flow configuration,
noted Gunif :flow

m;n , are reported in the column on the right. As shown by the comparison between the second and
fourth columns of Table 1 (Gunif :flow

0;0 for O ¼ 1 and for O ¼ 3:5 as a function of the Mach number), and as
expected [1], the propagation constant Gunif :flow

0;0 is independent of frequency and depends on the Mach number
according to

Gunif :flow
0;0 �

1

1�M
. (20)

Then, comparing the first and third columns of Table 1, which give G0;0 for laminar subsonic flow for O ¼ 1
and 3.5, it appears, in agreement with Agarwal and Bull [12], that shear flow makes G frequency dependent,
that is shear flow makes the plane mode dispersive.

Values of G in the upstream configuration were also computed and results are reported in Table 2. This table
shows that in this configuration, for a given mode (i.e. a given column), G increases when the Mach number
increases as expected. It also appears that when the non-dimensional frequency O increases, G increases, as
found by Pagneux and Froelich [10].

Deviation of the propagation constant is due to both convective effect, which is responsible for deviation of
uniform flow constants, and to refractional effect, responsible for the difference between uniform flow and
laminar shear flow configurations.

The calculation of the propagation constant allows us to obtain pressure profiles (Eq. (13)) for a given Mach
number and working frequency O. Results of such a calculation are presented in the next section.
Table 2

Upstream wavenumber Gu for propagative modes against Mv, for O ¼ 1 and 3.5 in the case of laminar shear flow and uniform flow

Gu O ¼ 1 O ¼ 3:5

Mv G0;0 Gunif :flow
0;0

G0;0 Gunif :flow
0;0

G1;0 Gunif :flow
1;0

G2;0 Gunif :flow
2;0

0 1.0000 1.0000 1.0000 1.0000 0.8505 0.8505 0.4884 0.4884

0.01 1.0099 1.0101 1.0100 1.0101 0.8595 0.8605 0.4974 0.4985

0.05 1.0495 1.0526 1.0508 1.0526 0.8966 0.9031 0.5349 0.5417

0.10 1.0974 1.1111 1.1032 1.1111 0.9436 0.9617 0.5844 0.6021

0.15 1.1429 1.1765 1.1573 1.1765 0.9912 1.0272 0.6361 0.6707

0.20 1.1851 1.2500 1.2130 1.2500 1.0387 1.1010 0.6893 0.7486

0.25 1.2234 1.3333 1.2707 1.3333 1.0859 1.1846 0.7431 0.8372

0.30 1.2575 1.4286 1.3310 1.4286 1.1323 1.2802 0.7967 0.9386
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Fig. 3. Profiles of mode (0,0) for O ¼ 2 against Mach number (0–0.3)—downstream configuration.
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Fig. 4. Profiles of mode (0,0) for O ¼ 7:25 against Mach number (0–0.3)—downstream configuration.
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Fig. 5. Profiles of mode (1,0) for O ¼ 4 against Mach number (0–0.3)—downstream configuration.

R. Boucheron et al. / Journal of Sound and Vibration 292 (2006) 504–518 513
5.3. Pressure profiles

As stated above, deviation of the propagation constant is due to both convection and refraction. On the
other hand, deviation of the pressure profile is due only to refraction. Figs. 3 and 4 present the acoustic
pressure profiles of mode (0,0) at a non-dimensional frequency O ¼ 2 and 7.25, respectively, for different
Mach numbers (0–0.01–0.05–0.1–0.15–0.2–0.25–0.3). The no flow solution is represented by a bold curve. The
curve corresponding to the higher Mach number (M ¼ 0:3) is represented by a dashed line. The profiles have
been normalized with respect to the no flow profile integrated over the section. These figures clearly show that,
as expected (e.g. Ref. [21]), the deformation increases with an increasing Mach number. Comparison between
Figs. 3 and 4 which correspond to the same configuration but different working frequencies shows that, as
expected (e.g. Ref. [10]), the higher the frequency, the more deformed the pressure profile. Further calculations
show that in the upstream configuration, pressure profiles of the plane mode are also more deformed when the
Mach number and/or the frequency increases.

As expected (e.g. Ref. [13]), in downstream propagation (respectively, upstream propagation), profiles
present a re-distribution of pressure towards the wall (respectively towards the core). This effect is due to mean
velocity gradients which, in downstream (respectively, upstream) configuration refract acoustic waves towards
the wall (respectively, towards the core). Similar tendencies are found for higher modes. For example,
comparison between Figs. 5 and 6 which correspond to the mode (1,0), i.e. the first circumferential mode, at
working frequencies O ¼ 4 and 10 shows that the deformation of the pressure profile increases when the Mach
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Fig. 6. Profiles of mode (1,0) for O ¼ 10 against Mach number (0–0.3)—downstream configuration.
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Fig. 7. Profiles of mode (1,0) for O ¼ 4 against Mach number (0–0.3)—upstream configuration.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

�

Fig. 8. Profiles of mode (1,0) for O ¼ 10 against Mach number (0–0.3)—upstream configuration.

R. Boucheron et al. / Journal of Sound and Vibration 292 (2006) 504–518514
number and the frequency increase. These results are in agreement with those of Pagneux and Froelich [10],
Bihhadi and Gervais [13,14] and Yehya [21].

Figs. 7 and 8 present the evolution of profiles of mode ð1; 0Þ in the same configuration as Figs. 5 and 6 except
that the wave is upstream propagating. As expected [13,14,21], the acoustic pressure increases at the core
whereas it decreases near the wall, as in downstream propagation; profiles are also more deformed when the
working frequency increases.
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Fig. 9. Dispersion curves (G ¼ F ðOÞ) for both downstream and upstream propagation, for all propagative modes (m; n) at Mv ¼ 0:05.
Solid line: uniform flow configuration, dotted line: laminar one.
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Fig. 10. Dispersion curves (G ¼ F ðOÞ) for both downstream and upstream propagation, for all propagative modes (m; n) at Mv ¼ 0:2.
Solid line: uniform flow configuration, dotted line: laminar one.
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The refractional effect increases with frequency and with gradient, which is why profiles are more deformed
if the Mach number or working frequency increases.

Results obtained so far on this matter are in agreement with previous numerical results and this validates
our analytical solution.

In order to appreciate further the effect of shear flow, dispersion curves are presented in the next section.

5.4. Dispersion curves

Dispersion curves, which are propagation constant versus frequency, have also been plotted. Fig. 9 shows
the dispersion curves at Mach number 0.05 for several modes (m, n) while Fig. 10 shows the dispersion curves
at Mach number 0.2. Upstream values of the propagation constant were set into the negative on these figures
for ease of comparison of downstream and upstream configurations. Results shown in Fig. 10 are in
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Fig. 11. Difference of propagation constant for different configuration: : mode (0,0), : mode (1,0), : mode (2,0), : mode (3,0),

: mode (4,0), : mode (0,1), : mode (1,1), : mode (2,1), : mode (0,2), : mode (1,2), : mode (2,2). (a)

Downstream—Mach ¼ 0.05; (b) downstream—Mach ¼ 0.3; (c) upstream—Mach ¼ 0.05; (d) upstream—Mach ¼ 0.3.
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agreement with numerical computations conducted by Bihhadi and Gervais [13]. Small discrepancies between
our results and theirs can be attributed to the fact that they studied the case of a rectangular duct. The
difference between the uniform and shear flow propagation constant is more important at Mach number 0.2
than 0.05, which confirms that shear flow effect increases with an increasing Mach number. Deviation of the
propagation constant from the uniform case is more pronounced in the upstream configuration than in the
downstream one, in agreement with previously presented results. It may also be noted that, comparing Figs. 9
and 10, all curves are shifted towards lower values. As noted by Bihhadi and Gervais [13], this is due to
convection.

As stated above, deviation of the propagation constant from the no flow case is due to both convection and
refraction, whereas deformation of the profile is due only to refraction. Therefore, in order to compare the
effects of shear flow with uniform flow, differences between uniform flow propagation constants and laminar
ones have been calculated for several configurations. These differences have been plotted in Figs. 11(a) and (b)
for downstream configuration at Mach numbers 0.05 and 0.3, respectively. In this configuration, distinct
behaviours are noticeable, depending on the radial order of the mode (n), that is curves corresponding to
similar values of n form a given set. For all modes (m,0), that is for all non-radial modes (purely
circumferential modes), represented by solid lines, curves decrease when O increases for both M ¼ 0:05 and
0.3. All these curves seem to converge at high O towards the same asymptote. On the other hand, curves of
first-order radial modes (m,1), represented by dashed lines, present a bump as O increases before converging at
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high O. For second-order radial modes (m,2), represented by dotted lines, curves also present a bump but seem
to shift towards higher frequencies compared with first radial order modes. They also seem to converge for
high working frequency.

Figs. 11(c) and (d) present the evolution of Guniform � Glaminar in upstream configuration at Mach numbers
0.05 and 0.3, respectively. Although tendencies appear less clearly than in downstream configuration, one can
still distinguish a set of curves corresponding to similar radial mode order. In any case, the difference between
the uniform and laminar propagation constant in upstream configuration first present a tough as frequency
increases and then seem to converge towards the same asymptote.

There are no similar results in the literature for comparison with the present ones as previous works did not
consider the evolution of the propagation constant for non-axi-symmetric modes. Even if the physical reason
of such behaviour is left unexplained, our study shows that the effect of shear flow depends on the radial order
of the propagating mode.

6. Conclusion

An analytical solution of the wave equation in circular ducts in the presence of laminar shear flow was derived.
Connections between this solution and already-known solutions of more specific cases were made. In order to
validate the proposed analytical solution and to study the effect of shear flow on multimodal propagation, the
propagation constant was calculated. It was found that the latter decreases (respectively, increases) with the
Mach number in the case of downstream (respectively, upstream) propagation, as a result of convection.
Propagation constants were found to be frequency dependent due to shear in the flow. It appeared that the effect
of shear flow is associated with the deformation of profiles which depends on Mach number and frequency. It
was found that pressure profiles shift more and are more deformed in the upstream configuration than in the
downstream one. In downstream configuration (respectively, upstream), profiles present a redistribution of
pressure towards the wall (respectively, toward the core). All these results are in agreement with previous
findings and consolidate our analytical solution proposed. Our study also showed that the effect of shear flow is
strongly linked to the radial order of the propagating mode. Further studies should be concerned with
experimental confirmation of this tendency which hopefully will make physical interpretation easier.
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Appendix

Kummer function: The confluent hypergeometric Kummer functions Kða; b; zÞ are the ensemble of solutions
of the differential equation

z
q2f
qz2
þ ðb� zÞ

qf

qz
� af ¼ 0.

Like Bessel equation admits for solutions Bessel functions of first kind Jn and Bessel function of second kind
Y n, Kummer equation admits Kummer’s M-function (regular at z ¼ 0), and Kummer’s U-function (singular
at z ¼ 0). Kummer functions form part of confluent hypergeometric function as Whittaker functions.

Defining a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4c
p

, it can be proved that the function

eða�aÞx
2=4xmK

ðmþ 1Þa� ðaþ bÞ

2a
;mþ 1;

a
2
x2

� �

is the solution of the differential equation

q2f

qx2
þ

1� ax2

x

� �
qf

qx
þ bþ cx2 �

m2

x2

� �
f ¼ 0.
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Rendus de l Academie des Sciences 326 (IIb) (2000) 429–436.

[6] D.C. Pridmore-Brown, Sound propagation in a fluid through an attenuating duct, Journal of Fluid Mechanics 4 (1958) 393–406.

[7] P. Mungur, H.E. Plumbee, Propagation and attenuation of sound in a soft walled annular duct containing shear flow, NASA SP-207,

1969, pp. 305–322.

[8] G.R. Gogate, M.L. Munjal, Analytical solution of sound propagation in lined or unlined circular ducts with laminar mean flow,

Journal of Sound and Vibration 160 (3) (1993) 465–484.

[9] G.R. Gogate, M.L. Munjal, Sound propagation in ducts with bulk reacting lining in the presence of laminar mean flow, Journal of the

Acoustical Society of America 99 (3) (1996) 1779–1782.

[10] V. Pagneux, B. Froelich, Influence of low Mach number shear flow on acoustic propagation in ducts, Journal of Sound and Vibration

246 (1) (2001) 137–155.

[11] J.L. Peube, M.F. Jallet, Propagation d’ondes acoustiques dans un écoulement en conduite cylindrique, Acustica 29 (1973) 86–92.
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