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Abstract

The position of a leak in buried water distribution pipes, may be determined by accurate estimation of the time delay

between two measured acoustic signals. By using a model for the wave propagation along plastic pipes, various time delay

estimators using cross-correlation are compared in this paper for their ability to locate a leak in plastic pipes. The

estimators of interest are the ROTH impulse response, the smoothed coherence transform (SCOT), the WIENER, the

phase transform (PHAT) and the maximum likelihood (ML) estimators. For leak detection in buried plastic water pipes it

is found that the SCOT estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. It

is found that random errors introduced by random noise on the signal measurements are insignificant compared with the

resolution of the time delay estimators imposed by the low-pass filtering characteristics of the pipe. Limited experimental

results are presented to support the findings.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A leak from a water supply pipe system generates noise, which can be used for leak detection and location.
The correlation technique [1–3], which is used to estimate the time delay between two measured acoustic/
vibration signals, is central to this process. Important factors in the detectability of the leak are the signal-to-
noise ratio (SNR) and the amount of a priori knowledge, principally, the sound propagation wavespeed c in
the pipe. A sensor is placed either side of the leak, and the distance between the two sensors is usually
measured on-site or read off system maps, whereas the propagation wavespeed is normally estimated using
pipe data [4,5] or measured on-site using a simulated leak [6].

Various time delay estimation techniques have been proposed and implemented over the years. Some of the
most important are summarised in Refs. [7–9]. These techniques are based on the cross-correlation of two
measured signals and include the basic cross-correlation (BCC) and generalised cross-correlation (GCC)
methods, of which the BCC method is a trivial example. The essential difference between the BCC and the
GCC methods, is that with the latter, the signals are passed though filters (pre-filtering) prior to performing
the cross-correlation. The advantages of pre-filtering are two-fold: (i) to enhance the signals in the frequency
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

t; tpeak; t̂peak lag of time; time delay at the peak
value and its estimate

x1ðtÞ; x2ðtÞ acoustic/vibration signals
n1ðtÞ; n2ðtÞ background noise
X 1ðf Þ;X 2ðf Þ Fourier transforms of x1ðtÞ and

x2ðtÞ, respectively
d distance between two sensor signals
d1, d2 relative distance between the leak

and signals x1ðtÞ and x2ðtÞ

c propagation wavespeed
Rx1x2ðtÞ; R̂x1x2 ðtÞ cross-correlation function be-

tween signals x1ðtÞ and x2ðtÞ and its
estimate

Rg
x1x2
ðtÞ; R̂

g

x1x2
ðtÞ GCC function between signals

x1ðtÞ and x2ðtÞ and its estimator
RP

x1x2
ðtÞ;RR

x1x2
ðtÞ;RW

x1x2
ðtÞ;RS

x1x2
ðtÞ;RM

x1x2
ðtÞ the

PHAT, ROTH, WIENER, SCOT,
ML estimators

Rs1s2ðtÞ cross-correlation function between
signals s1ðtÞ and s2ðtÞ

Sx1x2ðoÞ; Ŝx1x2ðoÞ CSD between signals x1ðtÞ and
x2ðtÞ and its estimate

C2nðoÞ frequency characteristics due to pro-
pagation effects along the pipe,
which is a function of wave attenua-
tion and the type of sensor

Ss1s2ðoÞ CSD between signals s1ðtÞ and s2ðtÞ

SllðoÞ;Sn1n1ðoÞ;Sn2n2ðoÞ ASD of the leak signal
lðtÞ, and noise signals n1ðtÞ and n2ðtÞ

Fx1x2 ðoÞ phase spectrum between signals x1ðtÞ

and x2ðtÞ

g2x1x2
ðoÞ ordinary coherence function between

x1ðtÞ and x2ðtÞ

CgðoÞ frequency weighting function of the
GCC function

CPðoÞ;CRðoÞ;CW ðoÞ;CSðoÞ;CM ðoÞ frequency
weighting functions of the PHAT,
ROTH, WIENER, SCOT, ML esti-
mators

Hðo;xÞ frequency response function between
the signal measured at the sensor
location and the pressure at the leak
location

dðtÞ Dirac delta function
s2t̂peak ; st̂peak variance and standard derivation of

t̂peak
sz standard deviation of the first deri-

vative of the cross-correlation func-
tionqE½z�

qt

����
����
t¼tpeak

slope of the cross-correlation func-
tion at t ¼ tpeak

GðoÞ band-pass filter
Do;o0;o1 frequency bandwidth of band-pass

filter; lower and upper cut-off fre-
quencies of band-pass filter

oc centre frequency of a band-pass filter
Dt temporal bandwidth, i.e., resolution

of the time delay estimator
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bands where the SNR is high, thereby suppressing the signals outside these bands, and (ii) to pre-whiten the
signals in order to sharpen the peak in the cross-correlation function. Knapp and Carter discussed the
characteristics of five GCC methods and compared them with the BCC method [7]. In this paper, we compare
the same GCC methods with the BCC method for the purpose of leak detection in buried plastic water pipes to
determine which method is best suited to this particular application.

The five GCC methods considered are the ROTH impulse response (proposed by Peter Roth), the smoothed
coherence transform (SCOT), the WIENER (after its inventor Norbert Wiener), the phase transform (PHAT)
and the maximum likelihood (ML) estimators.

In the ROTH estimator [10], rather than determining the cross-correlation between two signals, the signals
are used to deduce the impulse response of the system. This is achieved by normalising the cross-spectrum by
the auto-spectrum of one of the signals (the input), prior to transforming back to the time domain. The
rationale for this procedure is that it removes the effects of the input, thus deducing the system delay more
accurately. However, because the input (leak) spectrum cannot be measured directly it is difficult to see how
this method could be beneficial for leak detection, but it is included in this paper for completeness.

The SCOT estimator favours neither sensor signal and was developed by Carter et al. [11] to suppress the
undesirable effects of strong tonal signals in weak broad-band signals. In the SCOT estimator the cross-
spectrum is normalised by the square-root of the product of the auto-spectra of the two signals. For leak
detection in pipes we show this to be a worthwhile procedure; the reasons why this is so, and an alternative
interpretation of this processor, is given in Section 3.
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To sharpen the peak in the cross-correlation function, the PHAT estimator has been proposed [12]. In this
estimator the modulus of the cross-spectrum is ‘flattened’ prior to transformation to the time domain. Thus,
only phase information is used for performing the time delay estimation. The deficiency in this technique is
that it does not take into account the coherence between the two signals and thus gives equal weight to all
frequencies regardless of signal strength.

Another important estimator for time delay is the ML estimator. Hannan and Thomson derived this for
band limited random signals corrupted by white noise [13]. This estimator weights the cross-spectrum
according to the SNR, giving most weight to the phase spectrum that leads to the minimum variance of the
time delay estimate.

The WIENER estimator [14] involves the multiplication of the cross-spectrum by the coherence between the
two signals prior to transformation to the time domain. It is suggested in Ref. [14] that this estimator is
preferable to the ML estimator in certain situations, as the ML estimator has the effect of overemphasizing as
well as underemphasizing the signals at certain frequencies.

In this paper, the analytical model of wave propagation along a fluid-filled pipe derived previously by the
authors [15], is used to compare performance of the time delay estimators. To study their accuracy, the
expression for the uncertainty in the time delay estimates are derived and compared. They are further compared
with the resolution of the time delay estimates introduced by the low-pass filtering properties of the pipe. The
analysis uses the general expression for the variance of a time delay estimate derived by Carter [16]. To assist the
reader, and because the analysis is not widely available in the literature, the derivation of this expression is given
in Appendix A. To support the theoretical analysis, the time delay estimators are used to predict the location of a
leak using experimental data obtained from a buried PVC water pipe. Their performance in relation to this
experimental data is compared and discussed. Notations are explained in nomenclature.
2. Leak detection using the basic cross-correlation method

To perform leak detection, vibration or acoustic signals are measured at two access points using sensors
such as accelerometers or hydrophones, either side of the location of a suspected leak, as shown in Fig. 1. If a
leak exists, a distinct peak may be found in the cross-correlation of the two signals x1ðtÞ and x2ðtÞ. This gives
the time delay tpeak that corresponds to the difference in arrival times between the acoustic signals at each
sensor. The location of the leak relative to one of the measurement points, d1, can be calculated using the
relationship between the time delay tpeak, the distance d between the access points, and the propagation
wavespeed c in the buried pipe,

d1 ¼
d � ctpeak

2
. (1)

If x1ðtÞ and x2ðtÞ are two stationary random signals with zero mean, the cross-correlation function is defined
by [17]

Rx1x2 ðtÞ ¼ E½x1ðtÞx2ðtþ tÞ�, (2)
d

d1 d2

Sensor 1
x1(t)

Sensor 2
x2(t)

Leak noise
l(t) Water pipe

Fire hydrant Fire hydrant

Fig. 1. Schematic of a pipe with a leak bracketed by two sensors.
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Fig. 2. Schematic of the implementation of the BCC function.
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where t is the time lag and E½d� is the expectation operator. The value of t that maximises Eq. (2) provides an
estimate tpeak of the time delay. A procedure to calculate the BCC function using sampled data is illustrated in
Fig. 2. The BCC estimator can be obtained from the inverse Fourier transform of X �1ðf ÞX 2ðf Þ and scaled
appropriately for normalisation, where X 1ðf Þ and X 2ðf Þ are the Fourier transforms of x1ðtÞ and x2ðtÞ,
respectively, and * denotes complex conjugation. The cross-correlation function, Rx1x2 ðtÞ, is related to the
cross-spectral density (CSD), Sx1x2 ðoÞ, by the inverse Fourier transform [17]

Rx1x2ðtÞ ¼ F�1fSx1x2 ðoÞg ¼
1

2p

Z þ1
�1

Sx1x2ðoÞe
iot do, (3)

where F�1f g denotes the inverse Fourier transform. In practice, only an estimate of the CSD can be obtained
since it is derived from finite time observations of x1ðtÞ and x2ðtÞ. However, to simplify the derivation of
various time delay estimators, the ideal CSD is used in this paper.

Assuming that the signals are generated from a leak and measured using two separate acoustic sensors in the
presence of background noise, the measured signals can be represented by

x1ðtÞ ¼ s1ðtÞ þ n1ðtÞ, (4)

and

x2ðtÞ ¼ s2ðtÞ þ n2ðtÞ, (5)

where s1ðtÞ, s2ðtÞ, n1ðtÞ and n2ðtÞ are assumed to be stationary random processes. If the noise at each sensor is
assumed to be uncorrelated with each other and with the signals, the cross-correlation function between
signals x1ðtÞ and x2ðtÞ is given by

Rx1x2 ðtÞ ¼ Rs1s2ðtÞ. (6)

The CSD Sx1x2ðoÞ between two signals x1ðtÞ and x2ðtÞ measured at positions x ¼ d1 and x ¼ d2, is given by

Sx1x2 ðoÞ ¼
1

2p
lim

T!1
E

X �1T ðoÞX 2T ðoÞ
T

� �
¼ H�ðo; d1ÞHðo; d2ÞSllðoÞ, (7)

where SllðoÞ is the auto-spectral density (ASD) of the acoustic pressure generated by the leak signal lðtÞ

measured at the leak location, and Hðo;xÞ is the frequency response function between the signal measured by
the sensor and the pressure at the leak location at a distance x, and for an infinite pipe is given by [18]

Hðo;xÞ ¼ ðioÞnAne
�iox=ce�obx, (8)

where b is a measure of the loss within the pipe wall [15], and An is related to the pipe wall properties and the
type of sensor used. The subscript n takes the values of n ¼ 0, 1 and 2, corresponding to measurements of
either pressure, radial velocity or radial acceleration of the pipe wall, respectively. Combining Eqs. (7) and (8),
the CSD can be written as

Sx1x2ðoÞ ¼ A2
nC2nðoÞeioT0SllðoÞ, (9)

where C2nðoÞ ¼ o2ne�obd and T0 ¼ �ðd2 � d1Þ=c. Since multiplication in one domain corresponds to
convolution in the transformed domain, the BCC function between signals x1ðtÞ and x2ðtÞ in terms of the time
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delay T0, can be written as

Rx1x2ðtÞ ¼ A2
nRllðtÞ � c2nðtÞ � dðtþ T0Þ, (10)

where � denotes convolution, RllðtÞ ¼ F�1fSllðoÞg is the auto-correlation of the leak signal,
c2nðtÞ ¼ F�1fC2nðoÞg, and dðtÞ is the Dirac delta function. An interpretation of Eq. (10) is that it represents
a delta function delayed by T0, which is broadened by the spectral characteristics of both the leak signal and
the propagation from the leak location to the sensor location. Because c2nðtÞ in Eq. (10) is a function of the
choice of acoustic/vibration sensors as well as the pipe, the choice of sensor will also affect the sharpness of the
peak in the correlation function as well as pre-filtering operations. This is discussed in Ref. [18].
3. Leak detection using generalised cross-correlaiton methods

To accentuate the peak in the cross-correlation function associated with the time delay, the input signals can
be pre-filtered. The time and frequency domain representations of this operation are depicted in Figs. 3(a) and
(b), respectively. In the time domain, the signals are filtered prior to delay, multiplication, and integration,
while in the frequency domain, a window or weighting function is applied to the CSD function [7] prior to
performing the inverse Fourier transform. Thus the GCC function Rg

x1x2
ðtÞ between sensor signals x1ðtÞ and

x2ðtÞ is given by

Rg
x1x2
ðtÞ ¼ F�1fCgðoÞSx1x2 ðoÞg ¼

1

2p

Z þ1
�1

CgðoÞSx1x2ðoÞe
iot do, (11)

where CgðoÞ is a frequency weighting function. When CgðoÞ ¼ 1, the GCC function reduces to the BCC
function defined by Eq. (3).

The frequency weighting functions for the GCC methods discussed in this paper are listed in Table 1. These
weighting functions are taken from Ref. [9], but are written in a different form to aid interpretation. It can be
seen that all the weighting functions are real and thus have no effect on the phase spectrum, and hence on the
time delay estimate. These time delay estimators applied to the leak detection problem illustrated in Fig. 1 are
discussed below.
x1(t)

x2(t)

x1(t)

x2(t)

T / 2

-T / 2
dt

Weighting function 
*

Inverse Fourier
Transform

Sx1x2
(�) Weighted by

CSD 

Process of the GCC 

H1(�)

H2(�) �

Ψg (�) = H1(�)H2(�)

Ψg (�)

Ψg (�)Sx1x2
(�) g

Rx1x2
(τ)

g
Rx1x2

(τ)

(a)

(b)

Fig. 3. Schematic of the implementation of the GCC function. (a) Time domain; and (b) frequency domain.
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Table 1

Various cross-correlation methods [9]

BCC PHAT WIENER SCOT ML ROTH

CgðoÞ 1 1

jSx1x2 ðoÞj
g2x1x2
ðoÞ gx1x2

ðoÞ

jSx1x2 ðoÞj
g2x1x2
ðoÞ

½1� g2x1x2
ðoÞ�

1

jSx1x2 ðoÞj

1

Sx1x1 ðoÞ

Note: g2x1x2
ðoÞ is the ordinary coherence function between x1ðtÞ and x2ðtÞ, which is given by g2x1x2

ðoÞ ¼
jSx1x2

ðoÞj2

Sx1x1
ðoÞSx2x2

ðoÞ.
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3.1. The PHAT estimator

Substituting the frequency weighting function CPðoÞ ¼ 1=jSx1x2ðoÞj and the CSD Sx1x2ðoÞ defined by
Eq. (9) into Eq. (11) gives

RP
x1x2
ðtÞ ¼ F�1fCPðoÞSx1x2ðoÞg ¼ dðtþ T0Þ. (12)

It can be seen that, by pre-whitening the measured CSD, the PHAT estimator effectively removes the effects of
propagation along the pipe and the frequency characteristics of the sensors, and also the effects of the leak
spectrum. For non-dispersive wave propagation, which is the case in buried plastic pipes [15,18], the result is a
perfect delta function located at the time delay T0. One disadvantage of the PHAT estimator is that it takes no
account of the noise in the signals, and thus by pre-whitening, the effects of noise may be enhanced, thereby
corrupting the estimate of the time delay.
3.2. The WIENER estimator

From Eqs. (4) and (5), the ASDs of signals x1ðtÞ and x2ðtÞ, are given by

Sx1x1 ðoÞ ¼ jHðo; d1Þj
2SllðoÞ þ Sn1n1ðoÞ (13)

and

Sx2x2ðoÞ ¼ jHðo; d2Þj
2SllðoÞ þ Sn2n2ðoÞ. (14)

The weighting function for the WIENER processor CW ðoÞ is defined by

CW ðoÞ ¼ g2x1x2
ðoÞ ¼

jSx1x2 ðoÞj
2

Sx1x1ðoÞSx2x2 ðoÞ
. (15)

This indicates that the WIENER estimator adjusts the CSD according to the value of the coherence. This
method, therefore, has the desirable effect of suppressing those frequency regions where the coherence is poor.
However, the pre-filtering operation does not improve the resolution of the time delay estimate as it has no
effect on the sharpness of the peak in the cross-correlation function. Eqs. (13)–(15) can be substituted into Eq.
(11) to give

RW
x1x2
ðtÞ ¼ F�1fCW ðoÞSx1x2 ðoÞg ¼ A2

nRllðtÞ � c2nðtÞ � hW ðtÞ � dðtþ T0Þ, (16)

where

hW ðtÞ ¼ F�1 1þ
1

jHðo; d1Þj
2

Sn1n1 ðoÞ
SllðoÞ

� �
1þ

1

jHðo; d2Þj
2

Sn2n2ðoÞ
SllðoÞ

� �� ��1
.

When the effect of background noise is negligible, i.e., g2x1x2
ðoÞ ! 1, RW

x1x2
ðtÞ ! Rx1x2ðtÞ. In this case, the

WIENER estimator is equivalent to the BCC estimator. Like the BCC estimator, the delta function in the
cross-correlation function will also be smeared by the finite bandwidth of the leak spectrum, the pipe dynamics
and the choice of acoustic/vibration sensors.
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3.3. The SCOT estimator

The frequency weighting function for the SCOT estimator CSðoÞ is given by

CSðoÞ ¼
gx1x2
ðoÞ

jSx1x2 ðoÞj
. (17)

The SCOT estimator can be interpreted as a two-stage filtering process: pre-whitening represented by the
denominator of CSðoÞ, and attenuation in the frequency regions where noise is present, by the numerator
gx1x2
ðoÞ, respectively. Substituting the weighting function given by Eq. (17) into Eq. (11) gives the SCOT

estimator,

RS
x1x2
ðtÞ ¼ F�1fCSðoÞSx1x2 ðoÞg ¼ hSðtÞ � dðtþ T0Þ, (18)

where

hSðtÞ ¼ F�1 1þ
1

jHðo; d1Þj
2

Sn1n1ðoÞ
SllðoÞ

� �
1þ

1

jHðo; d2Þj
2

Sn2n2 ðoÞ
SllðoÞ

� �� ��1=2
.

It can be seen that in the noise-free case, i.e., gx1x2
ðoÞ ¼ 1, the SCOT estimator is identical to the PHAT

estimator.

3.4. The ML estimator

The frequency weighting of the ML estimator leads to the minimum variance of the time delay estimate if
the signals are random Gaussian [9], which is given by

CM ðoÞ ¼
g2x1x2
ðoÞ

1� g2x1x2
ðoÞ

1

jSx1x2ðoÞj
. (19)

In a similar way to the SCOT estimator, two pre-filtering operations are involved in the ML estimator. The
pre-whitening process is represented by the second term in Eq. (19), and the first term weights the CSD
according to the variance of the phase estimate. It attaches most weight when the variance of the estimated
phase error is least [7]. Following the same procedures as before, the correlation estimator RM

x1x2
ðtÞ is given by

RM
x1x2
ðtÞ ¼ F�1fCM ðoÞSx1x2 ðoÞg ¼ hMðtÞ � dðtþ T0Þ, (20)

where

hM ðtÞ ¼ F�1 1þ
1

jHðo; d1Þj
2

Sn1n1ðoÞ
SllðoÞ

� �
1þ

1

jHðo; d2Þj
2

Sn2n2 ðoÞ
SllðoÞ

� �
� 1

� ��1
.

3.5. The ROTH estimator

Substituting Eq. (13) and the weighting function CRðoÞ ¼ 1=Sx1x1 ðoÞ into Eq. (11), the ROTH estimator
RR

x1x2
ðtÞ is given by

RR
x1x2
ðtÞ ¼ F�1fCRðoÞSx1x2ðoÞg ¼ A2

nhRðtÞ � c2nðtÞ � dðtþ T0Þ, (21)

where

hRðtÞ ¼ F�1fjHðo; d1Þj
2 þ Sn1n1ðoÞ=SllðoÞg�1.

As can be seen in Eq. (21), the ROTH estimator is not particularly useful for leak detection in pipes due to the
presence of the term c2nðtÞ, which introduces smearing of the peak due to the effects of propagation along the
pipe, sensor frequency characteristics, and the SNR at sensor 1.
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By comparing the various GCC methods, it can be seen that the PHAT, SCOT and ML estimators involve
pre-whitening of the leak signals, which sharpens the peak in the cross-correlation function. These are
therefore of particular interest in this paper.

4. Variance of the time delay estimate

In this section, the variances of the time delay estimates discussed in Section 3 for the purpose of leak
detection are compared. The general expression for the variance of the time delay estimate is derived in
Appendix A and is given by

s2t̂peak ¼
2p
T

R1
�1

o2jCgðoÞj2Sx1x1ðoÞSx2x2 ðoÞ½1� g2x1x2
ðoÞ�doR1

�1
o2CgðoÞjSx1x2 ðoÞjdo

� �2 . (22)

The variances of the specific time delay estimators given in Table 1, can be determined by substituting into
Eq. (22) the various weighting functions CgðoÞ. To allow simple analysis, it is assumed that the coherence
between the two signals g2x1x2

ðoÞ is constant in a frequency band Do ¼ o1 � o0 and is zero elsewhere, i.e.,

g2x1x2
ðoÞ ¼

g2; o0pjojoo1;

0; otherwise:

(
(23)

A similar assumption has been made by Carter [16] to discuss the effect of coherence on the ML estimator.
Assuming that the coherence has the form given in Eq. (23), the variances are found to be as follows.

For the BCC and WIENER estimators,

s2t̂peak ¼
p
T

1� g2

g2

Ro1
o0

o2jSx1x2ðoÞj
2 doRo1

o0
o2jSx1x2ðoÞjdo

h i2 . (24)

For the PHAT, SCOT and ML estimators,

s2t̂peak ¼
2p
T

1� g2

g2
1

2
Ro1
o0

o2 do
¼

3p
T

1� g2

g2
1

½ðo0 þ DoÞ3 � o3
0�
. (25)

For the ROTH estimator,

s2t̂peak ¼
p
T

1� g2

g2

Ro1
o0

o2 Sx2x2
ðoÞ

Sx1x1
ðoÞ doRo1

o0
o2 Sx2x2

ðoÞ
Sx1x1

ðoÞ

h i1=2
do

� �2
. (26)

It can be seen from Eq. (25) that the variance of the PHAT, SCOT and ML estimators is governed by three
factors, namely, the observation time T, the coherence g2, and the frequencies o0 and o1. For the other
estimators, the variance is also related to the ASDs of the two signals and the CSD between them, as shown in
Eqs. (24) and (26).

If we assume that the leak spectrum is ‘flat’, i.e., SllðoÞ ¼ S0 in the frequency range o0 to o1, the variances
of the BCC and WIENER estimators can be determined by substituting Eqs. (7) and (8) into Eq. (24) to give

s2t̂peak ¼
p
T

1� g2

g2

Ro1
o0

o2C2
2nðoÞdoRo1

o0
o2C2nðoÞdo

� 	2 . (27)

Eq. (27) shows that the variance of the BCC and WIENER estimators is governed by both the pipe properties
and the choice of acoustic/vibration sensors, as C2nðoÞ is a function of the wave attenuation and the type of
sensor used. The variance of the ROTH estimator, as given by Eq. (26), is largely influenced by the
background noise.

It should be noted that the variance of the time delay estimate increases as the filter bandwidth Do
decreases. Consequently, it is desirable to use a filter that has a bandwidth that is as wide as possible. In
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reality; however, the pipe characteristics and the distances from the sensors to the leak, govern the highest
frequency of the measurable leak noise and hence o1. Thus to reduce the variance the only realistic options are
to increase T and/or improve the coherence by using transducers with higher sensitivity.

For a typical plastic pipe with bd ¼ 0:023 s, and assuming that g2 ¼ 0:2, T ¼ 60 s, and o0 ¼ 62:8 rad=s, the
standard deviation st̂peak for various cross-correlation estimators is illustrated in Fig. 4. It can be seen that the
standard deviation of all the estimators decreases with increasing bandwidth. Note also that the three pre-
whitening estimators have the smallest variance.
5. Effect of band-pass filtering

Reliable leak detection can only be accomplished when a distinct peak can be identified in the cross-
correlation function. As discussed in Section 3, the PHAT, SCOT and ML estimators pre-whiten the CSD in
order to sharpen the peak in the cross-correlation function and are therefore of particular interest in this
paper. In practical situations, the measured leak signals are dominated by the background noise at low
frequencies and attenuated at high frequencies [15], filtering operations must be performed on the sensor
signals before conducting the time domain cross-correlation. The effect of band-pass filtering of the signals on
cross-correlation estimators is discussed in this section.

For non-dispersive wave propagation, the magnitude and phase of the ideal pre-whitened CSD (without
considering the weighting of the coherence) between two sensor signals for time delay estimation is illustrated
in Figs. 5(a) and (b), respectively. In this ideal case, a delta function in the cross-correlation is produced. In
practice, the signals are band-limited, a typical phase spectrum of which is shown in Fig. 5(d). When the
PHAT estimator is used on this data, the modulus is whitened as shown in Fig. 5(c), which results in a
spurious peak in the correlation function at zero time lag, due to the background noise outside the frequency
bandwidth of interest. It is possible that the peak in the cross-correlation function due to the time delay may
be masked by the oscillatory behaviour of the spurious peak. In order to remove the possibility of these peaks,
it is necessary to pass the signals through a band-pass filter prior to using the PHAT estimator.
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Consider the simple case of the application of an ideal band-pass filter with frequency characteristics
given by

GðoÞ ¼
1; o0pjojoo1;

0; otherwise:

(
(28)

The modified weighting function CPðoÞ is then given by

CPðoÞ ¼
GðoÞ
jSx1x2ðoÞj

. (29)

Combined with Eq. (11), the PHAT estimator RP
x1x2
ðtÞ changes to

RP
x1x2
ðtÞ ¼ F�1fCPðoÞSx1x2ðoÞg ¼ gðtÞ � dðtþ T0Þ, (30)

where

gðtÞ ¼ F�1fGðoÞg ¼
2 sinðDot=2Þ cosðoctÞ

pt
,

and oc is the centre frequency oc ¼ ðo0 þ o1Þ=2. Eq. (30) can be reformulated as

RP
x1x2
ðtÞ ¼

2 sin ½Doðtþ T0Þ=2� cos½ocðtþ T0Þ�

pðtþ T0Þ
(31)

which shows that RP
x1x2
ðtÞ oscillates at the ‘centre’ frequency oc with modulation controlled by the bandwidth

Do. We define a temporal bandwidth Dt, which is also the resolution of the time delay estimate, as the time
between the first two zero-crossings, given by

Dt ¼
p
oc

. (32)

This shows that the resolution of the time delay estimator can be improved by using a band-pass filter with a
high centre frequency oc, which means, if possible, using a band-pass filter with a higher cut-off frequency o1.
On the other hand, the oscillatory behaviour of the correlation function can be largely reduced by using a
broad band-pass filter with a lower cut-off frequency o0 [15]. In practical situations, a distinct peak in the
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cross-correlation function is required to compensate for the effect of background noise. In this case, a broad
band-pass filter is normally applied to suppress the spreading phenomenon of the cross-correlation function
with the resolution of the time delay estimator given by Eq. (32). The lower frequency cut-off o0 is usually set
to remove background noise and has a typical value of between 5 and 10Hz in practice. As mentioned
previously, the upper cut-off frequency o1 is normally governed by the pipe characteristics and the distances
of the sensors from the leak.

The standard deviation and the resolution are of importance in influencing the accuracy of the time delay
estimate. Combining Eq. (25) with Eq. (32) gives the ratio of st̂peak to Dt as,

st̂peak
Dt
¼

ffiffiffi
3

p

r
1

T1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
g

o0 þ Do=2

½ðo0 þ DoÞ3 � o3
0�
1=2

. (33)

If a broad band-pass filter is used, which satisfies the condition o05Do, Eq. (33) can be approximated by

st̂peak
Dt
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
g

1

ðDoTÞ1=2
. (34)

Eq. (34) is plotted in Fig. 6. It can be seen that the ratio is much less than unity for all DoT and values of
coherence g2. It decreases with increasing DoT and g2. This demonstrates that the random error (as estimated
by the standard deviation) of the estimate due to the presence of noise on the measurements is generally
insignificant compared to its resolution, which is only a function of the frequency bandwidth.

6. Comparison of time delay estimators applied to experimental data

The time delay estimators discussed in this paper were tested on experimental data measured at a specially
constructed leak-detection facility located at a National Research Council site in Canada. The description of
the test site and measurement procedures are detailed in Ref. [19]. A joint leak signal was measured using
hydrophones and accelerometers. Referring to Fig. 1, the distance d between the two sensor signals was
102.6m, and the distance d1 from the leak to sensor 1 was 73.5m. The signals were each passed through an
anti-aliasing filter with the cut-off frequency set at 200Hz. Hydrophone-measured signals of 66-s duration
were then digitised at a sampling frequency of 500 samples/s. The same sampling frequency was applied to the
accelerometer-measured signals for the time duration of 60 s.
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Spectral analysis was performed on the digitised data using a 1024-point FFT, applying a Hanning window
and averaging the power spectra. The modulus and phase of the CSD together with the coherence between the
sensor signals are shown in Fig. 7 for both hydrophone and accelerometer-measured signals. Comparing
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Figs. 7(a) and (b) it can be seen that the high-frequency pressure signals are attenuated significantly compared
with the accelerometer signals. The reason for this is discussed in [18]. The phase spectra obtained from the
sensor signals are shown in Figs. 7(c) and (d). Based on the gradients of the unwrapped phase spectra, the
wavespeed is calculated as 479 and 484m/s for hydrophone and accelerometer-measured signals, respectively.
It can be seen from Figs. 7(e) and (f) that the coherence between the accelerometer-measured signals is much
poorer than that for the hydrophone-measured signals.

The measured signals were then passed through a band-pass filter with cut-off frequencies set at 10 and
50Hz for the hydrophone-measured signals, and 30 and 140Hz for the accelerometer-measured signals.

The correlation functions obtained using the various estimators are plotted in Figs. 8 and 9 for hydrophone
and accelerometer-measured signals, respectively. The results are normalised to the peak correlation values. In
both cases, the pre-whitening process provided by the PHAT, SCOT and ML estimators, gives a more distinct
peak correlation with a narrower peak and smaller variance, in comparison with other time delay estimators.
For the cross-correlation functions of the hydrophone-measured signals shown in Fig. 8 the three GCC
methods exhibit similar oscillatory behaviour. The explanation for this is the relatively high SNR for the
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Fig. 8. Normalised cross-correlation using various correlation methods for hydrophone-measured signals: (a) BCC; (b) PHAT;

(c) WIENER; (d) SCOT; (e) ML; (f) ROTH.
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Fig. 9. Normalised cross-correlation using various correlation methods for accelerometer-measured signals: (a) BCC; (b) PHAT;

(c) WIENER; (d) SCOT; (e) ML; (f) ROTH.
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hydrophone measurements [18]. In the case of the low SNR present in the accelerometer measurements;
however, large differences in the cross-correlation function can be seen, as shown in Fig. 9.

Figs. 8 and 9 show that, although the ML weighting leads to the minimum variance of the time delay
estimate [9], the sharpest peak and lowest variance of the cross-correlation function are not necessarily
achieved by using this estimator.

To evaluate the accuracy of the time delay estimates, the corresponding relative distance d1 of the leak
location was calculated and is shown in Table 2. Compared with the actual value d1 ¼ 73:5m, the PHAT and
SCOT estimators are the most accurate. The resolution imposed by band-pass filtering for the hydrophone-
measured signals was 0.017 s, which causes 9% error in the distance d1 (corresponding to a distance of 6.6m).
A broader band-pass filter is applied to the accelerometer-measured signals, which gives a resolution of
Dt ¼ 0:006 s and a corresponding error 3% in the distance d1 (corresponding to a distance of 2.2m).

The variance of the time delay estimators obtained by using the various cross-correlation methods can be
determined from Eq. (22). As can be seen from Table 2, the ML estimator gives the minimum standard
deviation of the time delay estimate for both hydrophone and accelerometer-measured signals. However, the
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Table 2

Results of the time delay estimators and distance d1

BCC PHAT WIENER SCOT ML ROTH

Hydrophone-measured data t̂peak (s) �0.094 �0.092 �0.094 �0.092 �0.090 �0.090

d1 (m) 73.8 73.3 73.8 73.3 72.9 72.9

st̂peak (e�4s) 1.128 0.764 1.011 0.695 0.652 0.742

Accelerometer-measured data t̂peak (s) �0.090 �0.092 �0.090 �0.092 �0.090 �0.092

d1 (m) 73.1 73.6 73.1 73.6 73.1 73.6

st̂peak (e�4s) 0.783 2.566 0.878 0.822 0.702 0.995
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standard deviations of all the time delay estimators are small. The largest standard derivation is obtained for
the PHAT estimator using accelerometer-measured signals, giving an error of 0.21m, which is less than 0.3%
of the distance calculated. In comparison with the resolution of the time delay estimate due to band-pass
filtering, the standard deviations for all estimators are insignificant, and hence can be neglected in a practical
procedure for leak detection in buried plastic water pipes.

7. Conclusions

In this paper, various time delay estimators have been compared for the purposes of leak detection in buried
plastic water pipes. It has been shown that the PHAT, SCOT and ML estimators designed to pre-whiten the
leak signals prior to the cross-correlation, have the desirable feature of sharpening the peak in the cross-
correlation function. Although the PHAT estimator is designed to give a delta function located at the exact
time delay, in practice the SCOT and ML estimators additionally take account of effect of background noise
in the estimation procedure, which will probably be more beneficial to water leak detection. Moreover it has
been found that the random error in the time delay estimates due to random noise on the measurements is
generally insignificant compared to the resolution of the time delay estimate for leak detection in typical
plastic pipes. Some limited experimental results confirm these findings.
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Appendix A. Variance of the time delay estimate

Despite the relatively widespread use of the expression for the variance of the time delay estimate derived by
Carter [16], its derivation does not appear to exist elsewhere apart from his Ph.D. dissertation. This appendix
derives the variance of the time delay estimate using the correlation technique, which is a similar approach to
that taken by Carter. The derivation of the variance of the time delay estimate t̂peak does not account for errors
due to ambiguous peaks in the cross-correlation function and it is assumed that the estimated time delay is in
the neighbourhood of the correct value.

The leak signals measured by acoustic/vibration sensors can be mathematically modelled by Eqs. (4) and
(5). In the implementation of the GCC estimator R̂

g

x1x2
ðtÞ as illustrated in Fig. 3(a), the sensor signals x1ðtÞ and

x2ðtÞ are filtered by H1ðoÞ and H2ðoÞ, respectively. The frequency weighting function CgðoÞ described in
Section 3 is given by

CgðoÞ ¼ H�1ðoÞH2ðoÞ. (A.1)

The variance of the time delay estimator s2t̂peak is the square of the standard deviation of the time delay

estimator, st̂peak , and is illustrated in Fig. A1(a). tpeak is the abscissa value at which the GCC peaks and the
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time delay estimator t̂peak is located within the range tpeak � st̂peak , where st̂peak denotes the standard deviation

of t̂peak.
The corresponding first derivative of the GCC function with respect to the time t, is given by

zðtÞ ¼
qR̂

g

x1x2
ðtÞ

qt
, (A.2)

and is plotted in Fig. A1(b). It can be seen from this figure that st̂peak is the left/right variation of the zero
crossing of zðtÞ. The corresponding variation of z as shown in the figure is the standard deviation sz at
t ¼ tpeak. For small values of sz, the magnitude of the expected value of the slope of the output at t ¼ tpeak is
given by

qE½z�

qt

����
����
t¼tpeak

¼
q2E½R̂

g

x1x2
ðtÞ�

qt2

�����
�����
t¼tpeak

¼
sz

st

����
t¼tpeak

. (A.3)

In order to solve Eq. (A.3) for st̂peak ¼ stjt¼tpeak , jq
2E½R̂

g

x1x2
ðtÞ�=qt2jt¼tpeak and szjt¼tpeak must be known. In

practice, only an estimate Ŝx1x2ðoÞ of the cross-spectral density (CSD) can be obtained from the finite

observations of x1ðtÞ and x2ðtÞ. For large observation time T !1, the expectation of Ŝx1x2ðoÞ is

E½Ŝx1x2 ðoÞ� ¼ Sx1x2ðoÞ ¼ jSx1x2 ðoÞje
�iotpeak . (A.4)
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Combining Eq. (A.4) with Eq. (11) gives

q2E½R̂
g

x1x2
ðtÞ�

qt2

�����
�����
t¼tpeak

¼
1

2p

Z þ1
�1

o2CgðoÞjSx1x2 ðoÞjdo. (A.5)

Thus one term in Eq. (A.3) can be determined in a straightforward manner. It remains to find szjt¼tpeak and

this requires some straightforward but tedious algebra and is described next. Based on the commutativity of
integration and differentiation, Fig. A2 shows the process to determine the first derivative of the GCC
function zðtÞ, which can be obtained from

zðtÞ ¼
1

T

Z T=2

�T=2
y1ðtÞy2ðtÞdt, (A.6)

where y1ðtÞ is assumed to be the output of the filter H1ðoÞ excited by signal x1ðtÞ, and y2ðtÞ is the
output of a filter H2ðoÞ excited by signal x2ðtÞ cascaded with a time delay t and a differentiator, as shown in
Fig. A2.

In the frequency domain, the corresponding auto and cross-spectral densities of y1ðtÞ and y2ðtÞ satisfy the
relations given by

Sy1y1 ðoÞ ¼ jH1ðoÞj2Sx1x1 ðoÞ, (A.7)

Sy2y2ðoÞ ¼ o2jH2ðoÞj2Sx2x2ðoÞ, (A.8)

Sy1y2ðoÞ ¼ ioeiotH�1ðoÞH2ðoÞSx1x2ðoÞ. (A.9)

By definition, the variance of the first derivative of the GCC function is given by

s2z ¼ E½z2� � E2½z�, (A.10)

where

E½z� ¼ lim
T!1

E
1

T

Z T=2

�T=2
y1ðtÞy2ðtÞdt

" #

¼ lim
T!1

1

T

Z T=2

�T=2
E½y1ðtÞy2ðtÞ�dt

¼ Ry1y2 ð0Þ; ðA:11Þ

and

E½z2� ¼ lim
T!1

1

T2

Z T=2

�T=2

Z T=2

�T=2
E½y1ðt1Þy2ðt1Þy1ðt2Þy2ðt2Þ�dt1 dt2. (A.12)
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The fourth moment in Eq. (A.12) can be derived by assuming that y1ðtÞ and y2ðtÞ are jointly stationary
Gaussian processes. Eq. (A.12) then becomes [16]

E½z2� ¼ lim
T!1

1

T2

Z T=2

�T=2

Z T=2

�T=2
½R2

y1y2
ð0Þ þ Ry1y1ðt2 � t1ÞRy2y2ðt2 � t1Þ

þ Ry1y2ðt2 � t1ÞRy2y1ðt2 � t1Þ�dt1 dt2. ðA:13Þ

Substituting Eqs. (A.11) and (A.13) into Eq. (A.10) and letting t0 ¼ t2 � t1 gives

s2z ¼ lim
T!1

1

T2

Z T=2

�T=2

Z T=2

�T=2
½Ry1y1ðtÞRy2y2ðtÞ þ Ry1y2ðtÞRy2y1 ðtÞ�dt0 dt1. (A.14)

Integrating Eq. (A.14) with respect to t1 gives

s2z ¼ lim
T!1

1

T

Z T=2

�T=2
½Ry1y1ðt0ÞRy2y2ðt0Þ þ Ry1y2ðt0ÞRy2y1ðt0Þ�dt0. (A.15)

Making use of the Parseval’s Theorem (Power Theorem), Eq. (A.15) can be rewritten as

s2z ¼
1

2pT

Z 1
�1

½Sy1y1ðoÞSy2y2ðoÞ þ S2
y1y2
ðoÞ�do: (A.16)

Substituting Eqs. (A.7)–(A.9) into Eq. (A.16) gives

s2z ¼
1

2pT

Z 1
�1

o2jCgðoÞj2Sx1x1 ðoÞSx2x2ðoÞ 1� e2iot
S2

x1x2
ðoÞ

Sx1x1ðoÞSx2x2 ðoÞ

" #
do. (A.17)

Noting that Sx1x2ðoÞ is determined by Eq. (A.4), Eq. (A.17) can be rewritten as

s2z ¼
1

2pT

Z 1
�1

o2jCgðoÞj2Sx1x1 ðoÞSx2x2ðoÞ 1� e2iote�2iotpeak
jSx1x2 ðoÞj

2

Sx1x1ðoÞSx2x2 ðoÞ

� �
do: (A.18)

When t ¼ tpeak, Eq. (A.18) reduces to

s2z
��
t¼tpeak

¼
1

2pT

Z 1
�1

o2jCgðoÞj2Sx1x1ðoÞSx2x2ðoÞ½1� g2x1x2
ðoÞ�do. (A.19)

Finally Eqs. (A.5) and (A.19) can be substituted into Eq. (A.3) to yield

s2t̂peak ¼
2p
T

R1
�1

o2jCgðoÞj2Sx1x1ðoÞSx2x2 ðoÞ½1� g2x1x2
ðoÞ�doR1

�1
o2CgðoÞjSx1x2 ðoÞjdo

� �2 , (A.20)

which gives the variance of the time delay estimate and is the same as that reported by Carter in Ref. [16].
References

[1] M. Fantozzi, G.D. Chirico, E. Fontana, F. Tonolini, Leak inspection on water pipelines by acoustic emission with cross-correlation

method, in: Annual Conference Proceeding, American Water Works Association, Engineering and Operations, San Antonio, 1993,

pp. 609–721.

[2] H.V. Fuchs, R. Riehle, Ten years of experience with leak detection by acoustic signal analysis, Applied Acoustics 33 (1991) 1–19.

[3] D.A. Liston, J.D. Liston, Leak detection techniques, Journal of the New England Water Works Association 106 (1992) 103–108.

[4] J.M. Muggleton, M.J. Brennan, R.J. Pinnington, Wavenumber prediction of waves in buried pipes for water leak detection, Journal

of Sound and Vibration 249 (5) (2002) 934–954.

[5] J.M. Muggleton, M.J. Brennan, P.W. Linford, Axisymmetric wave propagation in fluid-filled pipes: wavenumber measurements in in

vacuo and buried pipes, Journal of Sound and Vibration 270 (1–2) (2003) 171–190.

[6] O. Hunaidi, W. Chu, Acoustical characteristics of leak signals in plastic water distribution pipes, Applied Acoustics 58 (3) (1999)

235–254.

[7] C.H. Knapp, G.C. Carter, The generalised correlation method for estimation of time delay, IEEE Transactions on Acoustics, Speech,

and Signal Processing 24 (4) (1976) 320–327.



ARTICLE IN PRESS
Y. Gao et al. / Journal of Sound and Vibration 292 (2006) 552–570570
[8] J.C. Hassab, R.E. Boucher, Optimum estimation of time delay by a generalised correlator, IEEE Transactions on Acoustics, Speech,

and Signal Processing 27 (4) (1979) 373–380.

[9] G.C. Carter, Coherence and time delay estimation, Proceedings of the IEEE 75 (2) (1987) 236–255.

[10] P.R. Roth, Effective measurements using digital signal analysis, IEEE Spectrum 8 (1971) 62–70.

[11] G.C. Carter, A.H. Nuttall, P.G. Cable, The smoothed coherence transform, Proceedings of the IEEE 61 (1973) 1497–1498.

[12] G.C. Carter, A.H. Nuttall, P.G. Cable, The smoothed coherence transform (SCOT). Naval Underwater Systems Centre: New

London, CT, Tech. Memo TC-159-72, 1972.

[13] E.J. Hannan, P.J. Thomson, Estimating group delay, Biometrika 60 (1973) 241–253.

[14] A.O. Hero, S.C. Schwartz, A new generalised cross correlator, IEEE Transactions on Acoustics, Speech, and Signal Processing 33 (1)

(1985) 38–45.

[15] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O. Hunaidi, A model of the correlation function of leak noise in buried plastic

pipes, Journal of Sound and Vibration 277 (1–2) (2004) 133–148.

[16] G. C. Carter, Ph.D. Dissertation: Time delay estimation. Univ. Connecticut, 1976.

[17] A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.

[18] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O. Hunaidi, On the selection of acoustic/vibration sensors for leak detection in

plastic water pipes, Journal of Sound and Vibration 283 (3–5) (2005) 927–941.

[19] O. Hunaidi, W. Chu, A. Wang, W. Guan, Detecting leaks in plastic pipes, Journal of American Water Works Association 92 (2) (2000)

82–94.


	A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes
	Introduction
	Leak detection using the basic cross-correlation method
	Leak detection using generalised cross-correlaiton methods
	The PHAT estimator
	The WIENER estimator
	The SCOT estimator
	The ML estimator
	The ROTH estimator

	Variance of the time delay estimate
	Effect of band-pass filtering
	Comparison of time delay estimators applied to experimental data
	Conclusions
	Acknowledgements
	Variance of the time delay estimate
	References


