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Abstract

The position of a leak in buried water distribution pipes, may be determined by accurate estimation of the time delay
between two measured acoustic signals. By using a model for the wave propagation along plastic pipes, various time delay
estimators using cross-correlation are compared in this paper for their ability to locate a leak in plastic pipes. The
estimators of interest are the ROTH impulse response, the smoothed coherence transform (SCOT), the WIENER, the
phase transform (PHAT) and the maximum likelihood (ML) estimators. For leak detection in buried plastic water pipes it
is found that the SCOT estimator is particularly suited to this purpose. The accuracy of the estimators is also discussed. It
is found that random errors introduced by random noise on the signal measurements are insignificant compared with the
resolution of the time delay estimators imposed by the low-pass filtering characteristics of the pipe. Limited experimental
results are presented to support the findings.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

A leak from a water supply pipe system generates noise, which can be used for leak detection and location.
The correlation technique [1-3], which is used to estimate the time delay between two measured acoustic/
vibration signals, is central to this process. Important factors in the detectability of the leak are the signal-to-
noise ratio (SNR) and the amount of a priori knowledge, principally, the sound propagation wavespeed ¢ in
the pipe. A sensor is placed either side of the leak, and the distance between the two sensors is usually
measured on-site or read off system maps, whereas the propagation wavespeed is normally estimated using
pipe data [4,5] or measured on-site using a simulated leak [6].

Various time delay estimation techniques have been proposed and implemented over the years. Some of the
most important are summarised in Refs. [7-9]. These techniques are based on the cross-correlation of two
measured signals and include the basic cross-correlation (BCC) and generalised cross-correlation (GCC)
methods, of which the BCC method is a trivial example. The essential difference between the BCC and the
GCC methods, is that with the latter, the signals are passed though filters (pre-filtering) prior to performing
the cross-correlation. The advantages of pre-filtering are two-fold: (i) to enhance the signals in the frequency
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bands where the SNR is high, thereby suppressing the signals outside these bands, and (ii) to pre-whiten the
signals in order to sharpen the peak in the cross-correlation function. Knapp and Carter discussed the
characteristics of five GCC methods and compared them with the BCC method [7]. In this paper, we compare
the same GCC methods with the BCC method for the purpose of leak detection in buried plastic water pipes to
determine which method is best suited to this particular application.

The five GCC methods considered are the ROTH impulse response (proposed by Peter Roth), the smoothed
coherence transform (SCOT), the WIENER (after its inventor Norbert Wiener), the phase transform (PHAT)
and the maximum likelihood (ML) estimators.

In the ROTH estimator [10], rather than determining the cross-correlation between two signals, the signals
are used to deduce the impulse response of the system. This is achieved by normalising the cross-spectrum by
the auto-spectrum of one of the signals (the input), prior to transforming back to the time domain. The
rationale for this procedure is that it removes the effects of the input, thus deducing the system delay more
accurately. However, because the input (leak) spectrum cannot be measured directly it is difficult to see how
this method could be beneficial for leak detection, but it is included in this paper for completeness.

The SCOT estimator favours neither sensor signal and was developed by Carter et al. [11] to suppress the
undesirable effects of strong tonal signals in weak broad-band signals. In the SCOT estimator the cross-
spectrum is normalised by the square-root of the product of the auto-spectra of the two signals. For leak
detection in pipes we show this to be a worthwhile procedure; the reasons why this is so, and an alternative
interpretation of this processor, is given in Section 3.
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To sharpen the peak in the cross-correlation function, the PHAT estimator has been proposed [12]. In this
estimator the modulus of the cross-spectrum is ‘flattened’ prior to transformation to the time domain. Thus,
only phase information is used for performing the time delay estimation. The deficiency in this technique is
that it does not take into account the coherence between the two signals and thus gives equal weight to all
frequencies regardless of signal strength.

Another important estimator for time delay is the ML estimator. Hannan and Thomson derived this for
band limited random signals corrupted by white noise [13]. This estimator weights the cross-spectrum
according to the SNR, giving most weight to the phase spectrum that leads to the minimum variance of the
time delay estimate.

The WIENER estimator [14] involves the multiplication of the cross-spectrum by the coherence between the
two signals prior to transformation to the time domain. It is suggested in Ref. [14] that this estimator is
preferable to the ML estimator in certain situations, as the ML estimator has the effect of overemphasizing as
well as underemphasizing the signals at certain frequencies.

In this paper, the analytical model of wave propagation along a fluid-filled pipe derived previously by the
authors [15], is used to compare performance of the time delay estimators. To study their accuracy, the
expression for the uncertainty in the time delay estimates are derived and compared. They are further compared
with the resolution of the time delay estimates introduced by the low-pass filtering properties of the pipe. The
analysis uses the general expression for the variance of a time delay estimate derived by Carter [16]. To assist the
reader, and because the analysis is not widely available in the literature, the derivation of this expression is given
in Appendix A. To support the theoretical analysis, the time delay estimators are used to predict the location of a
leak using experimental data obtained from a buried PVC water pipe. Their performance in relation to this
experimental data is compared and discussed. Notations are explained in nomenclature.

2. Leak detection using the basic cross-correlation method

To perform leak detection, vibration or acoustic signals are measured at two access points using sensors
such as accelerometers or hydrophones, either side of the location of a suspected leak, as shown in Fig. 1. If a
leak exists, a distinct peak may be found in the cross-correlation of the two signals x;(¢) and x,(¢). This gives
the time delay 7.k that corresponds to the difference in arrival times between the acoustic signals at each
sensor. The location of the leak relative to one of the measurement points, d;, can be calculated using the
relationship between the time delay 7peak, the distance d between the access points, and the propagation
wavespeed ¢ in the buried pipe,

dy = m (1)
2
If x,(¢) and x,(¢) are two stationary random signals with zero mean, the cross-correlation function is defined
by [17]

Ry, (1) = E[x1()x2(1 + 7)), 2
£, /Sensor | Fan Sensor 2
j]./_fl(z) u}f Xp(1)
Fire hydrant Fire hydrant
Leak noise
% (1) Water pipe
d | dy
| d

Fig. 1. Schematic of a pipe with a leak bracketed by two sensors.
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Fig. 2. Schematic of the implementation of the BCC function.

where 7 is the time lag and E[ ] is the expectation operator. The value of 7 that maximises Eq. (2) provides an
estimate Tpeak Of the time delay. A procedure to calculate the BCC function using sampled data is illustrated in
Fig. 2. The BCC estimator can be obtained from the inverse Fourier transform of X7(f)X2(f) and scaled
appropriately for normalisation, where X (f) and X,(f) are the Fourier transforms of x;(z) and x,(¢),
respectively, and * denotes complex conjugation. The cross-correlation function, Ry, y,(7), is related to the
cross-spectral density (CSD), Sy, x, (), by the inverse Fourier transform [17]

1

+o00 .
R0 = FSun@) =5 [ Sun(@ do ®

where F~'{} denotes the inverse Fourier transform. In practice, only an estimate of the CSD can be obtained
since it is derived from finite time observations of x;(¢) and x,(¢). However, to simplify the derivation of
various time delay estimators, the ideal CSD is used in this paper.

Assuming that the signals are generated from a leak and measured using two separate acoustic sensors in the
presence of background noise, the measured signals can be represented by

x1(8) = s1(2) + ni(2), 4
and
x2(8) = s2(2) + na(2), W)

where 51(2), s2(¢), n1(f) and n,(¢) are assumed to be stationary random processes. If the noise at each sensor is
assumed to be uncorrelated with each other and with the signals, the cross-correlation function between
signals x(7) and x,(?) is given by

Rx1x2 (T) = Rslsz (T) (6)
The CSD Sy, ,(w) between two signals x(¢) and x»(f) measured at positions x = d; and x = d>, is given by
Se©) = 5 lim E [XIT“")T)“T(“”} = H*(0,d)H(®,d2)Si(o), ™

TT 1 —00

where Sy(w) is the auto-spectral density (ASD) of the acoustic pressure generated by the leak signal I(7)
measured at the leak location, and H(w, x) is the frequency response function between the signal measured by
the sensor and the pressure at the leak location at a distance x, and for an infinite pipe is given by [18§]

H(w,x) = (in)'d,e” "/ e, ®)

where £ is a measure of the loss within the pipe wall [15], and 4,, is related to the pipe wall properties and the
type of sensor used. The subscript n takes the values of n =0, 1 and 2, corresponding to measurements of
either pressure, radial velocity or radial acceleration of the pipe wall, respectively. Combining Egs. (7) and (8),
the CSD can be written as

le X2 (w) = Ai 'PZn(w)eimTO S]]((U), (9)

where ¥,,(w) = w?e P and Ty = —(d, —d;)/c. Since multiplication in one domain corresponds to
convolution in the transformed domain, the BCC function between signals x1(¢) and x,(¢) in terms of the time
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delay T, can be written as
Rxlxz(f) = AiRH(T) ® lﬁ2n(f) ® 5(1- + TO)) (10)

where ® denotes convolution, Ry(t) = F~'{Sy(w)} is the auto-correlation of the leak signal,
Y, (t) = F~1Y{¥,,(w)}, and &(z) is the Dirac delta function. An interpretation of Eq. (10) is that it represents
a delta function delayed by T, which is broadened by the spectral characteristics of both the leak signal and
the propagation from the leak location to the sensor location. Because ¥/,,(7) in Eq. (10) is a function of the
choice of acoustic/vibration sensors as well as the pipe, the choice of sensor will also affect the sharpness of the
peak in the correlation function as well as pre-filtering operations. This is discussed in Ref. [18].

3. Leak detection using generalised cross-correlaiton methods

To accentuate the peak in the cross-correlation function associated with the time delay, the input signals can
be pre-filtered. The time and frequency domain representations of this operation are depicted in Figs. 3(a) and
(b), respectively. In the time domain, the signals are filtered prior to delay, multiplication, and integration,
while in the frequency domain, a window or weighting function is applied to the CSD function [7] prior to
performing the inverse Fourier transform. Thus the GCC function R:lez(r) between sensor signals x;(¢) and
x;(t) is given by

+00

1 4
R (0 = P @S0n(@) =5 [ 2@ do. ()

—00

where ¥ (w) is a frequency weighting function. When ¥,(w) =1, the GCC function reduces to the BCC
function defined by Eq. (3).

The frequency weighting functions for the GCC methods discussed in this paper are listed in Table 1. These
weighting functions are taken from Ref. [9], but are written in a different form to aid interpretation. It can be
seen that all the weighting functions are real and thus have no effect on the phase spectrum, and hence on the
time delay estimate. These time delay estimators applied to the leak detection problem illustrated in Fig. 1 are
discussed below.

X](l)

-T/2

1

1

1

:

1

H T/2 g
: Lz 4= &0
i

1

1

1

Xz(r)

Weighting function
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Fig. 3. Schematic of the implementation of the GCC function. (a) Time domain; and (b) frequency domain.
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Table 1
Various cross-correlation methods [9]

BCC PHAT WIENER SCOT ML ROTH
?,() 1 R 7213 (@) Ty, (@) 726 (@) 1 1
8y, ()] 1Sy, (@)] 1= 72, (@)] S ()] Sy (@)

S x, (@)

Note: yi]xz (w) is the ordinary coherence function between x;(¢) and x,(z), which is given by V«zlez (w) = Sorv, )55y @)

3.1. The PHAT estimator

Substituting the frequency weighting function ¥p(w) = 1/|Sy,,(®)| and the CSD Sy \,(w) defined by
Eq. (9) into Eq. (11) gives

R (@) = F 1Y p(@)S, 1, (0)) = 3(z + T). (12)

It can be seen that, by pre-whitening the measured CSD, the PHAT estimator effectively removes the effects of
propagation along the pipe and the frequency characteristics of the sensors, and also the effects of the leak
spectrum. For non-dispersive wave propagation, which is the case in buried plastic pipes [15,18], the result is a
perfect delta function located at the time delay 7'y. One disadvantage of the PHAT estimator is that it takes no
account of the noise in the signals, and thus by pre-whitening, the effects of noise may be enhanced, thereby
corrupting the estimate of the time delay.

3.2. The WIENER estimator

From Egs. (4) and (5), the ASDs of signals x|(¢) and x;(¢), are given by

Sy (@) = [H(, d)PPSp(®) + Sy () (13)
and
Sy (@) = |H(0, d2) > Su(®) + Spyny (). (14)
The weighting function for the WIENER processor ¥ (w) is defined by
1S, (@)

V() =72, () = (15)

lexl (w)szxz (a)) '

This indicates that the WIENER estimator adjusts the CSD according to the value of the coherence. This
method, therefore, has the desirable effect of suppressing those frequency regions where the coherence is poor.
However, the pre-filtering operation does not improve the resolution of the time delay estimate as it has no
effect on the sharpness of the peak in the cross-correlation function. Egs. (13)—(15) can be substituted into Eq.
(11) to give

RY (®) = F {1 (0)Ss, 1y (@) = A2Ry(2) @ 12,(7) @ hiy (1) ® 3z + T), (16)

where

1 Smnl(w)] [1 1 Sw(w)]}‘l
|H(w,d)> Su(w) |H(w,d>)> Su(w) ’

When the effect of background noise is negligible, i.c., y§1x2(a)) -1, R?l/xz(v:) — Ry x,(7). In this case, the
WIENER estimator is equivalent to the BCC estimator. Like the BCC estimator, the delta function in the
cross-correlation function will also be smeared by the finite bandwidth of the leak spectrum, the pipe dynamics
and the choice of acoustic/vibration sensors.

hy (%) :Fl{ {1 +
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3.3. The SCOT estimator

The frequency weighting function for the SCOT estimator ¥ g(w) is given by

yxl)CZ(w)
|Sx1x2(w)| ’

The SCOT estimator can be interpreted as a two-stage filtering process: pre-whitening represented by the
denominator of Wg(w), and attenuation in the frequency regions where noise is present, by the numerator
7x,x, (@), respectively. Substituting the weighting function given by Eq. (17) into Eq. (11) gives the SCOT
estimator,

Vs(w) = (17)

RS () = F{¥5()Sy, s, (@)} = hs(t) ® (1 + To), (18)

where

1 S”l”l(w)] {1 + 1 Snznz(w)}}_l/z
|H(w,d))* Su(®) |H(w,d»)> Su(w) '

It can be seen that in the noise-free case, i.e., 7, . (@) = 1, the SCOT estimator is identical to the PHAT
estimator.

hs(t) = Fl{ {1 +

3.4. The ML estimator

The frequency weighting of the ML estimator leads to the minimum variance of the time delay estimate if
the signals are random Gaussian [9], which is given by

P (@) 1
1 - V,%cl)q(w) |SX1>C2(CU)| .
In a similar way to the SCOT estimator, two pre-filtering operations are involved in the ML estimator. The
pre-whitening process is represented by the second term in Eq. (19), and the first term weights the CSD

according to the variance of the phase estimate. It attaches most weight when the variance of the estimated
phase error is least [7]. Following the same procedures as before, the correlation estimator Rﬁf + (1) is given by

RQ/][)Q(‘[) = F_I{TM(w)lexz(w)} = hM(T) 0 5('5 + TO), (20)

Yu(w) = (19)

where

- 1 Snlnl(w)} [ 1 Snm(w)} _ }1
hu(e) = F { [1 + |H(w,d))> Su(w) e |H(w,d2)> Su(w) yo

3.5. The ROTH estimator
Substituting Eq. (13) and the weighting function ¥ z(w) = 1/S,,,(w) into Eq. (11), the ROTH estimator
RY (1) is given by
RE (0) = FT{¥R(0)Sy, 5, ()} = A2hr(t) @ 5,(7) ® 8(x + To), 1)
where
hr(x) = F~H|H(w,d\)* + Sy, (0)/Su(@)} ™"

As can be seen in Eq. (21), the ROTH estimator is not particularly useful for leak detection in pipes due to the
presence of the term ,,(t), which introduces smearing of the peak due to the effects of propagation along the
pipe, sensor frequency characteristics, and the SNR at sensor 1.
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By comparing the various GCC methods, it can be seen that the PHAT, SCOT and ML estimators involve
pre-whitening of the leak signals, which sharpens the peak in the cross-correlation function. These are
therefore of particular interest in this paper.

4. Variance of the time delay estimate

In this section, the variances of the time delay estimates discussed in Section 3 for the purpose of leak
detection are compared. The general expression for the variance of the time delay estimate is derived in
Appendix A and is given by

L [ @) S (@)Su @) = 7 (@) do
Tpeak T [foooo (,()2 qlg(a))|Sx1x2 ((D)| dw} ?

(22)

The variances of the specific time delay estimators given in Table 1, can be determined by substituting into
Eq. (22) the various weighting functions ¥ (). To allow simple analysis, it is assumed that the coherence
between the two signals y§1x2(w) is constant in a frequency band Aw = w; — w( and is zero elsewhere, i.c.,

2
5 Y., wo<|ol <o,
. . 23
N () { 0, otherwise. =

A similar assumption has been made by Carter [16] to discuss the effect of coherence on the ML estimator.
Assuming that the coherence has the form given in Eq. (23), the variances are found to be as follows.
For the BCC and WIENER estimators,

P nl— ’))2 f;"ol w2|Sx1x2(w)|2 do

o = (24)
Tpeak T 2 . 2
T sy @) do]
For the PHAT, SCOT and ML estimators,
2 1 —9? 1 3n 1 —92 1
O-% = _TE zy N = _TE ZV 3 . (25)
kT2 2 eordo TP (w4 Aw)’ — of]
For the ROTH estimator,
®] 2 Sxyxy (@)
> I E 1— ’}/2 fwo Sxix; (@) (26)

o: = .
Tpeak T yz S ( 1/2 2
W] 9 |Oxpx )
{j;”() w |:Sx?x?(w):| d(l)}

It can be seen from Eq. (25) that the variance of the PHAT, SCOT and ML estimators is governed by three

factors, namely, the observation time 7, the coherence 7%, and the frequencies wy and w;. For the other

estimators, the variance is also related to the ASDs of the two signals and the CSD between them, as shown in
Eqgs. (24) and (20).

If we assume that the leak spectrum is ‘flat’, i.e., Sy(w) = Sy in the frequency range wy to w;, the variances

of the BCC and WIENER estimators can be determined by substituting Eqs. (7) and (8) into Eq. (24) to give

o _n1=7 Jy @'¥@)do o

Theak T "2 2
D T v (j:u] 2 su(w) dw)

0

Eq. (27) shows that the variance of the BCC and WIENER estimators is governed by both the pipe properties
and the choice of acoustic/vibration sensors, as ¥,(w) is a function of the wave attenuation and the type of
sensor used. The variance of the ROTH estimator, as given by Eq. (26), is largely influenced by the
background noise.

It should be noted that the variance of the time delay estimate increases as the filter bandwidth Aw
decreases. Consequently, it is desirable to use a filter that has a bandwidth that is as wide as possible. In
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Fig. 4. The standard deviation Ttk against frequency bandwidth Aw. PHAT, SCOT and ML estimators (——); BCC and WIENER

estimators (-«- -+ ) of pressure signals.

reality; however, the pipe characteristics and the distances from the sensors to the leak, govern the highest
frequency of the measurable leak noise and hence w;. Thus to reduce the variance the only realistic options are
to increase 7' and/or improve the coherence by using transducers with higher sensitivity.

For a typical plastic pipe with fd = 0.023 s, and assuming that 7> = 0.2, T = 60s, and w = 62.8rad /s, the
standard deviation Ot ek for various cross-correlation estimators is illustrated in Fig. 4. It can be seen that the
standard deviation of all the estimators decreases with increasing bandwidth. Note also that the three pre-
whitening estimators have the smallest variance.

5. Effect of band-pass filtering

Reliable leak detection can only be accomplished when a distinct peak can be identified in the cross-
correlation function. As discussed in Section 3, the PHAT, SCOT and ML estimators pre-whiten the CSD in
order to sharpen the peak in the cross-correlation function and are therefore of particular interest in this
paper. In practical situations, the measured leak signals are dominated by the background noise at low
frequencies and attenuated at high frequencies [15], filtering operations must be performed on the sensor
signals before conducting the time domain cross-correlation. The effect of band-pass filtering of the signals on
cross-correlation estimators is discussed in this section.

For non-dispersive wave propagation, the magnitude and phase of the ideal pre-whitened CSD (without
considering the weighting of the coherence) between two sensor signals for time delay estimation is illustrated
in Figs. 5(a) and (b), respectively. In this ideal case, a delta function in the cross-correlation is produced. In
practice, the signals are band-limited, a typical phase spectrum of which is shown in Fig. 5(d). When the
PHAT estimator is used on this data, the modulus is whitened as shown in Fig. 5(c), which results in a
spurious peak in the correlation function at zero time lag, due to the background noise outside the frequency
bandwidth of interest. It is possible that the peak in the cross-correlation function due to the time delay may
be masked by the oscillatory behaviour of the spurious peak. In order to remove the possibility of these peaks,
it is necessary to pass the signals through a band-pass filter prior to using the PHAT estimator.
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Phase
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Fig. 5. The CSD of the PHAT estimator. In the ideal case (a) modulus; (b) phase. In the band-limited case (c) modulus; (d) phase.

Consider the simple case of the application of an ideal band-pass filter with frequency characteristics
given by

G 15 C()0<|CU|<C01, 78
() = 0, otherwise. (28)
The modified weighting function ¥ p(w) is then given by
G(w)
Yp(w) = ———"—. 29
MO = s o &
Combined with Eq. (11), the PHAT estimator Ri,’lxz(ﬂ:) changes to
R (1) = F (¥ p(@)Syy (@)} = 9() @ 8(x + T), (30)
where
B 2 sin(Awt/2) cos(w,T
o) = F(Glo)) = 2 SMACT 2 c0s0T)
and o, is the centre frequency w, = (wg + w)/2. Eq. (30) can be reformulated as
2 sin[A To)/2 . T
Ri)le(‘E) — SIH[ CU(T + 0)/ ] COS[wL(T + 0)] (31)

n(t + T)

which shows that R_f (1) oscillates at the ‘centre’ frequency w. with modulation controlled by the bandwidth
Aw. We define a temporal bandwidth At, which is also the resolution of the time delay estimate, as the time
between the first two zero-crossings, given by

At =—. (32)

W

This shows that the resolution of the time delay estimator can be improved by using a band-pass filter with a
high centre frequency ., which means, if possible, using a band-pass filter with a higher cut-off frequency ;.
On the other hand, the oscillatory behaviour of the correlation function can be largely reduced by using a
broad band-pass filter with a lower cut-off frequency wq [15]. In practical situations, a distinct peak in the
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Fig. 6. The ratio of the standard deviation to the resolution for different values of coherence y.

cross-correlation function is required to compensate for the effect of background noise. In this case, a broad
band-pass filter is normally applied to suppress the spreading phenomenon of the cross-correlation function
with the resolution of the time delay estimator given by Eq. (32). The lower frequency cut-off wy is usually set
to remove background noise and has a typical value of between 5 and 10 Hz in practice. As mentioned
previously, the upper cut-off frequency w; is normally governed by the pipe characteristics and the distances
of the sensors from the leak.

The standard deviation and the resolution are of importance in influencing the accuracy of the time delay
estimate. Combining Eq. (25) with Eq. (32) gives the ratio of Oty 1O At as,

O-%Peak _ \/—é 1 1 — Vz wo + ACO/Z
At nTV2 (w4 Aw)t — o]

(33)

If a broad band-pass filter is used, which satisfies the condition wy<Aw, Eq. (33) can be approximated by

a%pc.dk%1 V1 =92 1 (34)

At T2y (Ao

Eq. (34) is plotted in Fig. 6. It can be seen that the ratio is much less than unity for all AwT and values of
coherence y2. It decreases with increasing AwT and 72. This demonstrates that the random error (as estimated
by the standard deviation) of the estimate due to the presence of noise on the measurements is generally
insignificant compared to its resolution, which is only a function of the frequency bandwidth.

6. Comparison of time delay estimators applied to experimental data

The time delay estimators discussed in this paper were tested on experimental data measured at a specially
constructed leak-detection facility located at a National Research Council site in Canada. The description of
the test site and measurement procedures are detailed in Ref. [19]. A joint leak signal was measured using
hydrophones and accelerometers. Referring to Fig. 1, the distance d between the two sensor signals was
102.6 m, and the distance d; from the leak to sensor 1 was 73.5m. The signals were each passed through an
anti-aliasing filter with the cut-off frequency set at 200 Hz. Hydrophone-measured signals of 66-s duration
were then digitised at a sampling frequency of 500 samples/s. The same sampling frequency was applied to the
accelerometer-measured signals for the time duration of 60s.



Y. Gao et al. | Journal of Sound and Vibration 292 (2006) 552-570 563

Spectral analysis was performed on the digitised data using a 1024-point FFT, applying a Hanning window
and averaging the power spectra. The modulus and phase of the CSD together with the coherence between the
sensor signals are shown in Fig. 7 for both hydrophone and accelerometer-measured signals. Comparing
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Fig. 7. Spectral analysis between two sensor signals. Hydrophone-measured signals: (a) modulus of the CSD; (¢) phase spectrum;
(e) coherence. Accelerometer-measured signals: (b) modulus of the CSD; (d) phase spectrum; and (f) coherence.
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Figs. 7(a) and (b) it can be seen that the high-frequency pressure signals are attenuated significantly compared
with the accelerometer signals. The reason for this is discussed in [18]. The phase spectra obtained from the
sensor signals are shown in Figs. 7(c) and (d). Based on the gradients of the unwrapped phase spectra, the
wavespeed is calculated as 479 and 484 m/s for hydrophone and accelerometer-measured signals, respectively.
It can be seen from Figs. 7(e) and (f) that the coherence between the accelerometer-measured signals is much
poorer than that for the hydrophone-measured signals.

The measured signals were then passed through a band-pass filter with cut-off frequencies set at 10 and
50 Hz for the hydrophone-measured signals, and 30 and 140 Hz for the accelerometer-measured signals.

The correlation functions obtained using the various estimators are plotted in Figs. 8 and 9 for hydrophone
and accelerometer-measured signals, respectively. The results are normalised to the peak correlation values. In
both cases, the pre-whitening process provided by the PHAT, SCOT and ML estimators, gives a more distinct
peak correlation with a narrower peak and smaller variance, in comparison with other time delay estimators.
For the cross-correlation functions of the hydrophone-measured signals shown in Fig. 8 the three GCC
methods exhibit similar oscillatory behaviour. The explanation for this is the relatively high SNR for the

1 1
S s
5 0 2 0 Wl\/’\mzw—«wwv
8 S
(9] v
[%2] 1]
g g
o G
-1 . . . . 1 . . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(a) Time (Second) (b) Time (Second)
1 1
5 5
g 3
(0] =
£ £ 0
g ° 8
y 1]
o (&)
a4l : : : : 1l : : :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(c) Time (Second) (d) Time (Second)
1
S 5
ks 5
£ °
g ° g
4 2
o o
-1 * * * * * * * * * *
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(e) Time (Second) (f) Time (Second)

Fig. 8. Normalised cross-correlation using various correlation methods for hydrophone-measured signals: (a) BCC; (b) PHAT;
(c) WIENER; (d) SCOT; (e) ML; (f) ROTH.
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Fig. 9. Normalised cross-correlation using various correlation methods for accelerometer-measured signals: (a) BCC; (b) PHAT;
(c) WIENER; (d) SCOT; (e) ML; (f) ROTH.

hydrophone measurements [18]. In the case of the low SNR present in the accelerometer measurements;
however, large differences in the cross-correlation function can be seen, as shown in Fig. 9.

Figs. 8 and 9 show that, although the ML weighting leads to the minimum variance of the time delay
estimate [9], the sharpest peak and lowest variance of the cross-correlation function are not necessarily
achieved by using this estimator.

To evaluate the accuracy of the time delay estimates, the corresponding relative distance d; of the leak
location was calculated and is shown in Table 2. Compared with the actual value d; = 73.5m, the PHAT and
SCOT estimators are the most accurate. The resolution imposed by band-pass filtering for the hydrophone-
measured signals was 0.017 s, which causes 9% error in the distance d; (corresponding to a distance of 6.6 m).
A broader band-pass filter is applied to the accelerometer-measured signals, which gives a resolution of
At = 0.006s and a corresponding error 3% in the distance d; (corresponding to a distance of 2.2 m).

The variance of the time delay estimators obtained by using the various cross-correlation methods can be
determined from Eq. (22). As can be seen from Table 2, the ML estimator gives the minimum standard
deviation of the time delay estimate for both hydrophone and accelerometer-measured signals. However, the
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Table 2
Results of the time delay estimators and distance d,

BCC PHAT WIENER SCOT ML ROTH

Hydrophone-measured data Tpeak (8) —0.094 —0.092 —0.094 —0.092 —0.090 —0.090
dy (m) 73.8 73.3 73.8 73.3 72.9 72.9

O e (e—4s) 1.128 0.764 1.011 0.695 0.652 0.742

Accelerometer-measured data Tpeak (S) —0.090 —0.092 —0.090 —0.092 —0.090 —0.092
dy, (m) 73.1 73.6 73.1 73.6 73.1 73.6

Oty (6—45) 0.783 2.566 0.878 0.822 0.702 0.995

standard deviations of all the time delay estimators are small. The largest standard derivation is obtained for
the PHAT estimator using accelerometer-measured signals, giving an error of 0.21 m, which is less than 0.3%
of the distance calculated. In comparison with the resolution of the time delay estimate due to band-pass
filtering, the standard deviations for all estimators are insignificant, and hence can be neglected in a practical
procedure for leak detection in buried plastic water pipes.

7. Conclusions

In this paper, various time delay estimators have been compared for the purposes of leak detection in buried
plastic water pipes. It has been shown that the PHAT, SCOT and ML estimators designed to pre-whiten the
leak signals prior to the cross-correlation, have the desirable feature of sharpening the peak in the cross-
correlation function. Although the PHAT estimator is designed to give a delta function located at the exact
time delay, in practice the SCOT and ML estimators additionally take account of effect of background noise
in the estimation procedure, which will probably be more beneficial to water leak detection. Moreover it has
been found that the random error in the time delay estimates due to random noise on the measurements is
generally insignificant compared to the resolution of the time delay estimate for leak detection in typical
plastic pipes. Some limited experimental results confirm these findings.
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Appendix A. Variance of the time delay estimate

Despite the relatively widespread use of the expression for the variance of the time delay estimate derived by
Carter [16], its derivation does not appear to exist elsewhere apart from his Ph.D. dissertation. This appendix
derives the variance of the time delay estimate using the correlation technique, which is a similar approach to
that taken by Carter. The derivation of the variance of the time delay estimate 7. does not account for errors
due to ambiguous peaks in the cross-correlation function and it is assumed that the estimated time delay is in
the neighbourhood of the correct value.

The leak signals measured by acoustic/vibration sensors can be mathematically modelled by Eqgs. (4) and
(5). In the implementation of the GCC estimator ﬁi]xz (1) as illustrated in Fig. 3(a), the sensor signals x(¢) and
x(¢) are filtered by H(w) and H,(w), respectively. The frequency weighting function ¥,(w) described in
Section 3 is given by

¥y(w) = Hi(0)Hz(w). (A1)
The variance of the time delay estimator G%pe'lk is the square of the standard deviation of the time delay

estimator, Ot ks and is illustrated in Fig. A1(a). Tpeak is the abscissa value at which the GCC peaks and the
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Fig. Al. Illustration of the determination of the variance of the time delay estimator. (a) Variance of the time delay estimator; and (b) the
first derivative of the GCC function.

time delay estimator Zpeax is located within the range ek 02 earc> where 0% car denotes the standard deviation

of %pcak-
The corresponding first derivative of the GCC function with respect to the time t, is given by
3R] . (1)
(1) = —=+—, (A.2)
ot

and is plotted in Fig. Al(b). It can be seen from this figure that Ot is the left/right variation of the zero
crossing of z(t). The corresponding variation of z as shown in the figure is the standard deviation o, at
T = Tpeak. For small values of ¢, the magnitude of the expected value of the slope of the output at t = tpeax is
given by

PER  (1)]
or?

0;

(A.3)

dE[z]
‘ ot

Ot

T=Tpeak T=Tpeak

T=Tpeak
In order to solve Eq. (A.3) for Ot = 01|T:Ipeak, |62E[ﬁilx2(r)] /6‘52|T:TWIk and ‘72|1=Tpeak must be known. In
practice, only an estimate Sy, .,(w) of the cross-spectral density (CSD) can be obtained from the finite

observations of x;(¢) and x,(¢). For large observation time 7' — oo, the expectation of S‘XIXZ(a)) is

E[S 5y (0)] = Sy (@) = | Sy xy(0)]e ™ peak, (A4)
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Fig. A2. Process to determine the first derivative of the GCC, z(7).

Combining Eq. (A.4) with Eq. (11) gives

OE[R] (1]

e
- - / O (0)|Sx, vy ()] doo. (A5)

T=Tpeak

Thus one term in Eq. (A.3) can be determined in a straightforward manner. It remains to find Ul|f=fpeak and
this requires some straightforward but tedious algebra and is described next. Based on the commutativity of
integration and differentiation, Fig. A2 shows the process to determine the first derivative of the GCC

function z(t), which can be obtained from

_ " d A.6
©=7 [, nonow (A6)

where () is assumed to be the output of the filter H;(w) excited by signal x(z), and y,(¢) is the
output of a filter H,(w) excited by signal x,(¢) cascaded with a time delay = and a differentiator, as shown in
Fig. A2.

In the frequency domain, the corresponding auto and cross-spectral densities of y,(¢) and y,(¢) satisfy the
relations given by

Sy (@) = [H (@) Sy, x, (), (A.7)
Sy (@) = [ Hao(0)* S, (), (A.8)
Sy (0) = 106" H () Hy() S 1y (). (A.9)
By definition, the variance of the first derivative of the GCC function is given by
o2 = E[Z’] - E’[2], (A.10)
where
1 [T
£l = Jim £| | my](t)yz(r)dr]
| (T2
= Tlgréo? L Ely(0y,(0)]de
= Ry,),(0); (A.11)
and

T2 T)2
E[] = lim - / / EDn )yt (t)ys()] diy dis. (A.12)
T=coT° Jrp2 =112
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The fourth moment in Eq. (A.12) can be derived by assuming that y,(¢#) and y,(¢) are jointly stationary
Gaussian processes. Eq. (A.12) then becomes [16]

. T2 T2
E[z7] lim —/ / J’lyz(o) + R}lll(tz tl)Ryzyz(tZ — 1)

T/2J-T)2
+ R)’l)’z(tz - tl)R}'z)’l (ty — t)]dt; dt,. (A.13)
Substituting Eqgs. (A.11) and (A.13) into Eq. (A.10) and letting ¢ty = t, — #; gives
T/2 T/2
o’ Tlgr;o?/wz/_T/z[Rylyl(r)Ryzyz(f)+ Ry 1, (DR, ()] dto dt;. (A.14)
Integrating Eq. (A.14) with respect to #; gives
1 T/2
0-4% = ]hjggo T 7T/2[Ry1y1 (IO)R ’2}’2(t0) + Rylyz(IO)Ryzyl (IU)] dtO- (AIS)
Making use of the Parseval’s Theorem (Power Theorem), Eq. (A.15) can be rewritten as
1 o0
ol = T /_ [S)1, (@)S),y,(@) + S}, (@)] do. (A.16)
Substituting Eqgs. (A.7)—(A.9) into Eq. (A.16) gives
1 oo S2 ((D)
2 210)1 X1X2
0. =—— w|¥’ wlS“cconvw _— A.17
P =T |, 1Ho O S (@) )[ S (©)Sis@)] ¢ (17
Noting that Sy, () is determined by Eq. (A.4), Eq. (A.17) can be rewritten as
1 OO Tt ,—21orT, |S)~ X, (w)lz
o’ = ool 2P, (o) Sml(w)SYZYQ(co)[ et M peak m do (A.18)
When 7 = tpek, Eq. (A.18) reduces to
e = 37 | 1S @S @) =2, (0] o (A.19)
Finally Egs. (A.5) and (A.19) can be substituted into Eq. (A.3) to yield
2 [ (O (@) (@) — 7 (@)] doo A20)

O peak —
pak T [[7°, 02 y(@)[Sx, 1y ()| dov]

which gives the variance of the time delay estimate and is the same as that reported by Carter in Ref. [16].
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