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Abstract

The reciprocity calibration method uses two microphones acoustically connected by a coupler, a cylindrical cavity closed

at each end by the diaphragms of the transmitting and receiving microphones. The acoustic transfer admittance of the

coupler, including the thermal conductivity effect of the fluid, must be modelled precisely to obtain the accurate sensitivity

of the microphones from the electrical transfer impedance measurement. It appears that the analytical model quoted in the

current standard [International Electrotechnical Commission IEC 61064-2, Measurement Microphones, Part 2: Primary

Method for Pressure Calibration of Laboratory Standard Microphones by the Reciprocity Technique, 1992] is not the

appropriate one and that it should be revised, as also suggested by a recent EUROMET project report [K. Rasmussen,

Datafiles simulating a pressure reciprocity calibration of microphones, EUROMET Project 294 Report PL-13, 2001].

Thus, it is the aim of the paper to investigate analytically the acoustic field inside the coupler, revisiting the assumptions of

the earlier work, leading to a coherent description and therefore providing clarity which should facilitate discussion of a

possible revised standard.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The usual primary method of determining the complex pressure sensitivity of laboratory standard
microphones is the well-known pressure reciprocity calibration method using closed couplers. This reciprocity
calibration of microphones (described in the IEC publication 61094-2 [1]) is carried out by means of three
microphones, two of which are reciprocal. The general principle is to measure the electrical transfer impedance
between two microphones acoustically connected by a coupler (an acoustic cavity), using one of them as a
sound source (transmitter) and the other one as a sound receiver. If the acoustic transfer impedance of the
cavity is known, then the product of the pressure sensitivities of the two coupled microphones can be
determined. Using pair-wise combinations of microphones, three such mutually independent products are
available from which an expression of the pressure sensitivity of each of the three microphones can be derived
[1]. The typical configuration is shown in Fig. 1.

During recent decades, there has been strong motivation both for modelling each part of the system
(microphones, electrical circuits, and acoustic coupler) and for determining the parameters that govern the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Geometry of coupler and microphones.

C. Guianvarc’h et al. / Journal of Sound and Vibration 292 (2006) 595–603596
behaviour of each component of the system (physical properties of the gases, parameters of the microphones,
shape of the couplers, and so on). Moreover, research efforts have concentrated on improving the
measurement uncertainty of the calibration method, by developing an understanding of the physical processes
involved, and evaluating associated correction factors (or eliminating the need of some correction factors [2]),
or by evaluating the effects of the ambient environment conditions. Especially in the closed coupler, the
correction due to the heat conduction between the fluid and the walls, inside the thermal boundary layers, has
been investigated by several authors [3–7]. It has been considered as an ‘‘apparent increase in the coupler
volume’’ expressed by a complex correction factor to the geometrical volume (in the lower-frequency range,
when the dimensions of the coupler are much lower than the wavelength) or to the cross-sectional area of the
cylindrical coupler (at higher frequencies).

As mentioned above, the acoustic transfer admittance of the coupler, including an accurate analytical
modelling for the pressure fluctuations inside the cavity which takes into account this thermal conductivity
effect of the fluid, must be known precisely to obtain the accurate sensitivity of the microphones from the
electrical transfer impedance measurement. In the latter period of the pioneering works in this field [8–11],
Gerber [5] provided his theory for the heat conduction process in the lower-frequency range. He gave two
different expressions for the correction to the geometric volume of the cavity (to obtain the effective complex
volume) depending on the acoustic impedance of the driver (though not stated explicitly), one for a low
acoustic impedance of the driver, the other one for a high acoustic impedance of the driver. In fact, the results
of Gerber’s modelling and his own interpretation of these results are three-fold: (i) the lower acoustic
impedance driver is assumed to be an ideal source of acoustic pressure (the volume change being caused by the
pressure change), (ii) the converse is assumed for the higher acoustic impedance driver, (iii) the real driver
gives an intermediate result (expressed using the previous ones).

The first IEC publication on reciprocity calibration (IEC 327, 1970) [12] quoted a formula derived from
published research pre-dating Gerber’s paper [9–11]. In fact, this was equivalent to Gerber’s formula
corresponding, in his paper, to a low acoustic impedance of the driver. However, first the formula quoted in
the IEC 327 was difficult to use in practice (slow convergence of modal expansion), and second Jarvis [6]
subsequently pointed out that the heat conduction correction calculated according to Gerber’s formulation
when a real driver is assumed, for a source impedance typical of a Brüel and Kjær-type 4160 microphone,
‘‘differs so little from the correction calculated on the assumption of infinite impedance that the effect on
calibration in IEC 3 cm3 coupler is less than 0.001 dB at frequencies above 63Hz’’ (‘‘infinite impedance’’
meaning ‘‘infinite acoustic impedance driver’’ according to Gerber’s formulation). Therefore, the second IEC
publication (number 61094-2, 1992) [1] quoted the Gerber’s formula corresponding, in his paper, to a high
acoustic impedance of the driver. Recently, in the EUROMET project 294 [13], ‘‘to test the performance of the
calculation procedure and software used to determine the sensitivity of the microphones, by construction of a
set of artificial measurement data’’, Rasmussen shows that several results indicate that ‘‘the calculation of the
influence of heat conduction in a pressure reciprocity calibration as given in the IEC standard 61094-2 (1992)
needs to be revised.’’
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In our opinion, this revision must start from the results given by Gerber, in particular revisiting the
interpretation of these results with the benefit of current understanding. For example the thermo-acoustical
problem presented at the beginning of the Gerber’s paper does not appear to be appropriate to real acoustic
situation: the author presents two different mathematical problems whereas the acoustical problem for the
cavity is unique, provided it takes into account the thermal (and viscous) effects inside the boundary layers on
the whole surface of the cavity. Moreover, in his first formulation (which corresponds in his paper to an
infinite impedance driver), Gerber assumes that the time varying density of the fluid does not depend on the
coordinates inside the cavity; this hypothesis is inconsistent with the assumption that the temperature field is
non-uniform inside the cavity (when the pressure field is uniform in the lower frequency range), according to
the basic thermodynamic laws for gases (see Eq. (A.7) below).

Thus, it is the aim of the paper to investigate analytically the acoustic field inside the cylindrical cavity, in order
to produce a consistent approach across the whole frequency range, and not restricted by any assumption about
the relative size of the wavelength and coupler dimensions. Actually, this approach is done using revisited and
coherent description which is built on the analytical results available in the literature, essentially the Kirchhoff
theory [9,11,14–16]. Then, no claims are made here as to novelty. However, the present effort toward clarity of
presentation, should be of some interest because it is confirmed that the results summarized by Ballagh in a short
paper [4] are the right ones and consequently that the current IEC standard (IEC 61094-2, 1992) should be
modified (in fact the formula quoted in the previous one (IEC 327, 1970) was the right one).

2. The fundamental problem and its solution

The system considered is a cylindrical cavity (length ‘, radius a), filled with a non-ideal, but uniform fluid at
rest, and closed at its ends by the diaphragms of two microphones assumed to have the same radius as the
cavity, one used as a sound source (transmitter) set at z ¼ 0, the other one as a receiver set at z ¼ ‘ (Fig. 1).
For analysing source-driven cavity excitation, with application relating to cylindrical cavity shapes, the
standard analytic procedure wherein the viscosity and heat conduction effects are expressed, beyond the
usually considered inertia and compressibility of the gas, is reviewed. Realistic boundary conditions, i.e. no
slip condition and no temperature variation, are considered, and both the coupling of the diaphragms of the
microphones with the acoustic field and the acoustic impedances of the microphones are accounted for.

The variables describing the dynamic and thermodynamic states of the fluid are the pressure variation p, the
particle velocity v, the density variation r0, the entropy variation s, and the temperature variation t. The
parameters which specify the properties and the nature of the fluid are the ambient values of the density r0, the
static pressure P0, the shear viscosity coefficient m, the bulk viscosity coefficient Z, the coefficient of thermal
conductivity l, the specific heat coefficient at constant pressure and constant volume per unit of mass CP and CV ,
respectively, the specific heat ratio g, and the increase in pressure per unit increase in temperature at constant
density b (bg ¼ ar0c

2
0 with a the volume thermal expansivity and c0 the adiabatic speed of sound). A complete set

of linearized homogeneous equations governing small amplitude disturbances of the fluid includes the following:
�
 the Navier–Stokes equation

1

c0

qv
qt
þ

1

r0c0
rp ¼ ‘v rðr � vÞ � ‘

0
vr � ðr � vÞ, (1)

where the characteristic lengths ‘v and ‘0v are defined as follows:

‘v ¼
1

r0c0

4

3
mþ Z

� �
and ‘0v ¼

m
r0c0

,

�
 the conservation of mass equation, taking into account the thermodynamic law expressing the density
variation as function of the independent variables p and t,

r0c0r � vþ
g
c0

q
qt
ðp� btÞ ¼ 0, (2)
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the Fourier equation for heat conduction, taking into account the thermodynamic law expressing the
�
entropy variation as function of the independent variables p and t,

1

c0

q
qt
� ‘hr

2

� �
t ¼

g� 1

bg
1

c0

qp

qt
, (3)

the operator r2 being the laplacian, where the characteristic length ‘h is defined as

‘h ¼
l

r0c0CP

.

The acoustic pressure inside the cavity should be the solution of this set of three equations with the
requirement of regular behaviour at the cylinder centre, this being

p; v and t finite at r ¼ 0 (4)

and with the boundary conditions at the outer surface of the cavity

v ¼ 0 at r ¼ a, (5)

t ¼ 0 at r ¼ a, (6)

Svz ¼ Svt � Y bp at z ¼ 0, (7)

Svz ¼ ðY b þ Y rÞp at z ¼ ‘, (8)

where Y r is the acoustic admittance of the receiver microphone, vt is the velocity field of the transmitter
diaphragm, with S ¼ pa2, and Y b is the thermal boundary layer admittance (to the first-order approximation
with respect to

ffiffiffiffiffiffiffiffiffi
k0‘h

p
) [15,16]

Y b ¼
S

r0c0

1þ jffiffiffi
2
p

ffiffiffiffiffi
k0

p
ðg� 1Þ

ffiffiffiffiffi
‘h

p
, (9)

k0 ¼ o=c0 being the ‘‘adiabatic’’ wavenumber.
Several hypotheses can be made here in order to avoid overly intricate formulation which would

overshadow the purpose of this paper, mentioned above. These assumptions can be summarized as follows:
�
 The solutions do not depend on the azimuthal coordinate (the problem is assumed axisymmetric).

�
 The radial component of the particle velocity vr vanishes, and thus the acoustic pressure does not depend on
the radial coordinate r (this plane wave approximation can be replaced by a more appropriate
approximation when considering the calibration precision obtainable today at high frequencies [17]).

�
 The spatial derivative of the z-component of the particle velocity vz with respect to the coordinate z in the
Navier–Stokes equation is much smaller than the derivative with respect to the radial coordinate r.

�
 The temperature variation t and consequently the density variation r0, and the z-component of the particle
velocity vz depend on both axial z and radial r coordinates because vz and t vanish at the lateral wall of the
cavity, so they are replaced by their mean value across the section of the cylindrical cavity (plane wave
approximation).

First, these approximations enable us to simplify greatly the expressions of Eqs. (1) and (3), giving

1

c0

q
qt
� ‘0v

1

r

q
qr

r
q
qr

� �
vzðr; zÞ ¼ �

1

r0c0

q
qz

pðzÞ, (10)

1

c0

q
qt
� ‘h

1

r

q
qr

r
q
qr

� �
tðr; zÞ ¼

g� 1

bg
1

c0

q
qt

pðzÞ. (11)
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Therefore, it is a simple matter to solve separately these equations, according to boundary conditions (5) and
(6), respectively, yielding

vzðr; zÞ ¼
j

or0

q
qz

pðzÞ 1�
J0ðkvrÞ

J0ðkvaÞ

� �
, (12)

tðr; zÞ ¼
g� 1

bg
pðzÞ 1�

J0ðkhrÞ

J0ðkhaÞ

� �
, (13)

where the expressions of the wavenumbers kv (associated with the vortical movement due to viscosity effects)
and kh (associated with entropy diffusion due to heat conduction) are given by

kv ¼
1� jffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffi
k0=‘

0
v

q
and kh ¼

1� jffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffi
k0=‘h

p
.

Taking mean values across the section of the cylindrical cavity of Eqs. (12), (13), and (2) gives

hvzðzÞi ¼
2p
S

Z a

0

vzðr; zÞrdr ¼
j

k0r0c0

qpðzÞ

qz
1�

2

kva

J1ðkvaÞ

J0ðkvaÞ

� �
, (14)

htðzÞi ¼
g� 1

bg
pðzÞ 1�

2

kha

J1ðkhaÞ

J0ðkhaÞ

� �
, (15)

q
qz
hvzðzÞi þ

jo
r0

g
c20
ðpðzÞ � bhtðzÞiÞ ¼ 0. (16)

Combining Eqs. (14) and (15) with Eq. (16) to remove the variable t, denoting wðzÞ ¼ ShvzðzÞi the axial
acoustic volume velocity, leads to the usual pair of transmission line equations:

q
qz

pðzÞ þ ZvwðzÞ ¼ 0, (17)

q
qz

wðzÞ þ Y hpðzÞ ¼ 0, (18)

where the impedance Zv and the admittance Y h are given by

Zv ¼
1

S

jk0r0c0

1� Kv

, (19)

Y h ¼ S
jk0

r0c0
½1þ ðg� 1ÞKh�, (20)

the expressions for Kh;v (i.e. respectively, Kh and Kv) being given by

Kh;v ¼
2

kh;v

J1ðkh;vaÞ

J0ðkh;vaÞ
. (21)

Finally, combining Eqs. (17) and (18) to remove the variable wðzÞ leads to the usual propagation equation

q2

qz2
þ k2

z

� �
pðzÞ ¼ 0; 0pzp‘, (22)

the axial wavenumber kz is given by

k2
z ¼ �ZvY h ¼ k2

0

1þ ðg� 1ÞKh

1� Kv

; where ReðkzÞ40 and ImðkzÞo0. (23)
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The plane wave solution of Eq. (22), subject to boundary conditions (7) and (8) on the diaphragms of the
microphones set at z ¼ 0 and ‘ respectively, invoking expression (17) to remove the volume velocity
wðzÞ ¼ ShvzðzÞi, is the appropriate result needed to express the acoustic pressure inside the cavity. Therefore,
when the time-periodic source activity is given by the harmonic ðejotÞ volume velocity ðSvtÞ of the transmitting
microphone ðz ¼ 0Þ, the expression for the complex amplitude of the acoustic pressure is given by

pðzÞ ¼ Aðe�jkzz þ BejkzzÞ, (24a)

where the integration constants are given by

A ¼
Svt

Y ið1� BÞ þ Y bð1þ BÞ
, (24b)

B ¼ e�2jkz‘
Y i � ðY r þ Y bÞ

Y i þ ðY r þ Y bÞ
, (24c)

with

Y i ¼

ffiffiffiffiffiffi
Y h

Zv

r
¼

jkz

Zv

¼
S

r0c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðg� 1ÞKh�ð1� KvÞ

p
. (24d)

The radial dimension of the cavity justifies approximating kz and Y i asymptotically, to the first order of
approximation, as follows:

k2
z � k2

0 1þ
1� jffiffiffi

2
p

2

a
ffiffiffiffiffi
k0

p

ffiffiffiffi
‘0v

q
þ ðg� 1Þ

ffiffiffiffiffi
‘h

p� �� �
, (25)

Y i �
S

r0c0
1þ

1� jffiffiffi
2
p

2

a
ffiffiffiffiffi
k0

p �

ffiffiffiffi
‘0v

q
þ ðg� 1Þ

ffiffiffiffiffi
‘h

p� �� �
. (26)

As mentioned in the beginning of the introduction, the quantity of interest for the pressure reciprocity
calibration method is the acoustic transfer admittance Y T , the ‘‘quotient of the short-circuit volume velocity
produced by the microphone used as a transmitter by the sound pressure acting on the diaphragm of the
microphone used as a receiver’’ [1], namely

Y T ¼
Svt þ Y tpð0Þ

pð‘Þ
, (27)

where Y t is the acoustic admittance of the transmitting microphone. Invoking expressions (24a–c) for the
acoustic pressure yields straightforwardly

Y T ¼ j sin kz‘ Y i þ
ðY t þ Y bÞðY r þ Y bÞ

Y i

� �
þ cos kz‘ð2Y b þ Y t þ Y rÞ. (28)

In the lower-frequency range, when the dimensions of the cavity are much lower than the acoustic wavelength
ðjkz‘j � 1Þ, it is justified to retain the first order in the factor kz‘ in expression (28) of Y T and to use the
approximate expressions (9), (25) and (26) for Y b, kz, and Y i, respectively, yielding

Y T � jo
V

gP0
½1þ ðg� 1ÞX � þ Y t þ Y r, (29a)

where

X ¼
A

V

1� jffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffi
‘h=k0

p
(29b)

and where the ratio of the total area of the surface of the cavity and its volume is A=V ¼ 2=aþ 2=‘.
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Fig. 2. Difference between acoustic transfer admittances derived from the two solutions of Gerber for LS2P microphones.
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This result is also demonstrated in the appendix by starting from the assumption that the acoustic pressure p

is uniform all over the bulk of the cavity and integrating the basic equations over the whole volume of the
cavity.

3. Discussion

In the upper frequency range, the expression of the acoustic transfer admittance quoted in the IEC standard
61064-2 [1] is the same as Eq. (28). But in this standard two approximations are assumed: first, the complex
wavenumber kz is reduced to the ‘‘adiabatic’’ one k0 ¼ o=c0, and second, the iterative admittance Y i is
simplified according to the heat correction factor CTH expressed by Gerber as the correction which
corresponds to an infinite impedance driver: Y i ¼ SCTH=ðr0c0Þ. Thus, the viscous effects are not accounted
for in the IEC standard although they give a correction of the same order of magnitude as the thermal one
(which, moreover, is not the right one in the standard).

Expression (29) for the acoustic transfer admittance, accurate in the lower-frequency range, was proposed
by Riéty and Lecollinet [3] and Ballagh [4]. It is also the expression of the admittance 1=ZP given by Gerber [5,
Eq. (34)], when using the short time solution in the Laplace transform for EP ¼ 1� SP [5, Eq. (25.b)]
(omitting the factors Sn

p, n41, in the series). This expression, which is the right one, is quoted in the IEC
standard 327 (1970) [12], but is not the one suggested in the IEC standard 61094-2 (1992) [1], which therefore
needs, in our opinion, to be revised.

In order to show the discrepancies between this correct expression and the other one proposed by Gerber
and suggested by the IEC standard 61094-2, the difference between the modulus of the acoustic transfer
admittances derived from these two solutions, for LS2P microphones1 with a 4.7mm length and 9.3mm in
diameter coupling cavity, is given in Fig. 2. The solution which assumes that the time varying density does not
depend on the spatial coordinates (high impedance source in Gerber’s paper) gives higher values than the
solution which assumes that the pressure variation is uniform in the cavity (low impedance source in his
paper).

The sensitivity level of a microphone determined by the reciprocity calibration method being proportional
to the square root of the acoustic transfer admittance Y T , the discrepancies between the sensitivity levels reach
0.05 dB at the lowest-frequency range of interest (Fig. 2). Today the reproducibility on the determination of
the pressure sensitivity using the closed coupler reciprocity technique is the order of 0.01–0.02 dB [7] and the
uncertainties are evaluated to the order of 0.03 dB (0.1 dB at frequencies up to 50Hz) [18] for LS2P
microphones. The discrepancies shown in Fig. 2, which are systematic errors additive with the uncertainties,
are greater than the experimental reproducibility and then are non-negligible. Therefore, the expression for the
acoustic transfer admittance quoted in the IEC standard 61094-2 (1992) should be replaced by the expression
1The letters LS mean Laboratory Standard, the number denotes the mechanical configuration of the microphone (1 for 1 in, and 2 for
1
2
in microphone), and the letter P refers to a microphone having a nominally flat pressure sensitivity (F for a free-field sensitivity).
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given by Eq. (29). The upper frequency considered is limited to 104 Hz because in the upper frequency range
(from about 5� 103 Hz) the difference is not significant (i.e. lower than the experimental reproducibility).
4. Conclusion

To sum up, the present paper starts essentially from the result given by Gerber and discussed later on by
several authors [3,4,6,7]
�
 Gerber presents two different mathematical problems whereas the acoustical problem for the cavity is
unique.

�
 In the currently specified formulation, that is, in the first formulation given by Gerber, it is assumed that the
time varying density of the fluid does not depend on the coordinates inside the cavity (this hypothesis is
inconsistent with the assumption that the temperature field is non-uniform inside the cavity, when the
pressure field is uniform in the lower-frequency range).

Then the present approach is built on an analytical theory which starts from the Kirchhoff theory which
includes the effect of the thermal conductivity of the gas, because it plays an important role in the acoustic
field inside small cavities in the fundamental equations.

As a conclusion, it is clear (Fig. 2) that the model quoted in the IEC standard 61094-2 is not suitable in the
lower-frequency range (up to 50–1000Hz) when an accuracy better than 0.03 dB is needed. Consequently, the
expression for the acoustic transfer admittance quoted in the IEC standard 61094-2 (1992) should be replaced
by the expression given by Eq. (29).
Appendix A

In the lower-frequency range, i.e. when the wavelength is much greater than the dimensions of the cavity,
relatively simple analytical solutions for the excitation of acoustic fields in cavities with lossy walls can be
obtained for a broad class of such cavities. The suitable solution can be expressed directly as in Eq. (29),
assuming appropriate approximations in Eqs. (1) and (2), in addition to those mentioned above (see, for
example, [16, pp. 131–133]).

The acoustic pressure field can be assumed to be uniform everywhere inside the cavity even inside the
viscous and thermal boundary layers (this is used in evaluating Eq. (A.1)).

The conservation of mass equation can be integrated all over the volume of the cavity, leading to (in using
Gauss theorem): ZZZ

V

qr0

qt
dV þ r0

ZZ
A

v � dA ¼ 0,

which can be written as

1

r0

ZZZ
V

r0 dV þ dV þ
pA

joZ
¼ 0, (A.1)

wherein the mean admittance 1=Z is defined asZZ
A

p

Z
dA ¼ p

ZZ
A

1

Z
dA ¼

pA

Z
(A.2)

and where dV represents the variation of the volume of the cavity due to the displacement field of the
transmitting diaphragm

dV ¼

ZZ
S

vt

jo
dS. (A.3)
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Eq. (3) written as

t ¼
c0‘h

jo
r2tþ

g� 1

bg
p, (A.4)

can also be integrated all over the volume of the cavity, leading to (in using Gauss theorem)ZZZ
V

tdV ¼
c0‘h

jo

ZZ
A

ðrtÞ � dAþ
g� 1

bg
Vp, (A.5)

showing that the mean value of the temperature variation t depends on its evolution ðrtÞ � dA inside the
thermal boundary layers.

Then, the solution of Eq. (A.4), subject to the boundary condition (6), for the harmonic motion considered
here ðejotÞ, can be written as follows:

t ¼
g� 1

bg
p½1� e�jkhu�, (A.6)

where the first term on the right-hand side represents the ‘‘adiabatic’’ temperature variation (which is the
temperature variation outside the thermal boundary layers) and the second term represents the evolution of
the temperature variation inside the thermal boundary layers, the u-coordinates representing the local normal
to the boundaries inwardly directed (the wavenumber kh is given under Eq. (13)). Actually, here, the thickness
of the boundary layer is much smaller than the dimensions of the cavity.

Using results (A.1), (A.5), (A.6), and the linearized equation of state

r0 ¼ r0wT ðp� btÞ (A.7)

to remove r0, with wT ¼ g=ðr0c
2
0Þ, leads straightforwardly to the result given in Eq. (29), noting that

A=Z ¼ Y r.
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