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Abstract

Under the condition of large parameters, it is difficult in signal processing to use the small parameter stochastic

resonance (SR) approach to detect a weak signal submerged in strong noise from the response power spectrum of a bistable

system. We develop a new method, the re-scaling frequency stochastic resonance (RFSR) to solve this technical issue. In

practical applications, the RFSR method requires that the ratio of sampling frequency to the signal frequency be equal to

or larger than 50. The input and the output signal-to-noise ratios of the bistable system demonstrate the effectiveness of the

RFSR method. Finally, two practical cases, the monitoring and diagnosis of mechanical faults and the vibration analysis

of metal cutting show that the RFSR approach is suitable for detecting an early fault and extracting weak signals from

strong noise. Thus, the RFSR technique has potential applications in the engineering signal processing.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

When noise is added to a system, the output of the system usually deteriorates in quality. However, in some
systems, adding a proper amount of noise will enhance the system output or response, rather than decrease it.
This is currently the so-called stochastic resonance (SR). In signal processing, SR is commonly described as an
increase in the signal-to-noise ratio (SNR) at the output of a nonlinear system. This is obtained through
varying the noise level while keeping the input signal constant [1–3]. SR has been proposed as a useful means
for signal processing in a wide variety of systems [1–8], including bistable systems [1,2], excitable systems [7],
threshold systems [3,8], and biological systems [1,6]. Currently, there have been many theoretical
developments of SR in conventional bistable systems [1,5,9–12]. However, the majority of the theoretical
studies in this area have been focusing on low frequency and weak periodic signals masked by small noise, i.e.,
small parameter signals (the frequency and amplitude of a periodic signal and noise intensity are all smaller
than one). This may be explained by the fact that most of the studies were restricted by adiabatic
approximation and linear response theory, where these parameters were assumed to be small. Nevertheless,
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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periodic driving with large parameters (frequency and/or amplitude and/or noise intensity can be much larger
than one) in real world can be often encountered. For example, the frequencies of mechanical faults of rotating
machinery are usually much higher than one. The case of a strong periodic driving with large amplitude and
weak noise was discussed in the literature [13,14]. However, the noise was significantly suppressed in a certain
frequency range. In the present paper, the opposite case of a high frequency and weak periodic signal hidden
in strong noise will be investigated. Here the ‘‘weak’’ means small compared to the noise level. By the proposal
of a novel method of re-scaling frequency stochastic resonance (RFSR), an SR-like spectral spike at the
frequency of the weak periodic signal can be obtained in the output spectrum of a dynamic bistable system.
The advantage of the proposed method is that it can detect a weak signal in the presence of strong noise or of
the same frequency noise (which is the part with spectra close to the input frequency [15]). In our numerical
studies, the data length is limited based on the practical signal processing. Usually, short data processing is
different from the data analysis of non-limited length. In principle, if the data length is sufficiently long, for
any small amplitude of a periodic input, it is possible to obtain the first spectral peak of the periodic forcing
using traditional methods, such as spectral analysis or averaging. Our work concentrates on the numerical
study of the behavior of the large parameter bistable RFSR. Two examples of practical engineering
application are provided to illustrate the effectiveness of the proposed RFSR technique in signal processing.

2. The small parameter SR of a bistable system

2.1. The general model

The three basic ingredients of producing SR phenomenon are: (1) a bistable or multistable system, (2) a
weak coherent input (such as a periodic signal), and (3) a source of noise that is inherent in the system, or that
adds to the coherent input. For a convenient description, consider the overdamped motion of a Brownian
particle in a bistable potential in the presence of noise and a periodic forcing

_xðtÞ ¼ �U 0ðxÞ þ A0 sin ð2pf 0tþ jÞ þ nðtÞ, (1)

where UðxÞ denotes the reflection-symmetric quartic potential

UðxÞ ¼ �1
2

ax2 þ 1
4

bx4. (2)

Eq. (1) can be written as

_xðtÞ ¼ ax� bx3 þ A0 sin ð2pf 0tþ jÞ þ nðtÞ, (3)

where nðtÞ ¼
ffiffiffiffiffiffiffi
2D
p

xðtÞ with hnðtÞnðtþ tÞi ¼ 2DdðtÞ. Here, D is the noise intensity and xðtÞ presents a zero-mean,
unit variance Gaussian white noise. a and b are real parameters. A0 is the periodic signal amplitude and f 0 is
the modulation frequency (angular frequency O ¼ 2pf 0). Eq. (3) is the nonlinear Langevin equation for one
variable. In terms of an appropriate change of variables xðtÞ !

ffiffiffiffiffiffiffiffi
a=b

p
xðtÞ, t! at, A0! A0

ffiffiffiffiffiffiffiffiffiffi
a3=b

p
,

f 0! f 0=a, D! Da3=b, the potential or system parameters a and b can be eliminated such that Eqs. (2)
and (3) can be written in the dimensionless form

UðxÞ ¼ �1
2

x2 þ 1
4

x4, (4)

_xðtÞ ¼ x� x3 þ A0 sin ð2pf 0tþ jÞ þ nðtÞ. (5)

The potential minima in scaled units are located at �xm, with xm ¼ 1. The height of the potential barrier
between the minima is given by DU ¼ 1

4
. Eq. (3), a bistable system subject to sinusoidal signal and white noise,

is a simple model extensively investigated in the nonlinear science community.

2.2. The periodic response analysis

For convenience, we choose the phase of the periodic driving j ¼ 0, i.e., the input signal reads explicitly as
AðtÞ ¼ A0 sin ð2pf 0tÞ. The mean value hxðtÞ x0; t0j i is obtained by averaging the inhomogeneous process xðtÞ

with initial condition x0 ¼ xðt0Þ over the ensemble of the noise realizations. Asymptotically ðt0 !�1Þ, the
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Fig. 1. The periodic response amplitude x̄ vs. the noise strength D at a fixed modulation amplitude A0 ¼ 0:3 for different values of the

frequency f 0 with a ¼ 1, b ¼ 1 in Eq. (3).
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memory of the initial conditions gets lost and hxðtÞ x0; t0j i becomes a periodic function of time, i.e., hxðtÞias ¼

hxðtþ Tf Þias with Tf ¼ 1=f 0. For small amplitudes, the response of the system to the periodic input signal can
be written as

hxðtÞias ¼ x̄ sin ð2pf 0t� j̄Þ, (6)

with amplitude x̄ and a phase lag j̄. Approximate expressions for the amplitude and phase shift read as

x̄ ¼
A0hx

2i0

D

rkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2k þ p2f 2

0

q , (7a)

j̄ ¼ arctan
pf 0

rk

� �
, (7b)

where rk is Kramers rate [1]

rk ¼
1ffiffiffi
2
p

p
exp �

DU

D

� �
, (7c)

and hx2i0 is the D-dependent variance of the stationary unperturbed system ðA0 ¼ 0Þ. Eq. (7) has been shown
to hold in leading order of the modulation A0xm=D for both discrete and continuous one-dimensional systems
[9,16,17]. Within two-state, Eq. (7) allows approximation hx2i0 ¼ x2

m.
The most important feature of the amplitude x̄ is that it depends on the noise strength D, i.e., the periodic

response of the system can be manipulated by changing the noise level. We note from Eq. (7) that the
amplitude x̄ first increases with increasing noise level, reaches a maximum, and then decreases again. This is
the celebrated SR effect shown in Fig. 1. At a closer inspection of Eq. (7a) and Fig. 1, it is also important to
note that the variation of the frequency f 0 for fixed noise intensity D does not yield a resonance-like behavior
of the response amplitude. The behavior of x̄ versus f 0 for fixed noise D generally follows a monotonically
decreasing trend. The response amplitude x̄ goes to very small number with the increase of f 0. This indicates
that SR phenomenon requires a low driving frequency, i.e., a small parameter frequency is necessary to an SR.

2.3. Power spectral density analysis

The power spectral density Sð f Þ commonly reported in the literature is the Fourier transform of the
autocorrelation function. Instead of taking the ensemble average of the system response, it may be more
convenient to extract the relevant phase-averaged power spectral density Sð f Þ, defined here as

Sð f Þ ¼

Z þ1
�1

e�i2pf thhxðtþ tÞxðtÞiidt, (8)

where the inner brackets denote the ensemble average over the realizations of the noise, and the outer brackets
indicate the average over the input initial phase j. Qualitatively, Sð f Þ may be described as the superposition
of a background power spectral density SNð f Þ and a structure of delta spikes centered at
f ¼ ð2nþ 1Þf 0 ðn ¼ 0; �1; �2; . . .Þ. The generation of only odd higher harmonics of the input frequency is
typical fingerprints of periodically driven symmetric nonlinear systems. Since the strength (i.e., the integrated
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power) of such spectral spikes decays with n according to a power law such as A2n
0 , we can restrict ourselves to

the first spectral spike, being consistent with the linear-response assumption implicit in Eq. (6). For small
forcing amplitudes, SNð f Þ does not deviate much from the power spectral density S0

Nð f Þ of the unperturbed
system. For a bistable system with relaxation rate 2rk, the hopping contribution of S0

N ð f Þ reads as

S0
N ð f Þ ¼ rkhx

2i0=ðr
2
k þ p2f 2

Þ. (9)

The spectral spike at f 0 was verified experimentally [18–20] to be a delta function, thus signifying that there is a
periodic component with frequency f 0 in the system response [Eq. (6)]. In fact, for A0xm5DU we are led to
separate xðtÞ into a noisy background (which coincides, apart from a normalization constant, with the
unperturbed output signal) and a periodic component with hxðtÞias given by Eq. (6). On adding the power
spectral density of either component, Sð f Þ is easily obtained as

Sð f Þ ¼ ðp=2Þx̄2½dð f � f 0Þ þ dð f þ f 0Þ� þ SNð f Þ

¼
p
2

A0xm

D

� �2
r2kx2

m

r2k þ p2f 2
0

½dð f � f 0Þ þ dð f þ f 0Þ� þ 1�
1

2

A0xm

D

� �2
r2k

r2k þ p2f 2
0

" #
rkx2

m

r2k þ p2f 2
. ð10Þ

In fact, SNð f Þ is the product of the Lorentzian curve obtained with no input signal ðA0 ¼ 0Þ and a factor
that depends on the forcing amplitude A0. Lorentzian distribution is characterized by concentrating most of
noise energy into the low frequency region. That is, white noise energy distributing uniformly in traditional
FFT frequency domain will mostly be accumulated into the low frequency region by the nonlinear bistable
system. The behavior of SN ð f Þ at A0 ¼ 0 versus frequency f is depicted for different noise intensity in Fig. 2. It
is observed that increasing noise intensity widens the low frequency region, but shortens the amplitude of
SNð f Þ. We conclude that an SR spectral peak at f 0 should be confined at this energy-concentrated low-
frequency region, since only a certain amount of noise can drive the particle over the potential barrier of the
bistable system to form a transition SR. If the signal frequency f 0 is moved out of the low-frequency region,
the SR effect will deteriorate or diminish at large frequencies.

To make this point clear, Figs. 3 and 4 show two examples. The relative parameters corresponding to the
Langevin equation (3) in Fig. 3 are A0 ¼ 0:3, f 0 ¼ 0:01, D ¼ 0:31, j ¼ 0, a ¼ b ¼ 1 and noise nðtÞ ¼

ffiffiffiffiffiffiffi
2D
p

xðtÞ,
xðtÞ denotes Gaussian white noise with zero-mean and one-variance. Sampling frequency is f s ¼ 5. The power
spectral density Sð f Þ is calculated only with 1024 data points. The data length in time domain is 4000 points
for a better view. Eq. (3) is numerically solved with a fourth-order Runge–Kutta method. The time step is
Dt ¼ 1=f s ¼ 0:2.

In Fig. 3, we can see clearly the typical SR phenomenon at the output of the bistable system. The sharp SR
spectral spike at the modulation frequency f 0 is just located in the low-frequency region in which most noise
energy concentrates. If the frequency f 0 is gradually increased to depart from the low frequency region
whereas other parameters in Fig. 3 are held unchanged, the height of the output spectral spike at f 0 becomes
smaller. This can be seen more evident in Fig. 4. The spectral height at f 0 ¼ 0:1 in Fig. 4(a) is smaller than that
at f 0 ¼ 0:01 in Fig. 3, and the spectral height at f 0 ¼ 0:3 in Fig. 4(b) is smaller than that at f 0 ¼ 0:1 in
Fig. 4(a). This result is also consistent with the results in Fig. 1, i.e., the SR phenomenon requires a small
parameter frequency.
Fig. 2. The noise spectrum SN ð f Þ in the symmetric bistable wells vs. frequency at the absence of driving force ðA0 ¼ 0Þ for three values of

the noise intensity D.
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Fig. 4. Spectra of input and output of the bistable system of Eq. (3) for different modulation frequencies: (a) f 0 ¼ 0:1 and (b) f 0 ¼ 0:3.
The other parameters are the same values as in Fig. 3.

Fig. 3. Example of the input and output of the symmetric bistable system of Eq. (3). The relative parameters are A0 ¼ 0:3, f 0 ¼ 0:01,
D ¼ 0:31, j ¼ 0, a ¼ b ¼ 1. (a) Time domain waveforms. (b) Frequency domain power spectra.
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It should be noted that in Figs. 3(b) and 4, the input spectral amplitude at f 0 always holds constant no
matter how small or big the modulation frequency f 0 is. As we know, this is the usual Fourier transformation
property. The clear input spectral spike at f 0 is due to the small noise D ¼ 0:31. Hereafter, we will not be
interested in the small noise SR, instead we will explore the large noise SR. Our goal is to detect a weak
periodic signal submerged in strong noise. When the noise is too strong to distinguish the periodic signal in the
input spectrum of a bistable system, we will study a new method to extract or find the periodic signal by means
of the SR technique. Large noise does not satisfy the requirement of small noise SR. For example, for the
parameters in Fig. 3, the numerical calculation of Eq. (3) will overflow when noise level is increased to a
certain value D ¼ 2:39. Therefore, we will not be able to use SR directly for larger noise intensity. This result
illustrates that the SR phenomenon requires a small parameter noise.

For large frequency and large noise, we note from Fig. 1 that, an SR-like spectral spike at modulation
frequency f 0 may be observed if the frequency f 0 is decreased. Such an observation provides us with the
possibility of continuing to study the SR with large parameters. We propose the RFSR method in the next
section to deal with this issue.

3. Re-scaling frequency stochastic resonance (RFSR)

In practical signal processing, the sampled signal parameters such as the frequency and amplitude of a
periodic signal and real noise strength usually exceed the limitation of small parameter SR. Practical signal
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parameters are called large parameters. Here it should be noted that the weak signal amplitude and the strong
noise intensity may be larger or smaller than one. However, they are just called large parameters if the periodic
signal cannot be detected from the noise by the traditional methods, such as direct spectral analysis or
averaging.

For example, suppose the practical signal from some types of sensors, for instance, vibration
accelerometers, is presented as snðtÞ ¼ A0 sin ð2pf 0tÞ þ

ffiffiffiffiffiffiffi
2D
p

xðtÞ, where xðtÞ is the zero-mean, one-variance,
Gaussian white noise. The total length of data snðtÞ is 4000 points. In Eq. (3), let a ¼ b ¼ 1, f 0 ¼ 40Hz,
D ¼ 9:1, A0 ¼ 0:3 (A0 is still smaller than one). Sampling frequency is selected to be f s ¼ 2000Hz. Then the
time step of numerical calculation is Dt ¼ 1=f s ¼ 0:0005 s. The input and output spectra of the bistable system
in Eq. (3) are computed with 1024 points FFT and averaged ten times. Fig. 5 shows the numerical results. Here
the unit of the output spectral height in Fig. 5(b) is converted to decibel for a clearer display.

It is noted that although we use the average method to analyze the two spectra in Fig. 5(b), the spectral
spikes at the driving frequency f 0 ¼ 40Hz in both of the spectra cannot be seen. The input spectrum does not
show the weak periodic signal embedded in such heavy noise. Similarly, the output spectrum illustrates that by
the direct calculation of Eq. (3) model with large parameters, the weak periodic signal cannot be obtained.
This is because the large signal parameters do not satisfy the requirement of the small parameter SR.

In order to detect the weak periodic signal from strong noise by Eq. (3) model, from the discussion in
Section 2, we note that the parameter of the driving frequency is the key to deal with the large parameter SR.
Since the response amplitude of the bistable system in Eq. (3) can be changed by varying the driving frequency
(see Fig. 1), i.e., for fixed modulation amplitude and noise intensity, the smaller the driving frequency, the
larger the SR response amplitude. Therefore, based on our earlier work [21], a new method of re-scaling
frequency stochastic resonance (RFSR) is proposed: first, the large frequency is compressed linearly according
to a proper frequency-scale ratio. The ratio can transform the large frequency into a small parameter
frequency; second, the response power spectrum of the bistable system in Eq. (3) is analyzed to pick up the SR-
like peak at the compressed signal frequency; and finally, the original large frequency is recovered in
accordance with the ratio.

Now we recalculate the previous example (Fig. 5) by the RFSR method. We select the frequency-scale ratio
R ¼ 250. The compressed driving frequency and the compressed sampling frequency are f 0c ¼ f 0=R ¼

40=250 ¼ 0:16Hz and f sc ¼ f s=R ¼ 2000=250 ¼ 8Hz, respectively. The time step in the numerical scheme
becomes Dt ¼ 1=f sc ¼ 0:125 s. By re-solving Eq. (3), we obtain the RFSR response of the bistable system
shown in Fig. 6. Here for clarity, the display length of the time waveform is 800 points. In the spectrum of Fig.
6, a spectral spike at f 0c ¼ 0:16Hz can be distinctly observed, which explicitly indicates the presence of the
driving frequency component f 0 ¼ 40Hz. Therefore, the method of the large parameter RFSR provides an
effective way to detect a weak periodic signal embedded in heavy noise.
Fig. 5. The input and output of the bistable system in Eq. (3) with large parameters a ¼ b ¼ 1, f 0 ¼ 40Hz, D ¼ 9:1, A0 ¼ 0:3. (a) Time-

domain waveforms. (b) Frequency-domain power spectra.
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Fig. 6. The output of the bistable system in the model of Eq. (3) with frequency-scale ratio R ¼ 250 and time-domain data length 800

points. The other parameters have the same values as in Fig. 5.

Fig. 7. The signal spectral height h versus k. The other parameters are the same as in Fig. 6.
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4. The power spectral behavior of the large parameter RFSR

In practical application, an obvious question is whether the large parameter RFSR can detect
distinguishable SR-like spectral peaks at different driving frequencies. From the power spectrum of Fig. 6,
we note that the RFSR spectrum has the similar Lorentzian distribution and the noise energy is mainly
restricted at the low frequency region where the signal spectral spike is resonated to pop out. This RFSR
spectral behavior is consistent with the SR spectral behavior described in Section 2.3. We conclude that the
amplitude of the RFSR spectral peak at the driving frequency may decrease with the increase of driving
frequency. The question is, how can we quantitatively determine the low frequency region of the large
parameter RFSR in which a distinguishable SR-like spectral spike can be detected?

To determine the low frequency region, we take the large parameters of Fig. 6 to study Eq. (3) for a different
frequency f 0. Here for convenience, let driving frequency f 0 ¼ f s=k (or f 0c ¼ f sc=k). The ratio of the sampling
frequency to the signal frequency k ranges from 100 to 5 (i.e., f 0 changes from 20 to 400Hz for fixed f s) with
an incremental step Dk ¼ �1. The numerical results for the height h of the RFSR spectral spike at f 0 versus k

are shown in Fig. 7.
We see that there exists a critical value around k ¼ 50 beyond which the value h keeps relatively large, but

below which the value h decreases dramatically. This is basically consistent with the noise energy distribution
shown in Fig. 2. The range of kX50 ( f 0p40Hz) corresponds to the low frequency region where an SR-like
peak can be easily excited by enough noise, and the range of ko50 ( f 0440Hz) overlaps with the higher
frequency region where small noise energy can hardly stimulate an SR-like spike. Although there are also
several larger peaks in the higher frequency region, k ¼ 30 (f 0 ¼ 66:7Hz or f 0c ¼ 0:267Hz) for instance (see
Fig. 8), these peaks are easily interfered by noise and then may not be identified conveniently.

Therefore, for the maximal detection of SR-like spectral peaks, the low frequency region of the large
parameter RFSR should be determined at kX50. In Fig. 6, the RFSR low frequency region is f 0p40Hz.

It is also noted from Fig. 7 that the curve of h versus frequency f 0 or k has large fluctuations for kX50. This
means that in the RFSR spectrum, some SR-like spectral peaks are distinguishable and some may not.
According to the literature [22,23], this actually reflects the selectivity of noise—it is a kind of multi-SR
phenomenon. In other words, different noise levels can selectively enhance the signal amplitude at a different
signal frequency. This result answers the question at the beginning of this section. That is, the large parameter
RFSR can detect distinguishable SR-like spectral peaks at some different driving frequencies.
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Fig. 8. The output spectrum of Eq. (3) with k ¼ 30 or f 0 ¼ 66:7Hz ð f 0c ¼ 0:267HzÞ. The other parameters are the same as in Fig. 6.

Table 1

The relationship between D and its minimal f sc min

D f sc min D f sc min

32.0 12.0 6.4 7.0

24.7 11.0 4.0 6.0

18.5 10.0 2.3 5.0

13.5 9.0 1.2 4.0

9.5 8.0 0.5 3.0

The other parameters are the same as in Fig. 6 (Dmax ¼ 32:0).

Fig. 9. The output spectrum of Eq. (3) with Dmax ¼ 32:0 and f sc min ¼ 12. The other parameters are the same as in Fig. 6.
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The other important spectral behavior of the large parameter RFSR is that the compressed sampling
frequency f sc ¼ f s=R depends on noise intensity D. It is found that each value of noise D has its own minimal
compressed sampling frequency f sc min. The reason for the existence of f sc min is that the numerical simulation
may overflow if f scof sc min. In general, the RFSR effect with f sc min is better than that with f sc4f sc min.
However, to obtain a prominent maximal SR-like spectral peak at f 0c ¼ f sc min=k, there must exist maximal
noise intensity Dmax. When D4Dmax, for the corresponding f sc min, the height of the SR-like spectral spike at
f 0c is no longer the highest in the whole spectral graph and becomes fuzzy. As an example, Table 1 gives the
relationship between D and its corresponding f sc min (reserving one decimal), and Fig. 9 shows the output
spectrum of Table 1 at Dmax ¼ 32:0 and corresponding f sc min ¼ 12.

Signal-to-noise (SN) ratio is a useful measure for describing a power spectrum. Similarly, we use the SN
ratio to further analyze the RFSR spectral property. According to the literature [24,25], the definition of SN
ratio is the ratio of the height of the first harmonic peak in the power spectrum at the signal frequency f 0c and
the level of the background noise at the same frequency. For the parameters shown in Table 1 and assuming
f sc ¼ f sc min for each value of noise D, the variations of the input and output SN ratios of the bistable system in
Eq. (3) versus D are shown in Fig. 10. Obviously, the output SN ratio is always larger than the input one.
Specifically, when DX3:5, the values of the input SN ratio begin to be less than 2.1, the minimum of the
output SNR. This indicates that with the increase of D, the periodic signal in the input spectrum will be
gradually destroyed by the noise and cannot be detected. However, as a result of the RFSR effect, the output
SR-like spectral peak keeps its domination to become the maximal distinguishable spectral spike. Therefore,
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Fig. 10. The input and output SN ratios of the bistable system of Eq. (3) with parameters in Table 1.

Fig. 11. (a) The model for signal processing based on Eq. (3). (b) The way of conventional fault diagnosis. (c) The combination of Eq. (3)

model and the conventional FFT spectrum.
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the comparison of input and output SN ratios equally demonstrates the effectiveness of the large parameter
RFSR.
5. Discussion of the large parameter RFSR

We know from the above analysis that the one-dimensional dynamic equation (3) is a critical mathematical
model to generate the small parameter SR and large parameter RFSR phenomena. Eq. (3) is derived from the
motion of a Brownian particle in thermodynamics. It describes the dynamic trajectory xðtÞ of the particle in a
bistable potential function UðxÞ under the presence of noise nðtÞ and periodic forcing sðtÞ ¼ A0 sin ð2pf 0tÞ. In
fact, this model can also be served as a tool of signal processing. It can be understood as the signal processing
procedure shown in Fig. 11(a). That is, after the periodic signal sðtÞ plus noise nðtÞ passing through the bistable
system UðxÞ, the periodic component sðtÞ can be resonated out at the output xðtÞ of the bistable system with a
proper amount of noise nðtÞ.

In practical application, the recorded data or signal sðtÞ þ nðtÞ is usually obtained from test and
measurement instruments. The recorded data processed by the conventional FFT spectrum analysis is
different from the same data processed by the proposed RFSR method. For example, for a mechanical fault
diagnosis, a common procedure in the conventional FFT spectrum analysis is plotted in Fig. 11(b). It has been
used to monitor and forecast the possible faults of an operating machine. If there exists an early fault in the
machine and the measurement noise is so strong that the weak fault signal is submerged in the heavy noise,
then the conventional FFT spectrum analysis is hardly to capture the weak fault signal from the spectrum
Pð f Þ in Fig. 11(b). Hence, the early fault cannot be found. However, if the large parameter RFSR method
is combined with the FFT spectral analysis, the weak fault signal may be extracted from the strong noise.
Fig. 11(c) shows such combination. To detect a weak signal embedded in strong noise, according to Fig. 11(c),
the RFSR method can be used first to resonate and enlarge the weak signal. Then, the strengthened weak-
signal can be detected in the FFT power spectrum X ð f Þ.
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6. Applications of the large parameter RFSR

In practical engineering measurement and signal processing, to make full use of the RFSR technique to
realize the detection of the weak signal, two key parameters, the real sampling frequency f s and the frequency-
scale ratio R, need to be deeply understood. The sampling frequency f s determines whether the interested signal
frequency f 0 is moved into the low-frequency region in which most noise energy concentrates. The ratio R

determines whether the large frequency f 0 is scaled into the SR-required small frequency f 0c. Only when the
detected signal locates in the low frequency region and is driven by small periodic frequency, should a maximal
SR-like spectral spike be generated at f 0c. Thus, before making data sampling, we should first determine the
frequency f 0 of the detected signal. Then, according to Fig. 7, we can decide the practical sampling frequency
f sX50f 0. As to the frequency-scale ratio R, since it is not easily determined during the data processing, we
directly use the compressed sampling f sc ¼ f sc min rather than the ratio R according to the noise intensity D in
Table 1. (Hence, we obtain the ratio R ¼ f s=f sc.) The noise intensity D can be estimated according to the signal
correlation. During the calculation of Eq. (3), the f sc obtained through D should be properly adjusted again.

In practical signal processing, the system parameters a and b in Eq. (3) can also improve the RFSR effect. In
the previous example, parameters a and b are both equal to one. Thus the height of the potential barrier is
constant DU ¼ a2=ð4bÞ ¼ 1=4. If we change system parameters, the height of the potential barrier DU will also
be changed. By decreasing the height of the potential barrier, the Brownian particle can easily overcome the
barrier to form an SR phenomenon. That is, the RFSR effect is improved. Such a case will be illustrated in the
following two examples.

6.1. The monitoring and diagnosis of electromotor faults [26]

The first example is the monitoring and diagnosis of the faults of the electromotor in a condensation fan.
The fan is monitored and diagnosed periodically with a traditional FFT spectral analysis instrument. Some
acceleration sensors used for vibration test are distributed and fixed to the key parts of the equipment. In a
routine measurement and analysis, the acceleration power spectrum of the rolling bearing of the fan’s
electromotor in the vertical vibration direction is shown in Fig. 12(a). The practical sampling frequency is
f s ¼ 10 kHz and the recorded data length is 8192 points. The FFT spectrum is calculated with 1024 points and
averaged ten times.

In the FFT spectrum, except for some characters of slight scathe of the bearing elements at the frequency
750Hz and the frequency range from 1300 to 1900Hz, we cannot see any signs of other faults. When applying
the large parameter RFSR technique to this case, we obtain an unexpected RFSR spectrum which is plotted in
Fig. 12. The rolling bearing acceleration vibration spectrum (a) and its RFSR spectrum (b). For a clear view, (a) and (b) are zoomed in (c)

and (d), respectively.
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Fig. 13. The rolling bearing acceleration vibration spectrum (a) and its RFSR spectrum (b) obtained after one month.
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Fig. 12(b). Some different SR-like spectral peaks regularly emerge at running frequency (i.e., the shaft
frequency f 0 ¼ 50Hz) of the rotor and its multiple frequencies (i.e., 100Hz, 150Hz, 200Hz). Here in the
calculation of Eq. (3) model, the evaluated noise intensity is D ¼ 0:227mm=s2, the compressed sampling
frequency is f sc ¼ 2:5Hz, and the system parameters are a ¼ 0:4 and b ¼ 1. For a clear display of the low-
frequency spectral structure, Figs. 12(a) and (b) are zoomed in Figs. 12(c) and (d), respectively. By the
knowledge and experiences of fault diagnosis [27,28], the SR-like spectral spikes at the fundamental frequency
and its harmonics may forecast such early mechanical faults in the equipment as rub-impact of the rotor,
mechanical looseness, shaft-misalignment, and so on.

To distinguish and confirm what an early fault may exist, the full test of the whole fan was done. The test
result exposes that the vibration amplitude of the motor’s front-right groundsill is comparatively larger than
that of the other parts of the fan, and that the vibration value of the lamina part is very small. Considering the
Lorentzian distribution of the spectrum, we think the height difference between the shaft-frequency peak and
its harmonic peaks is not large. Thus a primary conclusion is that the possible fault is the mechanical
looseness, and that the front-right groundsill of the motor may predicate the looseness position. Since the
vibration value is very small, the fan equipment can continue to operate. But it should be closely monitored.
Especially, its electromotor should be frequently examined.

One month later, the acceleration vibration power spectrum of the rolling bearing at the same place of the
electromotor is demonstrated in Fig. 13(a) again. The practical sampling parameters are the same as stated in
Fig. 12. In the vibration spectrum, the spectral peaks at the running frequency and its multiple frequencies
appeared. The occurrence of these frequency peaks confirms the existence of the early fault of the mechanical
looseness of the fan equipment. These peaks also show the further expansion of the fault after a period of time.
The expanded fault is easily obtained by the traditional FFT spectral analysis.

As a comparison, Fig. 13(b) gives the RFSR spectrum corresponding to Fig. 13(a). The relative parameters
are D ¼ 0:418mm=s2, f sc ¼ 3Hz, a ¼ 0:2; b ¼ 1. Obviously, the spectral peaks at the running frequency and
its multiple frequencies in Fig. 13(a) are further amplified by the RFSR. Because the vibration intensity of
Fig. 13 is smaller than 1:3mm=s (by the standard ISO3945) and the vibration amplitude changes little, the
mechanical looseness is not so serious and the motor can still continue to work with careful monitoring. In
the consequent mid-period examination and maintenance for the condensation fan, the groundsill looseness in
the front-right side of the fan’s electromotor proves our diagnosis to the fan’s fault.

6.2. The vibration analysis of metal cutting process

Another practical instance of applying the large parameter RFSR technique is the vibration signal analysis
of the metal cutting process. The experiment is performed at a horizontal numerical control lathe (type:
CAK6136P CNC). A piezoelectricity acceleration sensor is fixed at the head of a cutting tool in vertical
direction and the signal from the sensor is sampled and recorded in a computer. The sampling frequency is
20.48 kHz and the recorded data is 16384 points. The data length for FFT spectrum calculation is 4096 points
and the spectrum is averaged five times. A steel bar, type 45# and diameter f40mm and hardness HB235, is
selected as a test cutting material. The surface of the bar is drilled a blind hole of 6mm deep and f40mm in
diameter. A piece of column steel, type 40Cr and hardness HB281, is fully inserted into the blind hole. In so
doing, the steel-bar becomes an uneven material. Once the cutting tool cuts the hard point of the bar, a
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Fig. 14. The time waveforms and the spectra of the cutting vibration. (a) Recorded data waveform. (b) RFSR waveform of the recorded

data with a ¼ 0:1; b ¼ 1 and f sc ¼ 22Hz. (c) Spectrum of the recorded data. (d) Spectrum of the RFSR waveform. (e) and (f) are the low-

frequency spectra of (c) and (d), respectively.
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periodic pulse vibration will be produced. Obviously, the pulse period or frequency is determined by the
rotating speed of the lathe spindle. In the experiment, the real rotating speed of the lathe spindle is 760 rev/
min, the feed is 0.1mm/rev, and the cutting depth is 0.5mm.

The vibration of the cutting process is depicted in Fig. 14. Figs. 14(a) and (c) show the sampled data
waveforms and their frequency spectra, respectively. The time waveform appears in disorder and seems to
present a shock in the cutting. The spectrum shows rich vibration property in the low-frequency region and
the main mode character of the cutting tool between 3 and 4.5 kHz. Zooming in the low-frequency region (see
Fig. 14(e)), we notice that the harmonic frequencies of the fundamental frequency 12.7Hz extends to
more than 300Hz. The fundamental frequency 12.7Hz is just the real rotating speed of the lathe spindle
760 rev/min. Fig. 14(e) shows clearly that the cutting process exists periodically with vibration at the period
of the rotating speed of the lathe spindle and its harmonics. If the hard point on the surface of the steel-
rod is unknown, only by Figs. 14(a), (c) and (e), it is difficult to know what causes the shock waveform in
the time domain and harmonic spectrum in the frequency field, and what condition the cutting process may
have.

With the large parameter RFSR technique, we obtained the new results shown in Figs. 14(b), (d) and (f).
Here the estimated noise intensity is D ¼ 0:411mm=s2, the system parameters are set to a ¼ 0:1 and b ¼ 1. The
compressed sampling frequency is f sc ¼ 22Hz. In Figs. 14(d) and (f), most of the high-frequency mode
energy is accumulated in the low-frequency region. This energy accumulation increases drastically the height
of the fundamental frequency and its harmonic peaks. The fundamental frequency amplitude becomes
the highest spectral spike prior to other harmonic peaks. Meanwhile, in Fig. 14(b), the RFSR time wave-
form clearly shows the periodic pulses representing the vibration state of the cutting hard point of the
steel bar. The width between periodic pulses is just one revolution time span of the lathe spindle T ¼ 60=760 ¼
0:079 s.
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7. Conclusions

Conventional SR in signal processing mainly focuses on small parameters, such as rather low frequency and
small noise. It has been found that small parameter SR generally does not work well for the case of high-
frequency weak signal embedded in strong noise.

In this paper, we first summarize the small parameter SR phenomenon through a simplest bistable system
subjected to a weak periodic signal plus small noise. The basic requirement of producing a distinguishable SR
spectral spike is that the driving signal frequency should locate at the spectral low-frequency region in which
most noise energy concentrates. In order to apply the SR technique to practical large parameter situation, a
new approach, the re-scaling frequency stochastic resonance (RFSR) is proposed. The RFSR technique can
detect a large-frequency weak signal from heavy noise. Our results show that for the maximal SR-like spectral
spike at the driving frequency f 0, the ratio k of the sampling frequency f s to the driving frequency f 0 should be
k ¼ f s=f 0X50. For convenient data processing, the compressed sampling frequency f sc can be determined
according to Table 1, and the system parameters a and b can also be adjusted to improve the RFSR effect. The
study of the input and output SN ratios of a bistable system demonstrates the effectiveness of the RFSR
method, which has been further illustrated by two applications.
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