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Abstract

In this paper, the vibrations are studied of a rectangular plate with two opposite sides simply supported. To the other

two sides of the plate linear springs and dampers are attached. By using the recently developed adapted version of the

method of separation of variables the relationship between the plate parameters and the damping rates is obtained

analytically.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible structures, like tall buildings, suspension bridges, and overhead power transmission lines are often
subjected to oscillations due to different causes, such as windflows or earthquakes. In some cases such
oscillations may cause real trouble. For instance, in 1940 the Tacoma Narrow Bridge collapsed completely
because of windflow-induced torsional oscillations of the bridge deck. The collapse of the Tacoma Narrow
Bridge clarified the need for developing new methods of designing highway structures to resist wind effects.

Elongated flexible structures such as bridge decks, cables and columns are particularly susceptible to wind
loads. Even if they are designed with plenty of strength to resist the static wind load. However, dynamic
flow–structure interactions can give rise to trouble for certain ranges of flow speeds. Such troublesome
aeroelastic phenomena include flutter, vortex shedding, buffeting and wind-rain-induced vibrations.

According to the Federal Highway Administration [1] flutter occurs when the interaction of a bluff section
and the wind create a condition in which small motions of the bridge deck can extract energy from the wind
and produce larger motions. This situation is often referred to as negative damping. Flutter produces motions,
often in the form of torsional oscillations, that grow exponentially. It is believed nowadays that flutter caused
the collapse of the Tacoma Narrow Bridge.

Buffeting is the beating of wind gusts against a structure, causing oscillations. It can lead to long-term
fatigue damage and unacceptably large, structural motions. Vortex shedding causes usually high-frequency
oscillations with small amplitudes. Galloping oscillations of iced overhead power transmission lines in a
windfield are examples of low-frequency vibrations with large amplitudes. These galloping oscillations tend to
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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occur at low wind speeds and also give rise to material fatigue. Wind-rain-induced vibrations usually occur at
the main cables of cable-stayed bridges. The water changes the aerodynamic behavior of the cable sometimes
in such a way that these cables become unstable and start to oscillate. An example was the undesirable
vibration of the Erasmus Bridge in Rotterdam during storm and rainy weather just after its opening.

The presence of any of these flow effects on structures are problems that demand attention. Simple models
which describe these oscillations can be expressed in initial-boundary value problems for wave equations like
in Refs. [2–4], for beam equations like in Refs. [5–16] or for plate equations like in Refs. [17–19]. To suppress
the oscillations various types of boundary damping can be applied.

In most cases the literature on plate equations deals with classical boundary conditions representing
clamped, simply supported or free edges. Leissa [20] gave a detailed description of 21 distinct cases for
rectangular plates which involve all possible combinations of classical boundary conditions. A much smaller
number of papers can be found that deal with edges which are elastically restrained against translation and/or
rotation or with other nonclassical boundary conditions (see, for instance, Refs. [18,19,21]). In this paper,
boundary damping (such as damping which is proportional to vertical and angular velocities) will be included
in the boundary conditions. Compared to the existing literature these types of boundary damping for plate
equations seem to be not widely studied before.

In this paper, a plate equation will be used to study for instance the flow-induced oscillations of a
suspension bridge. The deck of the bridge is modeled as a rectangular plate, and the cables are modeled as
linear springs densely attached to two opposite edges of the plate (Figs. 1 and 2). Such a plate configuration
can be described by the following initial-boundary value problem:

rut̄t̄ þDðuxxxx þ 2uxxyy þ uyyyyÞ ¼ �f̄ ðx; y; t̄; u; ut̄Þ; 0oxol; 0oyod; t40, (1)

uðx; y; 0Þ ¼ u0ðx; yÞ; ut̄ðx; y; 0Þ ¼ u1ðx; yÞ; 0oxol; 0oyod, (2)

uð0; y; t̄ Þ ¼ uðl; y; t̄ Þ ¼ uxxð0; y; t̄ Þ ¼ uxxðl; y; t̄ Þ ¼ 0; 0oyod, (3)

Dðuyyy þ ð2� nÞuxxyÞ ¼ �p̄2u� �ā1ut̄ for y ¼ 0; 0oxol, (4)

Dðuyyy þ ð2� nÞuxxyÞ ¼ p̄2uþ �ā1ut̄ for y ¼ d; 0oxol, (5)

uyy þ nuxx ¼ ��d̄ut̄y for y ¼ 0; 0oxol, (6)

uyy þ nuxx ¼ �d̄ut̄y for y ¼ d; 0oxol, (7)

where uðx; y; t̄ Þ is the vertical displacement of the plate in z-direction, t̄ is time, l and d are the length and the
width of the plate, respectively, � is a small, positive dimensionless parameter, ā1 and d̄ are positive damping
y
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Fig. 1. A schematic representation of the bridge-cable-system at a cross-section in the ðu; yÞ plane for a fixed x ¼ x0 with 0ox0ol.
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Fig. 2. A model of a suspension bridge (dampers are not depicted).
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constants, p̄2 represents the linear restoring forces of the springs, D ¼ Eh3=12ð1� n2Þ is the flexural rigidity, E

is Young’s modulus, n is the Poisson’s ratio with 0ono0:5, r is the mass density per unit area of the plate
surface, h is the thickness of the plate, and f̄ ðx; y; t̄; u; ut̄Þ is a (usually) nonlinear, aerodynamical force (an
example of which is explicitly given in Ref. [17]). The initial displacement and the initial velocity of the plate in
z-direction are given by u0ðx; yÞ and u1ðx; yÞ, respectively. The boundary conditions (4)–(7) are nonclassical
ones. These seem not to have been studied in the literature before. These boundary conditions describe two
types of dampers that are attached to the edges of the plate as can be seen from Fig. 1. These dampers model
as damping which is proportional to the vertical velocity (see Refs. [4,5]) and damping which is proportional to
the angular velocity (see also Refs.[6,22]).

2. Analysis of the linearized problem

Using simple transformation of time t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðD=rÞ

p
t̄ initial-boundary value problem (1)–(7) can be simplified

and be written in the following form:

utt þ uxxxx þ 2uxxyy þ uyyyy ¼ �f ðx; y; t; u; utÞ; 0oxol; 0oyod; t40,

uðx; y; 0Þ ¼ u0ðx; yÞ; utðx; y; 0Þ ¼ u1ðx; yÞ; 0oxol; 0oyod,

uð0; y; tÞ ¼ uðl; y; tÞ ¼ uxxð0; y; tÞ ¼ uxxðl; y; tÞ ¼ 0; 0oyod,

uyyy þ ð2� nÞuxxy ¼ �p2u� �a1ut for y ¼ 0; 0oxol,

uyyy þ ð2� nÞuxxy ¼ p2uþ �a1ut for y ¼ d; 0oxol,

uyy þ nuxx ¼ ��duty for y ¼ 0; 0oxol,

uyy þ nuxx ¼ �duty for y ¼ d; 0oxol, (8)

where f ¼ f̄ =D, p2 ¼ p̄2=D, a1 ¼ ā1=
ffiffiffiffiffiffiffi
rD
p

, and d ¼ d̄
ffiffiffiffiffiffiffiffiffi
D=r

p
. As was mentioned before, one of the simplest

models of suspension bridges can be given by a rectangular plate with two opposite edges simply supported
and linear springs densely attached to the two other edges (see Fig. 2). In this section such a plate will be
considered in a wind-flow. We will linearize the initial-boundary problem (8), and will deal only with the terms
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of Oð1Þ and Oð�Þ, because these terms have the most significant influence on the stability of the system. The
term �aut will be considered because it is known that it brings instability in the system (due to instability
criterion of Den Hartog [23]). After linearization the initial-boundary problem (8) transforms to

utt þ uxxxx þ 2uxxyy þ uyyyy ¼ a�ut; 0oxol; 0oyod; t40, (9)

uðx; y; 0Þ ¼ u0ðx; yÞ; utðx; y; 0Þ ¼ u1ðx; yÞ; 0oxol; 0oyod, (10)

uð0; y; tÞ ¼ uðl; y; tÞ ¼ uxxð0; y; tÞ ¼ uxxðl; y; tÞ ¼ 0; 0oyod, (11)

uyyy þ ð2� nÞuxxy ¼ �p2u� �a1ut for y ¼ 0; 0oxol, (12)

uyyy þ ð2� nÞuxxy ¼ p2uþ �a1ut for y ¼ d; 0oxol, (13)

uyy þ nuxx ¼ ��duty for y ¼ 0; 0oxol, (14)

uyy þ nuxx ¼ �duty for y ¼ d; 0oxol, (15)

where a is positive aerodynamical constant. Let us make the following transformation uðx; y; tÞ ¼
eð�at=2Þvðx; y; tÞ. Then system (9)–(15) can be rewritten as

vtt þ vxxxx þ 2vxxyy þ vyyyy ¼ Oð�2Þ; 0oxol; 0oyod; t40, (16)

vðx; y; 0Þ ¼ v0ðx; yÞ; vtðx; y; 0Þ ¼ v1ðx; yÞ; 0oxol; 0oyod, (17)

vð0; y; tÞ ¼ vðl; y; tÞ ¼ vxxð0; y; tÞ ¼ vxxðl; y; tÞ ¼ 0; 0oyod, (18)

vyyy þ ð2� nÞvxxy ¼ �p2v� �a1vt þ Oð�2Þ; y ¼ 0; 0oxol, (19)

vyyy þ ð2� nÞvxxy ¼ p2vþ �a1vt þ Oð�2Þ; y ¼ d; 0oxol, (20)

vyy þ nvxx ¼ ��dvty þ Oð�2Þ; y ¼ 0; 0oxol, (21)

vyy þ nvxx ¼ �dvty þ Oð�2Þ; y ¼ d; 0oxol. (22)

Now, the Oð�2Þ terms are neglected and the problem (16)–(22) will be studied further. It will be shown for
positive values of d and a1 that the energy related to v decreases for increasing times. For this purpose an
energy of system (16)–(22) will be written

EðtÞ ¼ U þ P1 þ P2, (23)

where U is the kinetic energy of the plate, P1 is the potential energy of the plate and P2 is the potential energy
due to linear springs (which are densely attached to the two edges at y ¼ 0 and y ¼ d), that is

U ¼
1

2

Z t

0

Z d

0

v2t ; P1 ¼

Z t

0

Z d

0

1

2
v2xx þ

1

2
v2yy þ ð1� nÞv2xy þ nvxxvyy

� �
dxdt,

P2 ¼
1

2
p2

Z t

0

Z l

0

ðv2ðx; 0; tÞ þ v2ðx; d; tÞÞdxdt.

It is well known that the damping occurs in a system if the first time derivative from energy is nonpositive. In
this case it follows that

dE

dt
¼ ��a1

Z l

0

ðv2t ðx; 0; tÞ þ v2t ðx; d; tÞÞdx� �d
Z l

0

ðv2tyðx; 0; tÞ þ v2tyðx; d; tÞÞdxp0. (24)

From the last expression it can clearly be seen that the first-order time derivative of the energy is nonpositive,
so damping occurs in the system. The adapted version of the method of separation of variables [21,22] can be
used to find nontrivial solutions of Eqs. (16)–(22) in a form TðtÞX ðxÞY ðyÞ. Substituting this expression for
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vðx; y; tÞ into Eq. (16) and dividing by X ðxÞY ðyÞTðtÞ we obtain the following:

d2T

T dt2
þ

X
::::

X
þ 2

€X

X

Y 00

Y
þ

Y 0000

Y
¼ 0, (25)

where � stands for d=dx and 0 stands for d=dy. By using the method of separation of variables follows from the
boundary conditions (25) that ð1=TÞðdT=dtÞ ¼ m, and from Eq. (25) that

dT

T dt
¼ m; ¼)

d2T

T dt2
¼ m2;

€X

X
¼ �b¼)

X
::::

X
¼ b2, (26)

where m and b are complex-valued separation constants. And so, it follows from Eqs. (16)–(22) and Eq. (25)
that

Y 0000 � 2bY 00 þ ðb2 þ m2ÞY ¼ 0; 0oyod, (27)

Y 00 � nbY ¼ ��dmY 0; y ¼ 0, (28)

Y 00 � nbY ¼ �dmY 0; y ¼ d, (29)

Y 000 � ð2� nÞbY 0 ¼ �ðp2 þ �a1mÞY ; y ¼ 0, (30)

Y 000 � ð2� nÞbY 0 ¼ ðp2 þ �a1mÞY ; y ¼ d, (31)

X ¼ €X ¼ 0; x ¼ 0 and x ¼ l. (32)

The characteristic equation for the differential equation (27) is

k4
� 2bk2

þ b2 ¼ �m2, (33)

where from Eq. (25) and from boundary condition (32) it follows that b ¼ bn ¼ ðnp=lÞ2 with n 2 Zþ. It is
assumed that k and m can be expanded in formal power series in �, so k ¼ k0 þ �k1 þ � � � and
m ¼ m0 þ �m01 þ � � �. Collecting equal powers of � in Eq. (33) we obtain

Oð1Þ : k4
0 � 2bnk2

0 þ b2n ¼ �m
2
0, (34)

Oð�Þ : 4k0k1ðk
2
0 � bnÞ ¼ �2m0m01. (35)

For � ¼ 0 this problem completely coincides with the linear problem which has been studied in Ref. [17]. By
putting �m20 ¼ a it follows from Ref. [17] that a is always real and positive, so m0 ¼ �ig, where g ¼

ffiffiffi
a
p

. In Ref.
[17] it has been shown that there are three cases that have to be considered in Eq. (34): g4bn, 0ogobn and
g ¼ �bn.

2.1. The case g4bn

The solutions of the characteristic equation (34) in this case are k0 ¼ �k01 with k01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p
or k0 ¼ �k02

with k02 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p
. The corresponding solutions k1 of the Oð�Þ problem (35) will be then k1 ¼ �im01=2k0. To

simplify the calculations the following is introduced:

k11 ¼
m2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p � i
m1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p ; k12 ¼
m1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p þ i
m2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p , (36)

where m01 ¼ m1 þ im2. The general solution of Eq. (27) can then be written in the form

Y ðyÞ ¼ C1 coshðm1yÞ þ C2 sinhðm1yÞ þ C3 coshðm2yÞ þ C4 sinhðm2yÞ, (37)

where C1;C2;C3;C4 are constants of integration and m1 ¼ k01 þ �k11 þ Oð�2Þ, m2 ¼ k02 þ �k12 þ Oð�2Þ. By
substituting Eq. (37) into the four boundary conditions (28)–(31) a system of four equations for C1, C2, C3,
and C4 is obtained. To find nontrivial solutions for Y ðyÞ the determinant of the corresponding coefficient
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matrix should be set equal to zero, that is,

m2
1 � nbn 0 m2

2 þ nbn 0

j1 s1 j2 s2

p2 þ �a1m m1ðm
2
1 � n1bnÞ p2 þ �a1m m2ðm

2
2 � n1bnÞ

f 1 h1 f 2 h2

����������

����������
¼ 0, (38)

where ji ¼ ðm
2
i � nbnÞ coshðmidÞ � �dmmi sinhðmidÞ, si ¼ ðm

2
i � nbnÞ sinhðmidÞ � �dmmi sinhðmidÞ, f i ¼ miðm

2
i�

n1bnÞ sinhðmidÞ � ðp
2 þ �a1mÞ coshðmidÞ, hi ¼ miðm

2
i � n1bnÞ coshðmidÞ � ðp

2 þ �a1mÞ sinhðmidÞ for i ¼ 1; 2.
Functions ji, si, f i and hi are functions of m1 and m2 which we expand in a power series in �. Then
Eq. (38) can be expanded into a power series in �. Then the Oð1Þ, Oð�Þ; . . . terms are collected and set to equal
zero. The result of Oð1Þ problem sets equal to zero is given in Ref. [17]. Now we will solve Oð�Þ problem. We are
interested only in the damping rates which are determined by m ðdT=T dt ¼ m ¼ m0 þ �m01 þ � � �Þ. It is known
that m0 is purely imaginary (see Ref. [17])). For the damping rates only the real part of m01 is important, that is,
m1. By using the formula manipulation package Maple the following expression for m1 can be obtained:

m1 ¼ ½2p2dgB0ðB10 � 2bnB11 þ 2n2Þ þ 2p2dgB0ðB10 þ 2bnB11 þ 2ð2B1 þ n2ÞÞ coshðg1dÞ cosðg2dÞ

� 2gg1B2ð�a1ðg21 � n1bnÞðg
2
2 þ nbnÞ þ df�p4 þ g22ðg

2
1 � nbnÞðg

2
2 þ n1bnÞgÞ coshðg1dÞ sinðg2dÞ

� 2gg2B2ða1ðg21 � nbnÞðg
2
2 þ n1bnÞ þ dfp4 þ g21ðg

2
1 � n1bnÞðg

2
2 þ nbnÞgÞ sinhðg1dÞ cosðg2dÞ

� 2p2gða1B2
2 þ dfnbnB10 þ B7B11 � n1bnB1gÞ sinhðg1dÞ sinðg2dÞ�=ðb0 þ b1 þ b2 þ b3 þ b4Þ,

where

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p
; g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p
; n1 ¼ 2� n; n2 ¼ nn1b

2
n; n3 ¼ ð5n2 � 10nþ 12Þb2n; n4 ¼ n2n21b

4
n,

n5 ¼ ð3n� 4Þbn; n6 ¼ n2b2n; n7 ¼ n21b
2
n; n8 ¼ 2ð3� nÞ; n9 ¼ 2ð5n� 7Þbn; n10 ¼ ð3n2 � 2n� 2Þb2n,

n11 ¼ 8� 7n; n12 ¼ 4ð1� nÞ; B0 ¼ g1g2; B1 ¼ B2
0; B2 ¼ g21 þ g22; B3 ¼ g41 � g42; B4 ¼ g61 þ g62,

B5 ¼ g61 � g62; B6 ¼ 3g21g
2
2 � n2; B7 ¼ B1 � n2; B8 ¼ n1g41 þ ng42; B9 ¼ ng41 þ n1g42; B10 ¼ g41 þ g42,

B11 ¼ g21 � g22; b0 ¼ �
n2B4 þ 2bnB3B6 þ ð5B2

1 � n3B1 þ n4ÞB2

B0
,

b1 ¼ p2d
nbnB4 þ B3B7 þ n5B1B2

2B0
þ b0

� �
coshðg1dÞ cosðg2dÞ,

b2 ¼ �2p2 n2ð5g
2
1 þ g22Þ � 3B1ð3g21 þ g22Þ � 2n9B1 þ n1bnð2g

4
1 þ g42Þ � g41ð2g

2
2 þ 7nbnÞ

2g1

�

� d
p4B2

2 þ n6B5 þ ðB
2
1 � n7B1 þ n4Þð3g21 � g22Þ þ 2bnB7ðB8 � n8B1Þ � 2n2B1ð4g21 � 3g22Þ

2g1

�d
�2n6g41ðg

2
2 þ 2n1bnÞ þ 2nbng

6
1ð2g

2
2 þ n1bnÞ

2g1

�
coshðg1dÞ sinðg2dÞ,

b3 ¼ �2p2�n2ðg
2
1 þ 5g22Þ þ 3B1ðg21 þ 3g22Þ þ 2n9B1 þ n1bnðg

4
1 þ 2g42Þ þ g42ð2g

2
1 � 7nbnÞ

2g2

�

� d
p4B2

2 þ n6B5 þ ðB
2
1 � n7B1 þ n4Þðg21 � 3g22Þ þ 2bnB7ðB9 � n8B1Þ � 2n2B1ð3g21 � 4g22Þ

2g2

�d
2n6g42ðg

2
1 � 2n1bnÞ þ 2nbng

6
2ð2g

2
1 � n1bnÞ

2g2

�
sinhðg1dÞ cosðg2dÞ,

b4 ¼ 2ðp2dðB2B7 þ bnB3Þ þ 2p4B2 � nbnB4 � ðB1 þ n10ÞB3 þ bnðn11B1 � n12n2ÞB2Þ sinhðg1dÞ sinðg2dÞ.
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2.2. The case 0ogobn

The solutions of the characteristic equation (34) in this case are k0 ¼ �k01 with k01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p
or k0 ¼ �k02

with k02 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p
. The corresponding solutions k1 of the Oð�Þ problem (35) will be then k1 ¼ �2m0m01=

ð4k0ðk
2
0 � bnÞÞ. To simplify the calculations the following is introduced:

k11 ¼
m2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p � i
m1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ bn

p ; k12 ¼ �
m2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p þ i
m1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g� bn

p , (39)

where m01 ¼ m1 þ im2. The general solution of Eq. (27) can be written in the form (37). By substituting Eq. (37)
into the four boundary conditions (28)–(31) a system of four equations for C1, C2, C3, and C4 is obtained. To
find nontrivial solutions for Y ðyÞ the determinant of the corresponding coefficient matrix should be set equal
to zero. As in the previous case we are interested in the damping rate m. Eq. (38) should be expanded in a
power series of �. The Oð1Þ problem has already been solved in Ref. [17]. As in case when g4bn we will deal
with Oð�Þ problem. The real part of m01, that is, m1 describes damping. With the help of Maple the following
expression for determination of m1 is obtained:

m1 ¼ ½�2p2dgP0ðP10 � 2bnP2 þ 2s2Þ � 2p2dgP0ðP10 þ 2bnP2 � 2ð2P1 þ s2ÞÞ coshðg1dÞ coshðg3dÞ

� 2gg1P6ð�a1P11P12 þ dðp4 � g23P13P14ÞÞ coshðg1dÞ sinhðg3dÞ � 2gg3P6ð�a1P13P14

þ dðp4 � g21P11P12ÞÞ sinhðg1dÞ coshðg3dÞ � 2p2gð�a1P� 22 þ dð�nbnP10 þ P� 2P7

� 2n1bnP1ÞÞ sinhðg1dÞ sinhðg3dÞ�=ða0 þ a1 þ a2 þ a3 þ a4Þ, ð40Þ

where

g3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bn � g

p
; s2 ¼ nn1b

2
n; s3 ¼ ð5n2 � 10nþ 12Þb2n; s4 ¼ n2n21b

4
n; s5 ¼ ð4� 3nÞbn; s6 ¼ n2b2n,

s7 ¼ n21b
2
n; s8 ¼ 2ð3� nÞ; s9 ¼ 2ð5n�Þbn; s10 ¼ ð3n2 � 2n� 2Þb2n; s11 ¼ 8� 7n; s12 ¼ 4ð1� nÞ,

P0 ¼ g1g3; P1 ¼ P2
0; P2 ¼ g21 þ g23; P3 ¼ g41 � g43,

P4 ¼ g61 þ g63; P5 ¼ g61 � g63; P2 ¼ g21 � g23,

P7 ¼ P1 þ s2; P8 ¼ n1g41 þ ng43; P9 ¼ ng41 þ n1g43,

P10 ¼ g41 þ g43; P11 ¼ g21 � n1bn; P12 ¼ g22 � nbn,

P13 ¼ g21 � nbn; P14 ¼ g22 � n1bn; a0 ¼ �
1

P0
ðs2P5 � 2bnP3ð3P1 þ s2Þ þ ð5P2

1 þ s3P1 þ s4ÞP6Þ,

a1 ¼ p2d
nbnP5 � P3P7 þ s5P1P6

P0
� a0

� �
coshðg1dÞ coshðg3dÞ,

a2 ¼ d
p4P2

6 � s6P4 þ ðP
2
1 þ s7P1 þ s4Þð3g21 þ g23Þ � 2bnP7ðP8 þ s8P1Þ � 2nbng

6
1ð2g

2
3 � n1bnÞ

2g1

�

þ d
2s6g41ðg

2
3 � 2n1bnÞ þ 2s2P1ð4g21 þ 3g23Þ

2g1
þ p2 s2ð5g

2
1 � g23Þ þ 3P1ð3g21 � g23Þ þ s9P1

g1

þ p2 n1bnð2g
4
1 þ g43Þ � g41ð2g

2
1 þ 7nbnÞ

g1

�
coshðg1dÞ sinhðg3dÞ,
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a3 ¼ d
p4P2

6 þ s6P4 þ ðP
2
1 þ s7P1 þ s4Þðg21 þ 3g23Þ � 2bnP7ðP9 þ s8P1Þ � 2nbng

6
3ð2g

2
1 � n1bnÞ

2g3

�

� d
2s6g43ðg

2
1 � 2n1bnÞ þ 2s2P1ð3g21 þ 4g23Þ

2g1
þ p2�s2ðg

2
1 � 5g23Þ � 3P1ðg21 � 3g23Þ þ s9P1

g3

þ p2 n1bnðg
4
1 þ 2g43Þ � g43ð2g

2
3 þ 7nbnÞ

g3

�
sinhðg1dÞ coshðg3dÞ,

a4 ¼ 2ðp2dðP6P7 � 2bnP3Þ � nbnP5 þ ðP1 � s10ÞP3

þ 2bnðs11P1 � s12s2ÞP6 þ 2p4P6Þ sinhðg1dÞ sinhðg3dÞ.

In Table 1 some numerical values of m1 are given for l ¼ 10, d ¼ 1, and p2 ¼ 1, and both cases g4bn and
0ogobn. It should be observed that the real part of the eigenvalues m is equal to �m1 þ 0ð�2Þ.

2.3. The case g ¼ �bn

This case is equivalent to the case m2 ¼ �b2n, and the characteristic equation (35) becomes

k2
ðk2
� 2bnÞ ¼ 0. (41)

The solutions of the characteristic equation (41) have the following form:

k1;2 ¼ 0; k3;4 ¼ �
ffiffiffiffiffiffiffi
2bn

p
.

The solution of differential equation (27) is then given by

Y ðyÞ ¼ S1 þ S2yþ S3 cosh
ffiffiffiffiffiffiffi
2bn

p
y

� �
þ S4 sinh

ffiffiffiffiffiffiffi
2bn

p
y

� �
, (42)
Table 1

Approximations of the smallest values of m1 (in absolute value) for both cases g4bn and 0ogobn

n n ¼ 0:3

1 �0.855297 �22.341728 �433.570945 �1938.959555 �5310.646486

2 �0.365661 �51.177951 �472.567353 �1990.159190 �5373.548805

3 �0.248917 �74.642400 �539.166330 �2075.468321 �5478.159107

4 �0.302857 �71.725997 �634.933345 �2194.710712 �5624.096416

5 �0.456099 �66.622493 �760.536090 �2374.380172 �5810.748641

6 �0.666205 �82.120460 �914.621958 �2532.431739 �6037.205592

7 �0.905629 �113.319536 �1093.021721 �2748.079258 �6302.184704

8 �0.950153 �122.094399 �1370.698084 �2991.644196 �6603.960319

9 �1.207062 �130.647248 �1492.106746 �3259.485373 �6940.366182

10 �1.463350 �171.436777 �1693.489284 �3547.836399 �7308.457540

n n ¼ 0:4999

1 �1.065523 �21.565956 �431.037702 �1934.867307 �5305.084414

2 �0.606753 �50.356860 �462.559117 �1973.857451 �5351.354872

3 �0.441742 �74.235099 �517.330501 �2039.067654 �5428.433226

4 �0.446651 �62.423830 �598.595286 �2130.786084 �5536.245554

5 �0.580960 �63.402597 �710.702024 �2249.319256 �5674.660087

6 �0.734439 �66.858459 �858.991944 �2394.910204 �5843.460466

7 �0.983150 �70.724651 �1049.759653 �2567.652582 �6042.319116

8 �1.234722 �74.381885 �1290.355565 �2767.414212 �6270.767441

9 �1.488899 �77.635734 �1589.504836 �2993.778782 �6528.171732

10 �1.751121 �80.438284 �1957.918596 �3246.015997 �6813.713905
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where S1;S2;S3 and S4 are constants of integration. As in the previous two cases the following determinant
can similarly be obtained when we look for nontrivial solutions of the boundary value problem for Y ðyÞ

(where Y ðyÞ is given by Eq. (42)). Like in the previous two cases by using boundary conditions (28)–(31) a
system of the four equations for S1, S2, S3, and S4 is obtained. This system has nontrivial solution when the
determinant of the coefficient matrix for the unknown quantities Si ¼ 0; i ¼ 1; 2; 3; 4 is equal to zero. In this
case the determinant has the following form:

�nbn �dm b2
� nbn �dmb

�nbn �ð�dmþ nbndÞ ðb2
� nbnÞ coshðbdÞ � �dm sinhðbdÞ ðb2

� nbnÞ sinhðbdÞ � �dm coshðbdÞ

r �nbn r bðb2
� n1bnÞ

�r �ðnbn þ rdÞ bðb2
� n1bnÞ sinhðbdÞ � r coshðbdÞ bðb2

� n1bnÞ coshðbdÞ � r sinhðbdÞ

����������

����������
¼ 0, (43)

where b ¼
ffiffiffiffiffiffiffi
2bn

p
;r ¼ p2 þ �a1m. Solutions of Eq. (43) do not always exist. The existence strongly depends on

the values of the geometrical and the physical parameters of plate and springs. For example for l ¼ 10; d ¼
1; p2 ¼ 1; n ¼ 0:3; a1 ¼ 1 only a finite number of solutions exist, that is, only finite number of modes oscillate
with a shape-form given by Eq. (42). For other values of the parameters it may turns out that Eq. (43) has no
solutions at all (so only trivial solutions exist in this case).
3. Conclusions

In this paper, the damped vibrations of a rectangular plate with nonclassical boundary conditions have been
studied. These combinations of boundary conditions seems to be not considered in the literature before. These
rectangular plates may serve as simple models for a suspension bridge. For the rectangular plate the
relationship between the plate parameters, the frequencies and the damping rates have been obtained by using
an adapted version of the method of separation of variables (see Refs. [21,22]). This relationship has been
obtained analytically, and numerically approximations of the damping rates are given.

In this paper the analysis has been restricted to a linear model equation. Although, for more realistic
situations nonlinearities and torsional effects have to be included in the model equation. On the other hand,
for small amplitudes oscillations it usually turns out that a linear model describes these oscillations sufficiently
accurately.

From practical point of view uniform damping is important. In Eq. (8) for uðx; tÞ the term �aut (due to den
Hartog instability criterion) gives rise to instabilities. After the transformation uðx; tÞ ¼ expðð�at=2Þvðx; tÞÞ an
initial boundary value problem (16)–(22) for vðx; tÞ is obtained. For this problem the damping rates have been
determined (see Table 1). In order to have always damping for uðx; tÞ it easily follows that a=2þ m1 þ 0ð�Þ has
to be smaller than zero for all m1. So, to have uniform damping m1 has to satisfy m1o� a=2. For the
combination of two dampers (damping proportional to the velocity and damping proportional to the angular
velocity) it has been proven that damping really occurs in the system and from the numerical results it can be
conjectured that in this case a uniform damping can be realized.
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