
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr

jldimi@yahoo.f
Journal of Sound and Vibration 292 (2006) 869–880

www.elsevier.com/locate/jsvi
Chaos control in the uncertain Duffing oscillator

Samuel Bowonga,�, F.M. Moukam Kakmenib, Jean Luc Dimic
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Abstract

A robust control scheme is developed for the well-known chaotic Duffing equation subject to uncertainties. Based on

Lyapunov stability theory, sufficient conditions for tracking a smooth periodic orbit have been analyzed theoretically and

numerically. The robust feedback control law is composed of a dynamic compensator and a linearizing control law

including estimation of uncertainties. The control time is explicitly computed. Simulation results are presented to verify the

validity of the proposed scheme.

r 2005 Published by Elsevier Ltd.
1. Introduction

The control of chaotic systems has received increasing attention in recent years [1–7]. Ott et al. [1] provided
the first strategy to stabilize periodic orbits embedded in a chaotic attractor. Since then, several techniques
have been applied for the control of a variety of chaotic systems. The occurrence of a particular type of control
may depend on the structure of the underlying dynamical system considered. One approach is based on
backstepping design techniques [2,3]. Another exploits Lyapunov stability theory, enabling nonadaptive and
adaptive designs to be proposed for several type [4–7].

The purpose of this paper is to make a novel contribution to the Lyapunov control of chaotic continuous-
time systems. Because of the tremendous complexity of chaotic dynamics, the problem is restricted to the
Duffing equation which has been investigated as a benchmark chaotic system for vibration in several papers
[8–14]. The Duffing equation is of great interest because it has many applications in physics and engineering.
Indeed, systems as diverse as the forced pendulum, electrical circuits, oscillations in plasma, magneto-elastic
mechanical systems, suppressors of vibration, vibration absorbers, etc., are all governed by the Duffing
equation. The literature studying the Duffing equation is extensive, and it is well known that the solutions of
Duffing’s equation are already complicated enough to exhibit multiple periodic solutions, quasiperiodic orbits,
and chaos. A good guide to the properties of the Duffing equation is the book by Nayfeh and Mook [13].
ee front matter r 2005 Published by Elsevier Ltd.
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Highly recommended as a pioneering work in nonlinear dynamics is the book by Hayashi, which deals almost
exclusively with the Duffing equation [14].

In this paper, the general form of Duffing’s equation with an additive control input u is considered:

€xþ p _xþ p1xþ p2x3 ¼ uþ q cosot, (1)

where p, p1, p2, q and o are nonzero constant parameters. The control u is added so as to order or guide the
chaotic dynamics to meet our specific requirements. It is assumed that uncertainties such as modelling errors,
parameter variations, perturbing external forces and time lags are present in the model. That is, the problem of
robust control of chaotic signals against model uncertainties will be addressed. In this work, the authors are
interested in driving the state x to an appropriately defined reference signal xd at a finite time. This issue is
widely known as the tracking problem in the scientific community.

Previous works [15–24] have presented interesting results on the control of the forced Duffing equation (1).
For instance, Lyapunov methods [16], adaptive strategies [18–21], time-delay coordinates schemes [21], and
robust asymptotic linearization [23,24] have been reported. The seemingly first solution developed by Chen
and Dong [15] is applicable to Duffing’s equation only when p40 and p2 ¼ 1. In addition, their result solves
the local control problem, i.e., only those trajectories of (1) starting from a small neighborhood of the desired
reference orbit can be asymptotically controlled so as to stay on the desired trajectory. The assumption that
p40 was relaxed by Nijmeijer and Berghuis [16] following the classical Lyapunov direct method. Global
control results were obtained in Refs. [16,17]. However, in order to design a control law using Lyapunov
methods, one requires a priori knowledge about the model, which can be a restrictive condition (for example,
in the case of chaos synchronization applied to secure communication, the transmitter model is not exactly
known [22]). Adaptive control schemes can be considered as a form where a reference model tracks the
dynamics of the system. These techniques perform well and allow the control of Duffing’s equation, even
though the parameters are not all known [21] or are time-varying [20]. Nevertheless, such strategies have
drawbacks: the parameters of the model must be known. This requirement results in very complex feedback
schemes. The controller based on time-delay coordinates [21] is robust against modelling errors and perturbing
external forces; however, since the control scheme uses a discrete velocity estimator, it is very sensitive to noisy
measurements. As in adaptive schemes, robust asymptotic linearization is composed of two parts: an
uncertainty estimator and a linearizing control law [24]. The robust asymptotic feedback has the following
advantages in relation to adaptive control schemes: (i) the order of the proposed controller does not increase
with the number of parameters and (ii) if the system is nonlinear in its parameter structure, the robust
asymptotic feedback does not change because the controller does not require information about system’s
parameters. The main difference between adaptive schemes and robust asymptotic linearization is that the
latter does not require a priori knowledge about the model parameterization; however, it is not robust against
noisy measurements.

The contributions of this paper are twofold. First, a new solution for the control problem will be proposed
using advanced nonlinear control theory. The proposed strategy is an input–output control scheme which
comprises an uncertainty estimator and an asymptotic linearizing-like feedback. The robust asymptotic
controller is designed by means of the following procedure: (a) the uncertainties are lumped in a nonlinear
function, (b) the lumped nonlinear function is interpreted as an augmented state in such a way that the
extended system is dynamically equivalent to the original system, (c) in order to obtain an estimate of
the augmented state, a state estimator is designed for the extended system and (d) the estimated value of the
uncertainties is provided for the control law (via the estimated value of the augmented state). The above
procedure yields a feedback controller which leads to chaos control in spite of modelling errors, parametric
variations and/or external perturbations. It is pointed out that the control problem considered here differs
from that of Refs. [18–20]. The robustness of the feedback control law against model uncertainties and time
lags in the actuator is shown through numerical simulations.

The second contribution of this paper is to argue the importance of the control time in the context of chaos
control. It is well known in the nonlinear community that optimization is a key word for widespread
applications, and efforts should be made to fulfill optimization criteria such as the minimization of both
control time and required energy input for the process. Using Lyapunov stability theory, we derive an explicit
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expression for the control time and show how the feedback parameters affect the convergence rate. This can be
easily done by tuning the two parameters of the feedback control law.

It is hoped that the methodology developed for this peculiar chaotic system will be applicable to other types
of chaotic systems such as Chua’s circuits, Rössler and Lorenz systems and many other types of vibrational
systems. We think that this technique provides a strong tool for control theory and is full of promise because it
could be applied in a great range of problems: stabilization, observers, synchronization, etc.

2. Statement of the problem

It is a well known fact that the Duffing oscillator presents very complicated dynamics such as the
coexistence of chaotic attractors with periodic orbits [15]. In practical applications, it is desirable to induce
regular dynamics in the Duffing oscillator, e.g., to avoid fracture and degradation of the parts of a mechanism.
Thus, the control objective is to solve the following global tracking problem: for any bounded reference
trajectory whose derivatives are bounded and piecewise continuous on ½0;1Þ, to design a feedback control law
u that forces the output y ¼ x to track yd ¼ xd asymptotically for all tXTX0 and initial conditions ðxð0Þ; _xð0ÞÞ
despite modelling errors, parameter variations, perturbing external forces and time lags in the actuator, that is,

lim
t!T

yðtÞ ¼ ydðtÞ. (2)

Using x ¼ x1 and _x ¼ x2, Eq. (1) may be rewritten as follows:

_x1 ¼ x2,

_x2 ¼ Yðx1;x2; tÞ þ u, ð3Þ

where Yðx1; x2; tÞ ¼ �px2 � p1x1 � p2x
3
1 þ q cosot is a smooth nonlinear function.

In order to design a control law satisfying the control objective stated above, let us assume the following.

Assumption 1. Only the output y ¼ x1 is available for feedback.

Assumption 2. The function Yðx1;x2; tÞ is unknown.

Some comments regarding the above assumptions are in order. Assumption 1 is realistic because in most
cases only the position coordinate is available for feedback. Although its time derivative can be obtained by
means of encoders, the procedure is very sensitive to noisy measurements. Assumption 2 refers to a general
and practical situation because the term Yðx1;x2; tÞ involves the uncertainties in the system. Hence, the
nonlinear function Yðx1;x2; tÞ is unknown and it is clear that it cannot be directly used in a linearizing-type of
feedback. These kinds of uncertainties have previously been studied in the context of chaos control and
synchronization in Refs. [20–22].

The idea in dealing with the uncertain term Yðx1; x2; tÞ in Eq. (3) is to lump it into a new state Z. Thus, let
ZðtÞ ¼ Yðx1; x2; tÞ. In this way, system (3) can be rewritten as the following extended dynamically equivalent
system [7]:

_x1 ¼ x2,

_x2 ¼ Zþ u,

_Z ¼ Xðx1;x2; Z; u; tÞ, ð4Þ

where

Xðx1;x2; Z; u; tÞ ¼ x2q1Yðx1; x2; tÞ þ ðZþ uÞq2Yðx1; x2; tÞ

with qkYðx1;x2; tÞ ¼ qYðx1;x2; tÞ=qxk, k ¼ 1; 2.
For the sake of compactness, we introduce the following alternative description for system (4):

_z ¼ Azþ BðZþ uÞ,

_Z ¼ Xðz; Z; u; tÞ, ð5Þ
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where z ¼ ðx1;x2Þ
T, A and B are in the Brunovsky canonical form, i.e.,

A ¼
0 1

0 0

� �
and B ¼

0

1

� �
.

It is straightforward to prove that Cðx1;x2; Z; tÞ ¼ Z�Yðx1;x2; tÞ is a first integral of system (4). In order to
prove this property, it suffices to show that along the trajectories of system (4), one has dCðx1;x2; Z; tÞ=dt ¼ 0
for all tX0 or equivalently x2q1Cðx1;x2; Z; tÞ þ ðZþ uÞq2Cðx1;x2; Z; tÞ þ _ZqZCðx1;x2; Z; tÞ þ qtCðx1;x2; Z; tÞ ¼ 0
(with qkCðx1;x2; Z; tÞ ¼ qCðx1; x2; Z; tÞ=qxk, k¼ 1; 2, qZCðx1;x2; Z; tÞ ¼ qCðx1;x2; Z; tÞ=qZ and qtCðx1;x2; Z; tÞ ¼
qCðx1;x2; Z; tÞ=qt). This is automatically satisfied because qZCðx1;x2; Z; tÞ ¼ 1 and _Z ¼ �x2q1Cðx1; x2; Z; tÞ�
ðZþ uÞq2Cðx1;x2; Z; tÞ � qtCðx1; x2; Z; tÞ. Hence, system (4) is dynamically equivalent to system (3). This
implies that the augmented state Z provides the dynamics of the uncertain function Yðx1; x2; tÞ.

3. A feedback control law with estimation of uncertainties

Let e 2 R2 be the tracking error vector whose components are given by e1 ¼ x1 � x1d and e2 ¼ x2 � x2d and
NðyÞ ¼ NTðyÞ a positive definite matrix, solution of the differential matrix equation:

dX

dy
¼

1

b
yð1=aÞ�1½�AX � XAT � by�1=aX þ BBT�. (6)

Here a and b are positive constants and y is the unique positive solution of the equation:

y1þ3=a ¼
X2
i;j¼1

½F ða; bÞ��1ij y
ð1=2Þðiþj�2Þeiej, (7)

where ½F ða;bÞ��1ij are the elements of the inverse matrix of ½F ða; bÞ� which elements are given by

½F ða; bÞ�ij ¼
ð�1Þiþj

ða=bÞ5�i�j
ð4� i � jÞ!

ð2� iÞ!ð2� jÞ!½ðaþ 1Þ � � � ðaþ 5� i � jÞ�
; i; j ¼ 1; 2. (8)

Moreover, we have

½NðyÞ�ij ¼
ð�1Þiþj

ðða=bÞy1=aÞ5�i�j
ð4� i � jÞ!

ð2� iÞ!ð2� jÞ!½ðaþ 1Þ � � � ðaþ 5� i � jÞ�
; i; j ¼ 1; 2. (9)

Eq. (6) will be useful in proving that the dynamics of the closed-loop system is globally asymptotically stable.
This is motivated by the fact that the proposed control scheme is based on the use of bounded positive
functions that are nonincreasing along the solutions of the closed-loop system [25,26].

Now, let us consider the following linearizing-like control law:

u ¼ _x2d � Z� 1
2

BTN�1ðyÞe, (10)

where N�1ðyÞ is the inverse matrix of NðyÞ and e ¼ ðe1; e2Þ
T.

Substitution of the linearizing-like controller (10) into Eq. (5) leads to

_e ¼ ðA� 1
2

BBTN�1ðyÞÞe,

_n ¼ Gðe; Z; u; tÞ, ð11Þ

where n ¼ Z� Zd and Gðe; Z; u; tÞ ¼ Xðx1;x2; Z; u; tÞ � Xðx1d ; x2d ; Z; u; tÞ.
We are now ready to state the first main result of this paper.

Theorem 1. Consider the tracking error system (11). If a41 and b40, the tracking error eðtÞ converges

asymptotically to zero at a finite time

T ¼
a
b
y1=aðe0Þ, (12)

where e0 ¼ eð0Þ is the initial condition of eðtÞ.
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Proof. Without loss of generality, assume that eðtÞ belongs to the interval ½0;T � so that ya0 and the matrices
NðyÞ and N�1ðyÞ exist. Consider the following Lyapunov function candidate:

yðeÞ ¼ eTN�1ðyÞe. (13)

Its time derivative along the trajectories of system (11) satisfies

_yðeÞ ¼
qy
qe
; _e

� �
, (14)

where h: ; :i is the inner product of two vectors. From the equation Gðy; eÞ ¼ yðeÞ � hN�1ðyÞe; ei, one has that
dG ¼ G0yðqy=qeÞ þ G0e ¼ 0, where

G0e ¼
qG

qe
ðy; eÞ ¼ N�1ðyÞe

and

G0y ¼
qG

qy
ðy; eÞ ¼ eT

1

y
N�1ðyÞ �

d

dy
N�1ðyÞ

� �
e.

This implies that qy=qe ¼ �G0e=G0y. With this in mind, _yðeÞ will become

_yðeÞ ¼ �
G0e
G0y
; A�

1

2
BBTN�1ðyÞ

� �
e

� �
,

¼
1

G0y
eT½ATN�1ðyÞ þN�1ðyÞAþN�1ðyÞBBTN�1ðyÞ�e. ð15Þ

Now, using Eq. (6), one may easily prove that

eT½ATN�1ðyÞ þN�1ðyÞAþN�1ðyÞBBTN�1ðyÞ�e ¼ by1�1=aG0y. (16)

Then, we get

_yðeÞ ¼ �by1�1=aðeÞ (17)

which is negative definite if a41 and b40 [27]. This means that if a41 and b40, the tracking error eðtÞ

converges asymptotically to zero. Convergence of nðtÞ to zero follows from the fact that the closed-loop system
is in a cascade form [7]. From Eq. (3), it is known that Yðx1;x2; tÞ is smooth. Then, the control dynamics is
given by

_u ¼ €x2d � Xðx1; x2; Z; u; tÞ � 1
2

BT _N
�1
ðyÞe� 1

2
BTN�1ðyÞ_e.

Since Xðx1;x2; Z; u; tÞ is a smooth function, _u is also a smooth function. Consequently, Cðx1; x2; Z; u; tÞ ¼
Z�Yðx1;x2; tÞ is a first-integral of the closed-loop system. Then, from Eq. (10), the augmented state becomes
Z ¼ _x2d � u� 1

2
BTN�1ðyÞe. Hence, the augmented state Z is bounded and its dynamics is also bounded. In

addition, since n ¼ Z� Zd , n is also bounded. Finally, since eðtÞ asymptotically converges to zero, nðtÞ also
asymptotically converges to zero.

To compute the control time, we have to follow the time trajectory of the closed-loop system (11). In this
case, the control objective is achieved when the tracking error eðtÞ is zero for all tXT conX0. Let us integrate
Eq. (17) to get y1=a ¼ ð1=aÞð�btþ cÞ, where c is an integration constant. Note that if e0a0 then yðe0Þa0,
whence c ¼ ay1=aðe0Þ. With this in mind, since yðeÞ ¼ 0 at t ¼ T , one may easily prove that the expression for
the control time is given by Eq. (12). This implies that eðTÞ ¼ 0. On the other hand, according to LaSalle
invariance principle [28], the largest invariant set contained in E ¼ fe 2 R2; _yðeÞ ¼ 0g is the manifold e ¼ 0.
Thus, since eðTÞ ¼ 0, one can conclude that the tracking error eðtÞ remains at zero for all tXTX0 since the
manifold e ¼ 0 is the largest invariant set of R2. This achieves the proof. &

If the conditions a41 and b40 are not satisfied, _yðeÞ is not negative definite and the control process is
unstable. Here, the instability means that eðtÞ never goes to zero, but has a bounded oscillatory behavior or
goes to infinity. In addition, if e0 ¼ 0, y will become 0 too so that T ¼ 0. In this case, the control process is
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loss. Thus, the conditions e0a0, a41 and b40 are required to avoid loss of instability during the control
process.

The following points should be noted. (i) Given the feedback parameters a and b, it is not immediately
apparent how one chooses the function y so that the control objective (2) is satisfied. Furthermore, it is not
easy to find the analytic solutions of Eq. (7). Fortunately, this equation can be solved numerically. (ii) The a;b-
parameterization of the feedback control law (10) provides a simple tuning procedure. From Eq. (12), one can
observe that for b fixed, if a increases, then y1=aðe0Þ decreases so that ay1=aðe0Þ increases. This means that the
control time T increases with a. Also, according to Eq. (7), it is found that the control time can be expressed as
the inverse of the degrees of b. Therefore, for a fixed, if b increases, then the control time T decreases. Hence,
the analysis points to how the control time can be minimized. This is of great practical interest, since the
control can be affected as fast as desired, just depending on the feedback parameters a and b.

Nevertheless, the linearizing-like feedback (10) is not physically realizable because it requires measurements
of the velocity x2 and a perfect knowledge of the nonlinear term Yðx1;x2; tÞ. Because of Assumptions 1 and 2,
the linearizing-like feedback (10) must be modified in such a way as to encompass consideration of modelling
errors and parameter perturbations. We therefore use the estimation ofYðx1;x2; tÞ in such a way that the main
characteristics of the linearizing-like feedback (10) are retained. An important advantage of system (4) is that
the dynamics of the state Z can be reconstructed from the output y ¼ x1 by the following uncertainty
estimator:

_̂x1 ¼ x̂2 � Lk1f1ðx̂1 � x1Þ,

_̂x2 ¼ Ẑþ u� L2k2f2ðx̂1 � x1Þ,

_̂Z ¼ �L3k3f3ðx̂1 � x1Þ, ð18Þ

where L is the so-called high-gain parameter which can be interpreted as the estimation rate of uncertainties
and often be chosen as a constant, ki with i ¼ 1; 2; 3 to be determined and

fiðx̂1 � x1Þ ¼ ½absðx̂1 � x1Þ�
r signðx̂1 � x1Þ; r40; i ¼ 1; 2; 3. (19)

Now, the second result of this paper is stated by the following theorem.

Proposition 1. Let ~e 2 R3 be an estimation error vector whose components are defined as follows: ~e1 ¼ x̂1 � x1,
~e2 ¼ x̂2 � x2 and ~e3 ¼ Ẑ� Z. For a sufficiently large value of L, the dynamics of the estimation error ~eðtÞ decays

exponentially to zero.

Proof. Combining systems (4) and (18), the dynamics of the estimation error can be written as follows:

_~e1 ¼ ~e2 � Lk1f1ð~e1Þ,

_~e2 ¼ ~e3 � L2k2f2ð~e1Þ,

_~e3 ¼ �Xðx1;x2; Z; u; tÞ � L3k3f3ð~e1Þ. ð20Þ

In order to determine ki, the following change of variables is considered [29]:

v1 ¼ L2½absðx̂1 � x1Þ�
r sgnðx̂1 � x1Þ,

v2 ¼ Lðx̂2 � x2Þ,

v3 ¼ Ẑ� Z. ð21Þ

Notice that

_v1 ¼ L2½absðx̂1 � x1Þ sgnðx̂1 � x1Þ�_~e1.

From the boundedness of the chaotic attractor, it is known that x1 is bounded which implies that x̂1 must be
bounded too. So, one can conclude that absðx̂1 � x1Þ sgnðx̂1 � x1Þ is bounded. Without loss of generality,
assuming that its upper limit is r, which can be chosen as a large enough number, then

_v1prL2 _~e1. (22)
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So, the following dynamics of the estimation error system can be obtained:

_v ¼ LDðr; kÞvþ Oðx1;x2; Z; u; tÞ, (23)

where v ¼ ðv1; v2; v3Þ
T, Oðx1;x2; Z; u; tÞ ¼ ½0; . . . ; 0;Xðx1;x2; Z; u; tÞ�T and

Dðr; kÞ ¼

�rk1 r 0

�k2 0 1

�k3 0 0

2
64

3
75.

After choosing r, according to experience, one can select the constants ki, i ¼ 1; 2; 3 in such a way that Dðr; kÞ
has all its eigenvalues in the left-half-complex plane. Since x1ðtÞ and x2ðtÞ belong to a chaotic attractor, the
function Xðx1;x2; Z; u; tÞ in Eq. (4) is a bounded function. Consequently, for a sufficiently large value of the
high-gain parameter L, one can conclude that viðtÞ ! 0, i ¼ 1; 2; 3. That is, the estimation error system is
asymptotically stable at zero, which implies that x̂1 ! x1, x̂2! x2 and Ẑ! Z. So, one can get information
about unmeasurable states from x̂1, x̂2 and the uncertain function Yðx1;x2; tÞ from Ẑ. This achieves the
proof. &

Thus, the output feedback control law (10) with the state estimations becomes

u ¼ _x2d � Ẑ� 1
2 BTN�1ðyÞê, (24)

where y is the unique positive solution of the equation:

y1þ3=a ¼
X2
i;j¼1

½F ða;bÞ��1ij y
ð1=2Þðiþj�2Þêiêj . (25)

We can state the main result of this paper.

Corollary 1. Consider system (4) equipped with the observer-based output-feedback (18), (24). Then, the tracking

error eðtÞ converges asymptotically to zero at a finite time

T ¼
a
b
y1=aðê0Þ, (26)

where ê0 ¼ êð0Þ is the initial state of êðtÞ.

Note that the linearizing-like feedback (24) only uses the estimation of the uncertain functionYðx1;x2; tÞ (by
means of Ẑ) and x̂ which are provided by the state estimator (18). The dynamical compensator (18) only uses
the measurable signal y ¼ x1. So the feedback controller (24) is more physically realizable than Eq. (10).

Note also that the output feedback controller (18), (24) yields practical stabilization, i.e., system (4)
converges to a ball B whose radius is of order of L�1. That is, eðtÞ ! BðrðL�1ÞÞ as t! T . In fact, the
integration of the estimation error system (23) yields

vðtÞ ¼ expðDðr; kÞtÞvð0Þ þ expðDðr; kÞtÞ
Z

expðDðr; kÞsÞOðx1;x2; Z; u; tÞds.

Now, using the triangle and Schwartz inequalities, one has

kvðtÞkpkvð0Þ expðLDðr; kÞtÞk þ expðLDðr; kÞtÞ
Z
k expð�LDðr; kÞsÞOðx1;x2; Z; u; tÞdsk.

Since Oðx1;x2; Z; u; tÞ is bounded,

kvðtÞkpkvð0Þ expðLDðr; kÞtÞk þ s1 expðDðr; kÞtÞkvð0Þk þ s2 (27)

for any constants s1 and s2 such that kOðx1; x2; Z; u; tÞkps1 expðDðr; kÞtÞkvð0Þk þ s2. In other words,
vðtÞ ! BðrðL�1ÞÞ, where BðrðL�1ÞÞ is a ball with radius of the order of L�1. In fact as the estimation parameter
L increases, kvðtÞk decreases. Then, according to Eq. (21), one can conclude that x1 ! x̂1, x2! x̂2 and Z! Ẑ.
As a consequence, the feedback (24) tends to the linearizing-like controller (10). Control actions therefore
counteract the nonlinear uncertainties and induce a linear behavior.
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Feedback control law based on high-gain observers can induce undesirable dynamical effects such as the so-
called peaking phenomenon [30]. This leads to closed-loop instabilities which are represented by time-finite
escapes and large overshoots. To diminish the effect of these instabilities, the robust control law can be
modified by means [31]:

u ¼ Sat _x2d � Ẑ� 1
2

BTN�1ðyÞê
� �

, (28)

where

Satf:g ¼

¼ umax; if u4umax;

¼ _x2d � Ẑ� 1
2

BTN�1ðyÞê; if � umaxpupumax;

¼ �umax; if uo� umax:

8><
>:
4. Simulation results

In this section, numerical simulations are given to verify the proposed robust control scheme. The
parameters p; p1; p2, o and q are chosen as p ¼ 0:4; p1 ¼ �1:1; p2 ¼ 1, o ¼ 1:8 and q ¼ 1, respectively, in all
simulations to ensure the existence of chaos in the absence of control as shown in Fig. 1. Initial conditions
were arbitrarily located at the point ðx1ð0Þ;x2ð0ÞÞ ¼ ð0:2; 0Þ. Furthermore, there exists a bounded region
G 2 R2 containing the whole attractor such that no orbit of system (1) ever leaves it [15].

The control objective is to drive the output of the uncertain chaotic system (1) to the trajectory yd ¼ sin 2t.
Obviously, this desired trajectory does not belong to the embedded orbits of the strange attractor.

For the sake of clarity, note that the feedback control law (24) can be rewritten as

u ¼ _x2d � Ẑ�
ðaþ 2Þðaþ 1Þðx̂1 � x1dÞ

2ðða=bÞy1=aÞ2
�
ðaþ 2Þðx̂2 � x2dÞ

ðða=bÞy1=aÞ
, (29)

where y is the unique positive solution of the equation:

yðaþ3Þ=a ¼
2b
a
ðaþ 2Þðx̂2 � x2d Þ

2y2=a þ
2b2

a2
ðaþ 2Þðaþ 1Þðx̂1 � x1dÞðx̂2 � x2dÞy

1=a

þ
b3

a3
ðaþ 2Þ2ðaþ 3Þ � ðx̂1 � x1dÞ

2, ð30Þ

in which x̂1, x̂2 and Ẑ are given by the state estimator (18).
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Fig. 1. Phase plane and Poincaré map of the chaotic Duffing oscillator for u ¼ 0 (uncontrolled evolution).
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The initial conditions of observer (18) are selected to be ðx̂1ð0Þ; x̂2ð0Þ; Ẑð0ÞÞ ¼ ð0; 0:1; 0:96Þ. In this case,
e1ð0Þ ¼ 0:2 and e2ð0Þ ¼ �2 and we are in the ideal case where our control scheme works. In this case

yðê0Þ ¼ 7:22
b
a
ðaþ 2Þ

� �a=ðaþ1Þ

and

T ¼
a

ba=ðaþ1Þ
7:22
ðaþ 2Þ

a

� �1=ðaþ1Þ
.

Here one can choose r ¼ 4. According to the parameter-choosing scheme mentioned above, one can select
parameters as follows: the high-gain parameter is L ¼ 20, the parameters ki, i ¼ 1; 2; 3 are ½k1; k2; k3� ¼ ½1; 2; 3�
so that the eigenvalues of matrix Dðr; kÞ are �2:6850, �0:6575� 2:0092i and r ¼ 0:5. The corresponding
simulation results are shown in Figs. 2–5.

Figs. 2(a) and (b) show the control time T as a function of b when a ¼ 2, and as a function of a when b ¼ 1.
From Fig. 2(a), one can see that the control time increases with a while from Fig. 2(b), the control time
decreases when b increases.

Fig. 3 shows the simulation results obtained by applying the output feedback controller (24) to the uncertain
Duffing equation (1) for tracking the desired signal yd for a ¼ 2 and b ¼ 1. Fig. 3(a) presents the x component
(—) together with its desired value (- - -) while Fig. 3(b) shows the _x component (—) together with its desired
value (- - -). Note that fairly good tracking performance is obtained. Fig. 3(c) shows the phase portrait of the
closed-loop system. The control was turned on at t ¼ 2 s. It is clearly evident that the attractor changed its
dynamical structure in such a way that the canonical plane ðx1;x2Þ has acquired a periodic structure. Such
behavior is attained thanks to the fact that the compensator state Ẑ provides an estimate of the uncertain term
Yðx1;x2; tÞ. Fig. 3(d) presents the estimated term Ẑ (- - -) and the current term Z ¼ Yðx1; x2; tÞ (—). After a
short transient, Ẑ evolves very closely with Z. However, one can expect that the tracking errors e1ðtÞ ¼

x1ðtÞ � x1dðtÞ and e2ðtÞ ¼ x2ðtÞ � x2d ðtÞ converge to zero. Figs. 4(a) and (b) show, respectively, the time
evolution of the tracking errors e1ðtÞ and e2ðtÞ. Note that the dynamics of the tracking error converges exactly
to zero. This means that the tracking of the reference signal yd is guaranteed by the designed feedback
controller. One can also see that a fairly good tracking convergence is obtained in about 4.8 s which
corresponds to the analytical value of the control time (see Fig. 2).

In order to add evidence of the effectiveness and efficiency of the proposed robust control scheme, extensive
simulations have been performed to examine the effect of the feedback parameters a and b. Fig. 5 shows the
output tracking error e1ðtÞ ¼ yðtÞ � ydðtÞ for three different values of b when a ¼ 2, and for three different
values of a when b ¼ 1. As predicted by the analysis of Theorem 1, for a fixed, larger values of b or for b fixed,
smaller values of a give faster convergence of yd .
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Fig. 2. Control time T: (a) as a function of a when b ¼ 1 and (b) as a function of b when a ¼ 2.
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5. Conclusion

In this paper, a robust control scheme was presented for the well-known chaotic Duffing equation subject to
uncertainties. By assuming that the exact model of the system is not known and that the position coordinate is
the only state variable available for measurements, a feedback control law which comprises a linearizing-like
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feedback and an uncertainty estimator was designed so that the output signal can asymptotically track any
smooth reference trajectory. An explicit expression for the control time was given in terms of two parameters
for which an arbitrary convergence rate of the tracking error can be prescribed. Numerical results illustrate the
efficiency of the proposed control methodology.

Although in this paper the implementation is performed via numerical simulations, it is not hard to see that
the physical application of the proposed adaptive feedback can be performed. In fact, experimental studies are
in progress and the results will be reported elsewhere. It is our belief that the proposed control strategy can be
extended to systems of higher dimension. In principle, the proposed feedback structure can be carried out to
effect the synchronization of chaotic systems. This procedure has already been used to perform the
synchronization of strictly different chaotic oscillators [32]. In the present paper, the procedure presented in
Ref. [32] has been generalized in the context of chaos suppression.
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[24] R. Femat, J. Alvarez-Ramı́rez, J. González, A strategy to control chaos in nonlinear driven oscillators with least prior knowledge,

Physics Letters A 224 (1997) 271–276.

[25] V.I. Korobov, A general approach to synthesis problem, Doklady Academic Nauk SSSR T 248 (1979) 1051–1063.

[26] K. Rodoumta, A Method of Construction of Controllability Function, PhD Thesis, Kharkiv, 1987.
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