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Abstract

In this study, a servomotor-driven coupled elastic shaft–elastic beam system is analyzed. The model consists of a

servomotor, elastic shaft, disk, and an elastic beam attached to the disk. Equations of motion are derived with respect to

the generalized coordinates of the elastic shaft and elastic beam. Nondimensional parametric equations are obtained.

Three independent parameters are defined affecting the system. These are the rigidity factor, the ratio of the beam inertia to

total inertia, and the ratio of the shaft inertia to total inertia. Simulations demonstrate the important role of these three

parameters in the behavior of the system.

r 2005 Published by Elsevier Ltd.
1. Introduction

Servomotors are rapidly replacing conventional ones. The introduction of servomotors has increased the
importance of transient motion analysis, which is becoming increasingly important and critical in the design of
automated machines. This is why position control of mechanical systems with structural flexibility has been an
important research area in recent years.

El-Sinawi and Hamdan [1] developed a new approach based on the linear quadratic estimator technique for
estimating the vibration of any point on the span of a rotating flexible beam mounted on a compliant hub in
the presence of process and measurement noise. Nassar and Bedoor [2] developed a general model to describe
the rotating blade vibration under the effect of shaft torsional vibration. Al-Bedoor et al. [3] has developed a
mathematical model for a flexible arm undergoing large planar flexural deformation, continuously rotating
under the effect of a hub torque and supported by a flexible base.

Diken [4] studied a model consisting of a servomotor, harmonic drive, flexible shaft and a manipulator arm,
which can be considered as a rigid beam. The transfer function of the system, relating the desired input
rotation to the manipulator arm rotation is developed. Natural frequency and damping ratio of the flexible
system, together with PID control parameters, appear in the transfer function. The possibility of precise
trajectory tracking is discussed. Diken [5] has also studied a similar dynamic model for the frequency response
analysis. It is shown that the control system damping ratio has an important role in the behavior of the system.
For the low values of the damping ratio, system natural frequency is effective, for the high values of the
ee front matter r 2005 Published by Elsevier Ltd.
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damping ratio, subsystem natural frequency becomes effective on the system behavior. In Ref. [6], Diken also
studied similar dynamic model consisting of an elastic shaft. In this study, the effect of the flexible system
natural frequency and the substructural natural frequency is extensively analyzed and the fourth-order
transfer function of the system is approximated to the second-order one. Ankarali and Diken [7] modeled a
rotating Euler–Bernoulli beam and studied the residual vibration spectrum. It is shown that the residual
vibration can be eliminated at certain values of the frequency of the rise function. Diken [8] also modeled
rotating Euler–Bernoulli beam, which is actuated by servomotor. He obtained transfer function of the
elastodynamic control system relating the beam rotation and the beam tip vibration to the desired servomotor
rotation. Shear force at the root of the beam is used as a feedback for the control system. Parametric analysis
is done and the effect of the shear force feedback control strategy on the beam tip vibration is studied.

Kopmaz and Anderson [9] obtained coupled nonlinear equations of a motion in a very general fashion
considering the influence of the rotor, shaft, hub, beam and the payload as well as geometric stiffness terms,
which arise from both centripetal and Coriolis accelerations. The solution concentrates on the effect of the two
parameters representing the mass and the stiffness ratios of the manipulator system on its driveline. Xi and
Fenton [10] and Xi et al. [11] investigated the coupling effect of a flexible link and a flexible joint in a one-link
rotating structure. Flexible shaft is represented by a torsional stiffness but not considered as a distributed
mass. They defined two nondimensional parameters; the ratio of a bending stiffness of the link to the torsional
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Fig. 1. Coupled elastic shaft and elastic beam system model.

Table 2

First three values of bblb

K (bblb)1 (bblb)2 (bblb)3

0 1.8751 4.6941 7.8548

0.1 1.7227 4.3995 7.4511

1 1.2479 4.0311 7.1341

5 0.8700 3.9500 7.0825

25 0.5872 3.9314 7.0714

100 0.4159 3.9278 7.0693

1000 0.2340 3.9267 7.0687

N 0 3.9266 7.0686

Table 1

Values of bs and fs(ls)

ms bs fs(ls)

0.1 0.3111 0.3061

0.2 0.4328 0.4194

0.3 0.5218 0.4984

0.4 0.5932 0.5590

0.5 0.6533 0.6078
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stiffness of the rotor–beam joint and the moment of inertia ratio of the link to the rotor. Separation of
variables method is used to solve the dynamic equations. Frequency equation of the system is obtained and the
effect of the defined parameters on the frequencies of the system is investigated.

In this study, a servomotor controlled elastic shaft, disk and an elastic beam, which is attached to the disk is
modeled as an elastodynamic control system. Elastic shaft is considered as a distributed mass system, elastic
beam is assumed as an Euler–Bernoulli beam. Because of the coupling, boundary conditions for the elastic
beam changes from hinged-free beam to fixed-free beam depending on the stiffness of the elastic shaft.
Nondimensional equations of the motion are obtained. Three parameters: the rigidity factor, the shaft inertia
ratio, and the beam inertia ratio with respect to the total inertia are defined. The response of the elastic system
to a step rotational input is simulated with respect to these parameters. The coupling effect of the free
vibration of either shaft or beam on each other is also shown.

2. Formulation

Fig. 1 shows the elastic shaft–elastic beam model of the dynamic system.
The kinetic energy of the system can be written as

T ¼
1

2
Jm
_y
2

m þ
1

2
Jd
_y
2

d þ
1

2

Z lb

0

mbV2
b dxþ

1

2

Z ls

0

rIp
_y
2

s dz. (1)

Here Jm is the servomotor mass moment of inertia, _ym is the motor angular velocity, Jd is the disk inertia, _yd is
the disk angular velocity, lb is the beam length, mb is the beam mass per unit length, Vb is the absolute velocity
of mb with respect to the fixed coordinate system OXYZ. ls is the shaft length, r is the density of the shaft, Ip is
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Fig. 2. Servomotor input rotation.
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the polar area moment of inertia of the shaft, _ys is the shaft angular velocity. The potential energy of the
system can also be given as follows:

U ¼
1

2

Z lb

0

EIy00
2
ðx; tÞdxþ

1

2

Z ls

0

GIpc
02
ðz; tÞdz. (2)

Here EI is the rigidity of the elastic beam, yðx; tÞ is the deflection of mb with respect to the rotating frame
OXYZ, GIp is the rigidity of the elastic shaft, cðz; tÞ is the elastic rotation of the shaft. Virtual work because of
the viscous damping of the elastic shaft and elastic beam can be given as

dW ¼ �

Z ls

0

cs
_cðz; tÞdz dc�

Z lb

0

cb _yðx; tÞdx dy. (3)

Here cs and cb are viscous damping coefficients of the elastic shaft and elastic beam, respectively. Total shaft
rotation is the sum of the servomotor rotation plus the elastic rotation of the shaft and disk rotation is the
servomotor rotation plus the shaft rotation at the disk end.

ysðtÞ ¼ ymðtÞ þ cðz; tÞ,

ydðtÞ ¼ ymðtÞ þ cðls; tÞ. ð4Þ

Square of the absolute velocity of the beam mass mb with respect to the fixed frame OXYZ is obtained as

V 2
b ¼ ðy

_ydÞ
2
þ ½ðrþ xÞ_yd þ _y�2. (5)
0 100 200 300 400 500 600
-0.5

0

0.5

q s

0 100 200 300 400 500 600
-5

0

5
x10-3 

q b
/L

b

0 100 200 300 400 500 600
-1

0

1

2

Ωt 

θ d
 

K=0.1,  µb=0.1,  µs=0.1

Fig. 3. Shaft, beam and disk response for K ¼ 0.1, mb ¼ 0.1, ms ¼ 0.1.
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Here r is the radius of the disk. Elastic shaft rotation and the elastic beam deflection are assumed as the sum of
the orthogonal modes:

cðz; tÞ ¼
P

fsðzÞqsðtÞ � fsðzÞqsðtÞ;

yðx; tÞ ¼
P

fbðxÞqbðtÞ � fbðxÞqbðtÞ:
(6)

In this study, only first modes are considered. When Eqs. (4), (5) and (6) are used, Eqs. (1), (2) and (3) will
become

T ¼
1

2
Jm
_y
2

m þ
1

2
Jd ½

_ym þ fsðlsÞ _qsðtÞ�
2 þ

1

2

Z lb

0

mbffbðxÞqbðtÞ½
_ym þ fsðlsÞ _qsðtÞ�

2

þ ½ðrþ xÞð_ym þ fsðlsÞ _qsðtÞÞ þ fbðxÞ _qbðtÞ�
2gdxþ

1

2

Z ls

0

rIp½
_ym þ fsðzÞ _qsðtÞ�

2 dz. ð7Þ

Potential energy is

U ¼
1

2

Z lb

0

EIf002bðxÞq
2
bðtÞdxþ

1

2

Z ls

0

GIpf
02
s ðzÞq

2
s ðtÞdz. (8)

Virtual work is

dW ¼ �

Z ls

0

csf
2
s ðzÞ _qsðtÞdqsðtÞdz�

Z lb

0

cbf
2
bðxÞ _qbðtÞdqbðtÞdx: (9)
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Fig. 4. Shaft, beam and disk response for K ¼ 0.1, mb ¼ 0.3, ms ¼ 0.1.
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Lagrange equations are used to obtain the governing equations of the system. Generalized coordinates
are qb and qs. qb and qs are already small; higher-order terms will be smaller, that is why second- and
third-order nonlinear terms like qb _qb; qb _qb _qs; q2

b; q2
b €qs; qb _q

2
s are ignored and the following equations are

obtained:

€qs þ 2zsot _qs þ o2
t qs þmsb €qb ¼ �us

€ym,

€qb þ 2zbob _qb þ o2
bqb þmbs €qs ¼ �ub

€ym. ð10Þ

Here torsional vibration damping ratio is

2zsot ¼
cs

JT

R 1
0 f

2
s ðxÞdx

f2
s ðlsÞ

;
z

ls

¼ x. (11)

Torsional vibration natural frequency is

o2
t ¼

GIp

lsJT

R 1
0 f
02
s ðxÞdx

f2
s ðlsÞ

. (12)

Mass coupling factor msb is

msb ¼
mbl3b
JT

R 1
0 ððr=lbÞ þ xÞfbðxÞdx

fsðlsÞ
. (13)
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Fig. 5. Shaft, beam and disk response for K ¼ 0.1, mb ¼ 0.1, ms ¼ 0.3.
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Shaft mode participation factor is

us ¼
1

fsðlsÞ
. (14)

Beam damping ratio is

2zbob ¼

R 1
0 cbf

2
bðxÞdxR 1

0
mbf

2
bðxÞdx

;
x

lb

¼ x. (15)

Beam natural frequency is

o2
b ¼

EI

mbl4b

R 1
0 f
002

bðxÞdxR 1
0
f2

bðxÞdx
. (16)

Mass coupling factor mbs is

mbs ¼ fsðlsÞ

R 1
0 ððr=lbÞ þ xÞfbðxÞdxR 1

0
f2

bðxÞdx
. (17)
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Fig. 6. Shaft, beam and disk response for K ¼ 1, mb ¼ 0.1, ms ¼ 0.1.
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Beam mode participation factor is

ub ¼

R 1
0 ððr=lbÞ þ xÞfbðxÞdxR 1

0 f
2
bðxÞdx

. (18)

Here r/lb is the disk radius to beam length ratio. In Eq. (10), beam generalized coordinate qb is defined as qb/lb.
Beam mass moment of inertia with respect to the origin O is

Jbo ¼

Z lb

0

mbðrþ xÞ2 dx. (19)

Shaft polar mass moment of inertia is

Js ¼

Z ls

0

rIp dz. (20)

Total mass moment of inertia is

JT ¼ Jd þ Jbo þ Js. (21)

For the elastic shaft the following mode equation is obtained [12]:

fsðzÞ ¼ A sinðbszÞ; 0pzpls. (22)
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Frequency equation of the shaft is obtained by using the following boundary condition:

GIp
qc
qz

����
z¼ls

¼ JTo2
sc
��
z¼ls

. (23)

The frequency equation is

bs tan bs ¼
Js

JT

¼ ms. (24)

Here ms is the shaft inertia ratio. Shaft natural frequency is equal to

os ¼ bs

ffiffiffiffiffiffiffi
G

rl2s

s
. (25)

Eq. (24) is solved for some ms values. Table 1 gives bs and fsðlsÞ values for some ms values.
For the elastic beam, mode function is given as [12]

fbðxÞ ¼ A cosh bblbxþ B sinh bblbxþ C cos bblbxþD sin bblbx; 0pxp1. (26)
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Since the root of the flexible beam is not rigid because of the shaft flexibility, the following boundary
conditions are assumed:

yð0; tÞ ¼ 0,

EIy00ð0; tÞ ¼
GIp

ls

y0ð0; tÞ,

y00ðlb; tÞ ¼ 0,

y000ðlb; tÞ ¼ 0. ð27Þ

When these boundary conditions are used, frequency equation is obtained as

KðbblbÞðsinh bblb cos bblb � cosh bblb sin bblbÞ þ cosh bblb cos bblb þ 1 ¼ 0. (28)

Here K is defined as the rigidity factor and given as

K ¼
EI=lb

GIp=ls

¼
Bending stiffness of beam per unit length

Torsional stiffness of shaft per unit length
. (29)

Table 2 shows the values of bblb for different K values. If the torsional stiffness of the elastic shaft is infinite, K

is equal to zero, which will correspond to a fixed-free beam boundary condition, if the torsional stiffness of the
elastic shaft is zero; K is equal to infinite, which will correspond to a hinged-free beam boundary condition.
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Fig. 9. Shaft, beam and disk response for K ¼ 5, mb ¼ 0.1, ms ¼ 0.1.
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The beam natural frequency is equal to

obi ¼ ðbblbÞ
2
i

ffiffiffiffiffiffiffiffiffiffi
EI

mbl4b

s
; i ¼ 1; 2; 3 . . . . (30)

To obtain nondimensional form of the equations, new time is defined as

t ¼ Ot; O ¼

ffiffiffiffiffiffiffiffiffiffi
EI

mbl4b

s
. (31)

The following nondimensional equations are obtained:

€qs þ 2zsbs

ffiffiffiffiffiffi
mbs

K

r
_qs þ b2s

mbs

K
qs þ mbg €qb ¼ �

1

fsðlsÞ
€ym,

€qb þ 2zbðbblbÞ
2 _qb þ ðbblbÞ

4qb þ fsðlsÞa €qs ¼ �a€ym. ð32Þ

Here derivations are with respect to t, the beam inertia ratio is

mb ¼
mbl3b
JT

. (33)

Beam-to-shaft inertia ratio is

mbs ¼
mb

ms

¼
mbl3b

Js

. (34)
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a and g are defined as

a ¼

R 1
0
ððr=lbÞ þ xÞfbðxÞdxR 1

0 f2
bðxÞdx

, (35)

g ¼

R 1
0 ððr=lbÞ þ xÞfbðxÞdx

fsðlsÞ
. (36)

In these equations, the rigidity factor K, and the beam-to-shaft inertia ratio mbs and the beam inertia ratio mb

are three independent variables. The shaft inertia ratio ms is already defined in Eq. (24) but three inertia ratios
mb, ms and mbs are not independent from each other. If two of them are defined, the third will be calculated. In
the simulations, mb and ms are used. The main objective of the work is to see the effect of the shaft and the
beam flexibility on the behavior of the system. That is why, instead of introducing control system parameters
into the equations, more general approach is used. It is assumed that the servomotor control system is
producing a step input which can be produced by any second-order control system transfer function.
Maximum rotational amplitude is (ym)max. Input rotation function is given as

ym ¼ ðymÞmax 1�
e�zcðoc=OÞtffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2c

q sin
oc

O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2c

q
tþ f

� �2
64

3
75, (37)
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the acceleration will be

€ym ¼ ðymÞmax

1� 2z2cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2c

q e�zcðoc=OÞt sin
oc

O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2c

q
tþ f

� �
, (38)

f ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2c

q
zc

. (39)

Here zc is the control system damping ratio, oc=O is the nondimensional control system frequency.
3. Simulations

Equations given in Eq. (34) are solved for different values of K, ms and mb. Fig. 2 shows the rotation of the
servomotor. Here ðymÞmax is assumed as p/2 rad, control system damping ratio zc is assumed as 0.7 and the
control system frequency oc=O is assumed as 0.06. For all calculations, disk radius to beam length ratio r=lb is
assumed as 0.2, viscous damping ratios zs and zb are assumed as 0.02. Figs. 3–5 show the elastic shaft vibration
qs, the beam vibration qb=lb and the disk rotation yd. In these calculations, the rigidity factor K is assumed as
0.1, which will give ðbblbÞ1 ¼ 1:7227. In this case, the shaft rigidity is very high and the system is close to a rigid
shaft–elastic beam system. Figs. 3 and 4 show that if the beam inertia is increased relative to the shaft inertia,
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the system vibration frequency is increased and the shaft vibration amplitudes are decreased. Figs. 3 and 5
show that if the shaft inertia is increased relative to the beam inertia, system vibration frequency does not
change but again shaft vibration amplitudes are decreased. In all cases, disk rotation is not affected much by
the elasticity of the system. Figs. 6–8 show the case when the rigidity factor K is 1. In this case, shaft flexibility
is 10 times bigger than the previous one. Figs. 6 and 7 show that when the beam inertia is increased relative to
the shaft inertia, system vibration frequency in increased, shaft vibration amplitudes are decreased and also
the effect of system elasticity on the disk rotation is reduced. Figs. 6 and 8 show that relative increase of the
shaft inertia with respect to the beam inertia reduces the shaft vibration amplitudes but the beam vibration
amplitudes remain the same. Figs. 9–11 show the case where the rigidity factor K is 5. Since the shaft flexibility
is increased, all vibration amplitudes are proportionally increased. Settling time for the vibration is also
longer. Comparison of Figs. 3, 6 and 9 shows that shaft vibration amplitudes are 10 times bigger for K ¼ 1,
and 40 times bigger for K ¼ 5 than the vibration amplitudes of the case for K ¼ 0:1.

Figs. 12 and 13 show the free vibration amplitudes of the flexible system if, either the shaft or the beam is
given an initial displacement, assuming that there is no input rotation. Fig. 12 shows the shaft vibrations for
three different rigidity factors. The beam is given initial displacement of qb=lb ¼ 0:1. If the shaft is relatively
rigid, high frequency but quickly damped shaft vibration is excited. If the shaft is relatively flexible, low-
frequency sustained vibration is excited but for all cases the amplitudes are almost same. Fig. 13 shows the
beam vibrations if the shaft is given initial displacement of qs ¼ 0.1. If the shaft is relatively rigid, high
frequency, quickly damped beam vibration is excited. If the shaft is relatively flexible, low-frequency sustained
beam vibration is excited but high-frequency and very low amplitude vibration of the beam coexists. Beam
vibration amplitudes get smaller while the shaft flexibility is increased.
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4. Conclusion

In this study, elastic shaft–elastic beam system is modeled. The model consists of a servomotor, an elastic
shaft, a disk and an elastic beam, which is attached to the disk. Equations are derived with respect to the
generalized coordinates of the elastic beam and the elastic shaft by using the Lagrange method. Mode
summation technique is assumed for the solution. Frequency equations and mode shapes for the beam and the
shaft are obtained assuming that they are coupled. Governing equations for the general coordinates are
obtained and nondimensionalized. Three independent parameters are defined: the rigidity factor, the beam
inertia ratio, and the shaft inertia ratio with respect to the total inertia of the system. As an input, second-
order control system step response is assumed. Effects of the defined parameters on the behavior of the
coupled elastic shaft–elastic beam system are shown.
References

[1] A. El-Sinawi, M.N. Hamdan, Optimal vibration estimation of a nonlinear flexible beam mounted on a rotating compliant hub,

Journal of Sound and Vibration 259 (4) (2003) 857–872.

[2] Y.M. Al-Nassar, B.O. Al-Bedoor, On the vibration of a rotating blade on a torsionally flexible shaft, Journal of Sound and Vibration

259 (5) (2003) 1237–1242.

[3] B.O. Al-Bedoor, A. Al-Sinawi, M.N. Hamdan, Nonlinear dynamic model of an inextensible rotating flexible arm supported on a

flexible base, Journal of Sound and Vibration 251 (2002) 767–781.

[4] H. Diken, Precise trajectory tracking control of elastic joint manipulator, AIAA Journal of Guidance 19 (3) (1996) 715–718.

[5] H. Diken, Frequency response characteristics of a single-link flexible joint manipulator and possible trajectory tracking, Journal of

Sound and Vibration 233 (2) (2000) 179–194.

[6] H. Diken, Effect of shaft flexibility on control system parameters, ASME Journal of Vibration and Acoustics 122 (2000) 222–226.

[7] A. Ankarali, H. Diken, Vibration control of an elastic manipulator link, Journal of Sound and Vibration 204 (1) (1997) 162–170.

[8] H. Diken, Vibration control of a rotating Euler–Bernoulli beam, Journal of Sound and Vibration 232 (3) (2000) 541–551.

[9] O. Kopmaz, K.S. Anderson, On the eigen-frequencies of a flexible arm driven by a flexible shaft, Journal of sound and vibration 240

(2001) 679–704.

[10] F. Xi, R.G. Fenton, Coupling effect of flexible link and flexible joint, International Journal of Robotics Research 13 (1994) 443–453.

[11] F. Xi, R.G. Fenton, B. Tabarrok, Coupling effects in a manipulator with both a flexible link and joint, Journal of Dynamic Systems,

Measurement, and Control 116 (1994) 826–831.

[12] W.T. Thomson, Theory of Vibration with Applications, second ed., Prentice-Hall, Englewood Cliffs, NJ, 1981.


	Dynamic behavior of a coupled elastic shaftndashelastic beam system
	Introduction
	Formulation
	Simulations
	Conclusion
	References


