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Abstract

The aim of this paper is to design stiff and lightweight uniaxial passive vibration isolators that have low stop-band

frequency. In order to make fair comparisons, stop-band frequencies of various isolator designs are formulated in a general

framework. Two new n-degree-of-freedom (n-dof) isolator designs are introduced. The first design has n� 1 anti-resonance

frequencies (zeros), which are generated by n� 1 single-degree-of-freedom (sdof) dynamic vibration absorbers (DVAs). It

is shown that this system offers lower stop-band frequency than an equivalent mass–spring chain, which just uses

resonance frequencies to achieve isolation. The second design is synthesized using n lever-type anti-resonant vibration

isolators in series, so it has n zeros. It is shown that this design attains lowest stop-band frequency when all the isolator

mass is concentrated on lever tips. Finally, comparative numerical examples are presented.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is about undamped uniaxial low-pass filter-type vibration isolators used in the case of harmonic
base excitation. The term ‘‘low-pass filter’’ is used to emphasize that all the isolator designs in this paper
achieve isolation only after some frequency known as stop-band frequency. One of the challenges in passive
vibration isolation is to obtain low stop-band frequency given a lower bound on isolator stiffness and an upper
bound on isolator mass. If there is no lower bound on the isolator stiffness, a spring with the lowest possible
stiffness can yield a very low stop-band frequency. However, for most applications there is a minimum
stiffness requirement and a simple spring may not provide a low enough stop-band frequency. In order to
solve the low stiffness problem by passive means, sometimes the object (load) that is to be protected is fastened
to a massive structure (inertia block), which is in turn supported on stiff isolators. To increase the stiffness of
the isolators substantially, one should use huge inertia blocks. This method is used in force isolation of
stationary diesel engines or forging presses [1]. It is also used in seismic isolation of sensitive instruments.
However, for most applications this method violates a mass constraint.

So far only single-degree-of-freedom (sdof) vibration isolation systems are considered. For sdof undamped
passive vibration isolation systems, transmissibility is proportional to 1/o2, provided that the excitation
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

AMD auxiliary mass damper
DAVI dynamic anti-resonant vibration isolator
DVA dynamic vibration absorber
F forcing vector
HEM hydraulic engine mount
k overall stiffness of an isolation system

from the base to the load
ki stiffness of the ith spring in an isolator
ka

i stiffness of the ith absorber spring in the
case of DVA equipped springs

K stiffness matrix
l1 length of the lever in the case of single-

degree-of-freedom lever-type anti-reso-
nant vibration isolators

l2 distance between two pivot points in the
case of single-degree-of-freedom lever-
type anti-resonant vibration isolators

m load mass
mi ith absorber or isolator mass
mS

i mass of the ith stage in a multi-degree-of-
freedom lever-type anti-resonant vibra-
tion isolator

mis total mass of the isolator
M mass matrix
mdof multi-degree-of-freedom
r normalized excitation frequency
rws normalized stop-band frequency of a

single-degree-of-freedom mass–spring
system

rinws normalized stop-band frequency of a
single-degree-of-freedom mass–spring
system with inertia block

ropws normalized stop-band frequency of a 2-
degree-of-freedom Type II optimum de-
sign

rI
ws normalized stop-band frequency of a

Type I anti-resonant vibration isolator
rII

ws normalized stop-band frequency of a
Type II anti-resonant vibration isolator

Rrws ratio of the normalized stop-band fre-
quency of a 2-degree-of-freedom Type II
optimum design to normalized stop-band
frequency of an equivalent Type II anti-
resonant vibration isolator

sdof single-degree-of-freedom
T(o) transmissibility
T0 maximum allowable transmissibility in

the stop-band

x displacement of load
xi displacement of the upper end of the ith

isolator spring in a multi-degree-of-free-
dom isolation system

X displacement amplitude of load
X displacement vector
y displacement of base
Y displacement amplitude of base
z displacement of the isolator mass in the

case of single-degree-of-freedom lever-
type anti-resonant vibration isolators

zi displacement of the ith absorber mass in
dynamic vibration absorber equipped
springs

a lever ratio in single-degree-of-freedom
lever-type anti-resonant vibration isola-
tors

ai lever ratio of the ith isolator in a multi-
degree-of-freedom lever-type anti-reso-
nant vibration isolator

m ratio of isolator or absorber mass to load
mass

o excitation frequency
op resonance frequency (pole) of a system

having a single pole
opi ith resonance frequency (pole)
oi

peak ith local peak frequency in the transmis-
sibility plot of a multi-degree-of-freedom
anti-resonant vibration isolator

os stop-band frequency of a single-degree-
of-freedom mass–spring system

och
s stop-band frequency of a multi-degree-

of-freedom mass–spring chain
odva

s stop-band frequency of a dynamic vibra-
tion absorber equipped spring isolation
system

oin
s stop-band frequency of a single-degree-

of-freedom mass–spring system with in-
ertia block

oI
s stop-band frequency of a Type I anti-

resonant vibration isolator
oII

s stop-band frequency of a Type II anti-
resonant vibration isolator

oz anti-resonance frequency (zero) of a
system having a single zero

ozi ith anti-resonance frequency (zero)
o0 natural frequency of a single-degree-of-

freedom mass–spring system with mass m

and stiffness k
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frequency, o, is much larger than the resonance frequency of the system. However, in an n-degree-of-freedom
(n-dof) uniaxial mass–spring chain, transmissibility is proportional to 1/o2n, for frequencies much larger than
the highest resonance frequency. Therefore, the attenuation rate can be increased by introducing additional
masses to the isolation system. Without a mass constraint, a multi-degree-of-freedom (mdof) system can have
a lower stop-band frequency than an equivalently stiff sdof system. Moreover, additional degrees of freedom
provide better attenuation. These kinds of isolators are used in gravitational wave detection systems [2,3].
However, if there is a reasonable constraint on the isolator mass, then the highest resonance frequency of a
mdof system will be much higher than of an equivalently stiff sdof system. Consequently, unless the
transmissibility requirement is very small, the stop-band frequency of a mdof system will be much higher than
that of an equivalently stiff sdof system. In order to lower the stop-band frequency to the level of the simple
sdof system, stiffness should be lowered considerably. Please refer to Brillouin [4] and Winterflood [2] for more
information on mdof mass–spring chains.

All the previously mentioned isolator designs just use resonance frequencies to achieve isolation. There are
also low-pass electrical filters (LC filters) just based on resonance frequencies, e.g. Bessel, Butterworth or
Chebyshev filters. However, elliptic (Cauer) filters are different from the aforementioned filters. These filters
utilize anti-resonance frequencies (zeros) besides resonance frequencies (poles). When compared to the other
low-pass LC filters, elliptic filters offer sharper attenuation response [5,6]. Fortunately, there are passive
vibration isolator designs that make use of anti-resonance frequencies. In a linear lumped parameter system,
anti-resonance frequencies can be generated by two different methods. The first method is to add dynamic
vibration absorbers (DVAs). The second method is to generate inertial coupling.

DVAs were introduced by Frahm [7] in the beginning of the 20th century. A sdof DVA basically consists of
a mass supported by an undamped spring (similar systems with damping are called auxiliary mass dampers
(AMDs) and these systems are used for reducing amplification but not for isolation [8]). DVAs are generally
used for isolating discrete frequencies. Hence, they may be listed under the title ‘‘band-stop filter-type
vibration isolators’’. They are sometimes attached to uniaxial mass–spring chains in order to generate anti-
resonance frequencies [9,10]. However, that configuration cannot be used in low-pass filter-type applications
due to additional resonance frequencies generated by the DVAs spoiling the required pole-zero order.
Although not mentioned frequently, DVAs have the potential to form low-pass filters in a different
configuration. This potential will be utilized in this paper to form vibration isolators that can outperform
resonance-only mass–spring chains.

Vibration isolators that utilize inertial coupling to generate anti-resonance frequencies were first developed
in the 1960s by researchers in the aerospace industry for both band-stop and low-pass filter-type applications.
The development of a new kind of vibration isolator was due to strict requirements on stiffness and
mass of the isolators used in the aerospace industry. Flannelly [11] called this new system a dynamic anti-
resonant vibration isolator (DAVI). DAVI uses a levered mass–spring combination to generate an anti-
resonance frequency (zero) in the system. Anti-resonance occurs when the inertial force generated
by the levered mass cancels the spring force. This happens at a particular frequency, which depends
on the mass of the isolator, the lever ratio and the spring stiffness. Unlike DVAs, DAVIs are implemented
on the load path; therefore the dof of the system is not increased. Furthermore, when a DAVI is introduced
to a sdof system, inertial forces generated by the levered mass increases the effective mass of the system.
Thus, the resonance frequency decreases and the isolator is capable of operating in a lower-frequency
range. For applications in the aerospace industry, please refer to Rita et al. [12], Braun [13,14],
Desjardins [15], Desjardins and Hooper [16]. Moreover, Ivovich and Savovich [17] show an application
of this system for reduction of low frequency excitations transmitted from machines to their floor
supports.

The lever in a DAVI amplifies the motion of a small mass, which in turn generates large inertial forces. This
inertial amplification can be achieved by various methods. See Rivin [18] for a system that uses a flywheel and
a ball screw having a small helix angle. Also see Goodwin [19] and Halwes [20] for systems that utilize
hydraulic leverage instead of mechanical leverage. Fluid-type systems can provide higher leverage than the
mechanical ones. Thus, a small mass of a fluid could generate the desired inertial forces, enabling weight
savings on the system. For more information please refer to Braun [13,14], Smith and Redinger [21], and
McGuire [22].
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In the automotive industry, a similar kind of isolator was introduced in the 1980s to replace the rubber
engine mounts that do not offer much control on damping and stiffness. Corcoran and Ticks [23], and Flower
[24] explain the basic principles of hydraulic engine mounts (HEMs). HEMs having the so-called ‘‘inertia
track’’ share the same basic principle with the designs of Goodwin [19] and Halwes [20].

Whatever kind of leverage an anti-resonant vibration isolator has, the basic operational principle is the
same and all can be denoted as lever-type anti-resonant vibration isolators. All the previously mentioned
systems had a single lever or equivalent, hence they only had a single anti-resonance and this limits their
performance as low-pass filter-type vibration isolators. In the literature, there is not much work done in terms
of using lever-type anti-resonant vibration isolators in multiple stages. One work is by Szefi [10], in which he
used lever-type anti-resonant vibration isolators in connection with a mass–spring chain to achieve isolation in
high-frequency ranges related to helicopter gearboxes (500Hz–2 kHz). However, to the authors’ knowledge,
no study is available for low-pass filter characteristics of these systems in multiple stages.

In this paper, stop-band frequencies of various low-pass filter-type isolators will be formulated in a general
framework. The aim is to show the limitations and potentials of these systems. As mentioned previously, an
anti-resonant vibration isolator that utilizes DVAs will be introduced and compared with resonance-only
mass–spring chains. Then, a multi-stage lever-type anti-resonant vibration isolator will be designed to achieve
the lowest stop-band frequency given the overall mass of the isolator and an allowable level of transmissibility.
Finally, numerical examples will be given for comparisons.

2. Stop-band frequency formulations

Low-pass filter-type isolators are used in applications where isolation should occur if the excitation
frequency is larger than some specified frequency. The term ‘‘isolation’’ is quantified by the maximum
allowable level of transmissibility in the isolation frequency range. Once that is given, one can calculate the
stop-band frequency for any low-pass filter-type isolator and determine whether the stop-band frequency is
low enough for a particular application.

In the literature, low-pass filter-type isolators that only possess resonance frequencies have been analyzed
extensively. Moreover, lever-type anti-resonant vibration isolators have been analyzed to some extent.
However, to the author’s knowledge, there is not much work done in terms of formulating stop-band
frequencies of these systems in a general framework.

In this paper, stop-band frequency formulations will be based on two non-dimensional numbers: T0 and m.

T0 is the maximum transmissibility that is allowable in the isolation frequency range, and m is the ratio of
absorber or isolator mass to load mass. In all the calculations, the springs are assumed to be massless, linear
and undamped. The masses and the base are assumed to be rigid. The base excitation motion is harmonic.

2.1. Resonance-only vibration isolators

2.1.1. Single-degree-of-freedom mass– spring systems

The simplest and the most widely used low-pass filter-type vibration isolation system is composed of a load
mass supported on a spring. The equation of motion for this system in the case of base excitation with zero
damping is

m €xþ kx ¼ ky, (1)

where y is the displacement of the base, x is the displacement of the load, k is the stiffness of the spring and m

is the mass of the load.
Assuming harmonic motion with frequency o:

x ¼ Xeiot; y ¼ Yeiot. (2)

Transmissibility is calculated as

TðrÞ ¼
X

Y
¼

1

1� r2
; where r ¼

o
o0

and o0 ¼

ffiffiffiffi
k

m

r
. (3)



ARTICLE IN PRESS
C. Yilmaz, N. Kikuchi / Journal of Sound and Vibration 293 (2006) 171–195 175
In the literature transmissibility is often defined as the absolute value of the output-to-input displacement
amplitude ratio. This definition enables visually appealing transmissibility versus excitation frequency graphs.
However, in this paper, there will be many calculations that involve equating a transmissibility function to a
particular value and solving for the frequency that satisfies that equality. To decrease the number of steps in
these calculations, the transmissibility function is defined without an absolute value sign. However, for the
graphs, absolute value of the transmissibility will be used.

Given a maximum allowable level of transmissibility, T0, the stop-band frequency, os, can be calculated as

1

1� o2
s=o

2
0

¼ �T0 ) os ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
. (4)

Let us normalize the stop-band frequency with the natural frequency and denote it by rws, hence

rws ¼ os=o0. (5)

Then, for this system, the normalized stop-band frequency, rws, is

rws ¼
os

o0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
. (6)

In all the following calculations, rws will be the basis of comparisons. For every low-pass filter-type isolator
design, os will be calculated and it will be normalized by the natural frequency of this sdof system, which is o0.
This normalization enables that every isolation system has the same stiffness to load mass ratio. In order to
distinguish o0, os and rws of various systems, superscripts will be used.

2.1.2. Single-degree-of-freedom mass– spring systems with inertia block

The simplest method of decreasing rws is to use an inertia block. In this method, the effective mass that the
spring supports becomes the sum of the original load mass and the mass of the inertia block as depicted
in Fig. 1.

For this system, the stop-band frequency can be calculated by replacing o0 in Eq. (4) by the natural
frequency of this system:

oin
s ¼ oin

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m þmis

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
. (7)

To calculate rinws, let us make use of the variable m, which is the isolator mass to the load mass ratio. In this
case, the isolator is considered as the spring together with the inertia block. Hence, the isolator mass is equal to
the mass of the inertia block:

oin
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m ð1þ mÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

T0

s
¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ m

� �
1þ

1

T0

� �s
; where m ¼

mis

m
; o0 ¼

ffiffiffiffi
k

m

r
. (8)
Base
y

Load

x
Inertia Block mis

k

m

Fig. 1. Base excited sdof mass–spring system with inertia block: here, y is the displacement of the base, x is the displacement of the load, k

is the stiffness of the spring, m is the mass of the load and mis is the mass of the inertia block.
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Finally, the normalized stop-band frequency, rinws, can be obtained as

rinws ¼
oin

s

o0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ m

� �
1þ

1

T0

� �s
. (9)

When Eq. (9) is compared with Eq. (6), it can be seen that the normalized stop-band frequency decreased
due to the added isolator mass.

2.1.3. Multi-degree-of-freedom mass– spring chains

In this section, stop-band frequency formulas will not be derived to show the properties of these systems.
However, these systems will be analyzed as a special case of another type of system, which will offer lower
stop-band frequencies.

2.2. Anti-resonant vibration isolators

2.2.1. Dynamic vibration absorber equipped springs

DVAs are generally attached to objects that are to be protected from almost constant excitation frequencies.
If only vibration absorption is desired, then it is not effective to attach a DVA to the spring that supports the
object (see Harris et al. [8]). On the other hand, when they are attached to springs, they can form low-pass
filter-type vibration isolators, which can outperform the resonance-only isolation systems.

When passive low-pass electrical filters are investigated, it can be seen that elliptic (Cauer) filters offer the
sharpest attenuation response compared to the other filters like Bessel, Butterworth or Chebyshev [5,6]. Their
better performance is due to the zeros (anti-resonance frequencies) in their stop-bands. When they are
converted into mechanical systems through dynamical analogies, it can be seen that the anti-resonance
frequencies are generated by multiple sdof DVAs attached on a spring (see Ref. [25] for dynamical analogies).
Let us analyze this DVA equipped spring as a vibration isolator. As done previously, let us denote the isolator
mass to load mass ratio by m, and the isolator stiffness by k. The system and the variables associated with it
can be seen in Fig. 2.

The equation of motion for each mi provided 1oion is

mi €zi þ ka
i zi ¼ ka

i xi. (10)

Moreover, zi can be obtained as a function of xi’s from the force balance at the ith node,

zi ¼ xi þ
kiþ1

ka
i

ðxi � xiþ1Þ þ
ki

ka
i

ðxi � xi�1Þ. (11)

Substituting Eq. (11) in Eq. (10), one can obtain

mi €xi þ
kiþ1

ka
i

ð €xi � €xiþ1Þ þ
ki

ka
i

ð €xi � €xi�1Þ

� �
þ kiþ1ðxi � xiþ1Þ þ kiðxi � xi�1Þ ¼ 0. (12)

The equation of motion for m1 can be obtained by replacing xi�1 by y in Eq. (12). Moreover, the equation of
motion for mn is

mn €xn þ knxn ¼ knxi�1. (13)

The equations of motion for this system in matrix form are

MS €Xþ KX ¼ F,



ARTICLE IN PRESS

mn = m

k2

k1

y

x1

x2

xn-1

xn = x Load

Base

mn-1kn

kn-1

zn-1

m2
z2

m1

k1

z1

a

k2
a

a

Fig. 2. Base excited n-dof vibration isolation system, where the isolator is an (n� 1)-dof DVA equipped spring: here, y is the displacement

of the base, xi is the displacement of the ith stage, ki is the spring stiffness of the ith stage, ka
i is the spring stiffness of the ith absorber, and

mi is the mass of the ith absorber except the last mass mn is the load mass. Hence, the mass of the isolator is the sum of the absorber masses.
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where

M ¼

m1

m2 0

:

:

0 :

mn

2
666666666664

3
777777777775
; X ¼

x1

x2

:

:

:

xn

2
666666666664

3
777777777775
; F ¼

m1
k1

ka
1

€yþ k1y

0

:

:

:

0

2
66666666666664

3
77777777777775
,

S ¼

1þ
k1 þ k2

ka
1

�
k2

ka
1

�
k2

ka
2

1þ
k2 þ k3

ka
2

�
k3

ka
2

0

:

:

0 �
kn�1

ka
n�1

1þ
kn�1 þ kn

ka
n�1

�
kn

ka
n�1

0 1

2
66666666666666664

3
77777777777777775

,
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K ¼

k1 þ k2 �k2

�k2 k2 þ k3 �k3 0

:

:

0 �kn�1 kn�1 þ kn �kn

�kn kn

2
666666666664

3
777777777775
. ð14Þ

Note that the mass matrix is given by the productMS. It can be seen that if all ka
i approach infinity, then the

matrix S becomes an identity matrix and the system becomes an n-dof mass–spring chain. Now, let us assume
that all ka

i are finite and compare this system with an n-dof mass–spring chain having the same mi’s and ki’s.
Assuming harmonic motion, the resonance frequencies of the system can be obtained by solving the

eigenvalue problem

ðMSÞ�1KX
�
¼ o2

p X
�
. (15)

Besides the resonance frequencies, there are n� 1 anti-resonance frequencies given by the resonance
frequencies of the n� 1 sdof DVAs. Hence, the ozi’s are calculated as

ozi ¼

ffiffiffiffiffi
ka

i

mi

s
. (16)

By making use of the n resonance frequencies and n� 1 anti-resonance frequencies, the transmissibility is
determined as

TðoÞ ¼
Qn�1

i¼1 ð1� ðo=oziÞ
2
ÞQn

i¼1ð1� ðo=opiÞ
2
Þ
. (17)

The potential of the anti-resonance frequencies to lower the resonance frequencies can be fully utilized when
all the anti-resonance frequencies are greater than the largest resonance frequency. Assuming both resonance
and anti-resonance frequencies are indexed in increasing order, then

ozi4opn; 8i. (18)

Furthermore, by definition, the stop-band frequency is larger than the highest resonance frequency.
Depending on the required transmissibility level, stop-band frequency can be at a frequency that is larger than
some of the anti-resonance frequencies. However, a low-pass filter is most effective when the stop-band
frequency is smaller than all the anti-resonance frequencies. If this is so, then the filter has better performance
than an equivalent n-dof resonance-only filter. This will be proven in this section. However, when the stop-
band frequency is, say, larger than l anti-resonance frequencies, then the filter behaves similar to an (n� l)-dof
filter. Hence, the transmissibility decay rate decreases as the stop-band frequency gets larger. Therefore, for
optimum performance, let us assume that the required transmissibility level is such that

opnoosooz1. (19)

Then, there is a unique os solution to the equationQn�1
i¼1 ð1� ðos=oziÞ

2
ÞQn

i¼1ð1� ðos=opiÞ
2
Þ
¼ ð�1ÞnT0. (20)

Actually, in order for the solution os to be qualified as a valid stop-band frequency, there is one more
requirement. For all o4os, it is required that the absolute value of T(o) be smaller than T0. This requirement
is always satisfied by resonance-only systems. However, for an anti-resonant system, in order for this
requirement to be satisfied, os needs to be smaller than oz1 by a finite amount. The exact amount depends
on all the poles and zeros. However, the aim in this section is to show that the stop-band frequency of this
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anti-resonant system is smaller than that of an equivalent n-dof mass–spring chain. In order to show this, it is
sufficient to know that osooz1. In order to compare the stop-band frequency of this system with an n-dof
mass–spring chain, let us assume that opn � os. Therefore, the assumption is that

opn � osooz1. (21)

Eq. (21) can be used to simplify Eq. (20) as

ð�1ÞnT0 ¼

Qn�1
i¼1 ð1� ðos=oziÞ

2
ÞQn

i¼1ð1� ðos=opiÞ
2
Þ
p

1Qn
i¼1ð1� ðos=opiÞ

2
Þ

since 0p
os

ozi

o1; 8i. (22)

Furthermore,

os

opi

� 1 8i )
1Qn

i¼1ð1� ðos=opiÞ
2
Þ
ffi

1

ð�1Þn
Qn

i¼1ðos=opiÞ
2
¼
ð�1Þn

Qn
i¼1o

2
pi

o2n
s

. (23)

As a result,

ð�1ÞnT0p
ð�1Þn

Qn
i¼1o

2
pi

o2n
s

) osp

Qn
i¼1o

2
pi

� �1=2n

ðT0Þ
1=2n

. (24)

According to Eq. (15), o2
pi are the eigenvalues of the matrix ðMSÞ�1K. For any square matrix, the product of

the eigenvalues is given by the determinant. Therefore,

Yn

i¼1

o2
pi ¼ detððMSÞ�1KÞ ¼ detððMSÞ�1Þ detðKÞ ¼

detðKÞ

detðMSÞ
¼

detðKÞ

detðMÞ detðSÞ
. (25)

Let us introduce the superscript ‘‘dva’’ in order to distinguish os of this system from others. Moreover, let
us substitute Eq. (25) in Eq. (24), then

odva
s p

ðdetðKÞ=ðdetðMÞ detðSÞÞÞ1=2n

ðT0Þ
1=2n

. (26)

If the S matrix were an identity matrix, then the inequality in Eq. (26) would be an equality and this relation
would give the stop-band frequency of the equivalent n-dof mass–spring chain, i.e., och

s . Therefore, the stop-
band frequency of this system is indeed smaller than the stop-band frequency of the equivalent n-dof
mass–spring chain, that is, odva

s ooch
s , provided that det(S) is larger than 1.

Proposition 1. detðSÞ41 provided that ka
i o1 for some i.

Proof. According to Eq. (14), S is given by

S ¼

1þ
k1 þ k2

ka
1

�
k2

ka
1

�
k2

ka
2

1þ
k2 þ k3

ka
2

�
k3

ka
2

0

:

:

0 �
kn�1

ka
n�1

1þ
kn�1 þ kn

ka
n�1

�
kn

ka
n�1

0 1

2
66666666666664

3
77777777777775
.

When elementary row operations are applied to a square matrix, its eigenvalues do not change. If the S

matrix is transformed into an upper triangular matrix, then the diagonal entries are the eigenvalues. So, it is
sufficient to show that all the diagonal entries of the upper triangular matrix are greater than or equal to 1, and
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at least one of them is strictly greater than 1. In order to simplify the calculations, let us relabel the variables:

S ¼

1þ a1 þ a2 �a2

�a3 1þ a3 þ a4 �a4 0

:

:

0 �a2n�3 1þ a2n�3 þ a2n�2 �a2n�2

0 1

2
666666664

3
777777775
,

where all ajX0, since ki40 and ka
i 40. Moreover, a2i�1 can be zero only when ka

i approaches infinity. Let us
multiply the first row by a3=ð1þ a1 þ a2Þ and add it to the second row. Then, the matrix becomes

1þ a1 þ a2 �a2

0 1þ â3 þ a4 �a4 0

�a5 1þ a5 þ a6 a7

:

0 �a2n�3 1þ a2n�3 þ a2n�2 �a2n�2

0 1

2
666666664

3
777777775
,

where

â3 ¼ a3
1þ a1

1þ a1 þ a2

� �
X0.

By successively applying this method, all the terms below the diagonal can be made equal to zero. Moreover,
the diagonal terms will become 1þ â2i�1 þ a2i, where

â2i�1 ¼ a2i�1
1þ â2i�3

1þ â2i�3 þ a2i�2

� �
X0 for i ¼ 3; 4; . . . ; n� 1.

Therefore, the first diagonal term and the others are all greater than or equal to 1. Let us relabel a1 as â1, then

detðSÞ ¼
Yn�1
i¼1

ð1þ â2i�1 þ a2iÞ.

If not all ka
i approach infinity, then there would be some j such that ka

j is finite. Then, a2j�140)
â2j�140) 1þ â2j�1 þ a2j41) detðSÞ41. &

Proposition 1 and Eq. (26) establishes that the stop-band frequency of this system is smaller than the stop-
band frequency of an equivalent n-dof mass–spring chain. In other words, introduction of anti-resonance
frequencies indeed improved the performance of n-dof vibration isolators. Now, let us illustrate the
performance improvement through a numerical example.

Suppose that n ¼ 2, m ¼ 0:1. In this case, there is only one absorber on the spring and its mass is directly
specified by m. Let us assume that the isolator spring stiffness values, k1 and k2, are equal. Hence,
k1 ¼ k2 ¼ 2k. Let us vary the absorber spring stiffness, ka

1, in order to see the effect of the anti-resonance
frequency on the stop-band frequency.

If ka
1!1, then oz !1, and the system becomes a 2-dof mass–spring chain. Now, let us choose

ka
1 ¼ 2:5 k, so oz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:5k=0:1m

p
¼ 5

ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 5o0. Finally, let ka

1 ¼ 0:625k, then oz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:625k=0:1m

p
¼

2:5
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 2:5o0. Let us compare these three cases as three different designs, which are shown in Fig. 3.
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Fig. 3. Effect of anti-resonance frequency change on the stop-band frequency of a 2-dof DVA equipped spring isolation system: ———,

oz=o0 !1; – – – –, oz=o0 ¼ 5; � � � � � � , oz=o0 ¼ 2:5.
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It can be seen in Fig. 3 that, as the anti-resonance frequency decreases, the higher resonance frequency of
the system also decreases. If the maximum allowable transmissibility, T0, is about 0.01, then the design with
oz ¼ 5o0 has the lowest stop-band frequency, os, among the three designs. When compared to the 2-dof
mass–spring chain, os of this design is about half. However, if T0 is about 0.1, then the design with oz ¼ 2:5o0

has the lowest os, which is approximately one-third of the 2-dof mass–spring chain value. Hence, with minimal
added complexity, this system has substantially better performance than an equivalent resonance-only
mass–spring chain.

In general, given T0, the corresponding oz that minimizes os is the one that makes the peak
transmissibility—after the zero—equal to T0. If T0 gets closer to one, then oz can be decreased so as to
minimize os. In that case, there would be more pronounced improvement over the 2-dof mass–spring chain.
However, when oz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka
1=mm

p
is less than

ffiffiffiffiffiffiffiffiffiffiffi
k2=m

p
, then the pole-zero order changes, and the system is no

longer a low-pass filter. So, there is a lower bound on os, which is given by
ffiffiffiffiffiffiffiffiffiffiffi
k2=m

p
. Since k2 should always be

greater than k, the lower bound on os is larger than o0.
As mentioned earlier, fewer degree-of-freedom isolators perform better for T0 values that are not very small.

The lowest degree-of-freedom DVA equipped spring isolation system is 2-dof, since there should be at least
one DVA on the spring. As shown in the previous paragraph, for this system, os cannot be smaller than o0.
However, if the isolator had only one pole and one zero, then os could be placed at a frequency that is lower
than o0. Although this is not achievable by DVA equipped spring isolation systems, it can be attained by
lever-type anti-resonant vibration isolators, which have one pole and one zero.
2.2.2. Lever-type anti-resonant vibration isolators

As mentioned in the introduction, basic operational principles of the mechanically or hydraulically
leveraged anti-resonant vibration isolators are the same. For the sake of clarity in the analysis, simple levers
will be used to model leverage in anti-resonant vibration isolators. Moreover, only lever-type anti-resonant
vibration isolators are going to be investigated in this section. Therefore, when the term ‘‘anti-resonant
vibration isolator’’ is used, it is implied that it is of ‘‘lever-type’’.

Depending on the order of the pivot points of the lever with respect to the load and the isolator mass, there
are two different types of anti-resonant vibration isolators. Let us call them Type I and Type II isolators. In a
Type I isolator, the pivot attached to the base is nearer to the isolator mass and in a Type II isolator, the pivot
attached to the load is nearer to the isolator mass.

Let us first analyze a Type I anti-resonant vibration isolator, which is depicted in Fig. 4. Let us assume that
the lever rod is massless and rigid; the spring is linear, massless and undamped. Then, the system is sdof.
Moreover, let us assume that the oscillations are small. Then linear theory is applicable, generating the
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Fig. 4. Base excited Type I isolator: here, y is the displacement of the base, x is the displacement of the load, z is the displacement of the

isolator mass, k is the mount stiffness, m is the mass of the load, mis is the isolator mass, l1 is the length of the lever and l2 is the distance

between two pivot points.
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equation for z in terms of x and y as

z ¼ ay� ða� 1Þx; where a ¼ l1=l241. (27)

Moreover, the equation of motion is

ðmþmisða� 1Þ2Þ €xþ kx ¼ ðmisaða� 1ÞÞ €yþ ky. (28)

In order to simplify the calculations, let us use the relationships

o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; m ¼ mis=m. (29)

Then, Eq. (28) can be rewritten as

ð1þ mða� 1Þ2Þ €xþ o2
0x ¼ ðmaða� 1ÞÞ €yþ o2

0y. (30)

It is important to notice that the effective mass of the system, ðmþmisða� 1Þ2Þ, can be much larger than m,
provided that the lever ratio a is large enough. Moreover, the inertial forcing term, misaða� 1Þ, also increases
with the lever ratio. Thus, with a small mass mis one can generate large inertia forces, provided that the lever
ratio is large enough.

The right-hand side of Eq. (30) can be equal to zero, when the excitation frequency is equal to

oz ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maða� 1Þ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

misaða� 1Þ

s
. (31)

Notice that oz is independent of m. Moreover, the pole of the system is at

op ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mða� 1Þ2
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþmisða� 1Þ2

s
. (32)

Then, T(o) is obtained as

TðoÞ ¼
ð1� o2=o2

zÞ

ð1� o2=o2
pÞ
. (33)

Furthermore,

op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maða� 1Þ

1þ mða� 1Þ2

s
. (34)

It can be seen in Eq. (34) that if m ¼ 1=ða� 1Þ then op=oz ¼ 1. Hence, pole and zero cancellation occurs,
which imply that TðoÞ is equal to one for all excitation frequencies. Moreover, given a, if m41=ða� 1Þ, then
op4oz, and if mo1=ða� 1Þ, then opooz. Therefore, the order of the pole and the zero depends upon the
values of a and m.



ARTICLE IN PRESS
C. Yilmaz, N. Kikuchi / Journal of Sound and Vibration 293 (2006) 171–195 183
In order to find the stop-band frequency, os, let us rewrite Eq. (33) as

TðoÞ ¼
ðo2

z � o2Þ

ðo2
p � o2Þ

o2
p

o2
z

. (35)

It can be seen that as o!1, TðoÞ ! o2
p=o

2
z . Assuming finite oz and non-zero op, then T(o) converges to a

positive number. Therefore, given a maximum allowable transmissibility level, T0, T(o) should converge to T0

as o!1. Thus, op and oz have to satisfy the equality

o2
p

o2
z

¼ T0. (36)

Since, 0oT0o1, then according to Eq. (36) opooz, and therefore this system has the correct order of pole
and zero to function as a low-pass filter-type isolator.

Finally, let us equate Eq. (35) to �T0 in order to determine os. Let us also make use of Eq. (36), then

ðo2
z � o2

s Þ

ðo2
p � o2

s Þ
T0 ¼ �T0 )

ðo2
z � o2

s Þ

ðo2
p � o2

s Þ
¼ �1 ) os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

p þ o2
z

2

s
. (37)

According to Eqs. (34) and (36), m and a should satisfy the equality

maða� 1Þ

1þ mða� 1Þ2
¼ T0. (38)

Eq. (38) can be used to eliminate a or m. To be consistent with the other os calculations, a should be
eliminated. However, the resulting equation for os will not be simple to comprehend. Therefore, first m will be
eliminated and os will be obtained as a function of o0, T0 and a. After some analysis, the final form of os will
be given in terms of o0, T0 and m.

Let us use Eq. (36) in Eq. (37) to eliminate oz and further use Eq. (32) to obtain the relation

os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

p

2
1þ

1

T0

� �s
¼

o0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ mða� 1Þ2
1þ

1

T0

� �s
. (39)

Consequently, let us solve for m in Eq. (38):

m ¼
T0

aða� 1Þ � T0ða� 1Þ2
. (40)

By substituting Eq. (40) in Eq. (39), os can be obtained as a function of o0, T0 and a. Furthermore, let us
introduce the superscript ‘‘I’’ in order to distinguish os of this system from others. Then,

oI
s ¼

o0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T0 1�

1

a

� �� �
1þ

1

T0

� �s
¼

o0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T0

a
þ

1

T0
� T0

s
. (41)

Let us finally calculate rI
ws, using the definition given by Eq. (5):

rI
ws ¼

oI
s

o0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� T0 1�

1

a

� �� �
1þ

1

T0

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1þ T0

a
þ

1

T0
� T0

� �s
. (42)

Since this is a sdof system, let us compare Eq. (42) with Eq. (6) or Eq. (9). By definition, the lever ratio, a,
should be greater than one. The upper limit on a is dictated by physical limitations. Suppose that there is no
upper limit or it is very large. Then,

a!1 ) rI
ws !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

T0
� T0

� �s
. (43)
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According to Eq. (40), given T0, as a!1 then m! 0. So, let us compare this case with Eq. (6) since it is
derived for a massless sdof isolator:

a!1 ) rI
ws !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

T0
� T0

� �s
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0
� T0

� �s
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0
þ 1

� �s
¼ rws ) rI

wso
rwsffiffiffi
2
p . (44)

Therefore, as a!1, the Type I isolator performs better than an equivalent sdof mass–spring system.
Moreover, rI

ws can be considerably smaller than the upper bound given in Eq. (44) if the transmissibility
requirement, T0, is not very small. In fact, according to Eq. (43), rI

ws is smaller than one, if
T04

ffiffiffi
2
p
� 1ffi 0:41. In other words, if T040:41, then oI

s is smaller than o0. As shown at the end of Section
2.2.1, this is not achievable by DVA equipped spring isolation systems.

It can be seen from Eq. (42) that given T0, if a gets smaller, then rI
ws gets larger. In other words, as m

increases, the performance of a Type I isolator decreases. This behavior is opposite to sdof mass–spring
systems with inertia block. According to Eq. (9), as m increases the performance increases, i.e., rinws gets smaller.

Let us finally obtain oI
s as a function of o0, T0 and m. To do that, let us solve for a in Eq. (38). Let us use the

property that a should be greater than one, then

a ¼
ð1� 2T0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4T0=mÞ � ð4T2

0=mÞ
q
2ð1� T0Þ

. (45)

Now, let us use Eq. (45) in Eq. (41):

oI
s ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut . (46)

Therefore, rI
ws as a function of T0 and m is

rI
ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut . (47)

As an example, let T0 ¼ 0:1 and m ¼ 0:1. Fig. 5 shows the transmissibility plots of a Type I isolator and a
sdof mass–spring system with inertia block.
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Fig. 5. Transmissibility plots showing the stop-band frequencies of a Type I isolator (———) and a sdof mass–spring system with inertia

block (– – – –) for T0 ¼ 0:1 and m ¼ 0:1.
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Fig. 6. Base excited Type II isolator: here, y is the displacement of the base, x is the displacement of the load, z is the displacement of the

isolator mass, k is the mount stiffness, m is the mass of the load, mis is the isolator mass, l1 is the length of the lever and l2 is the distance

between two pivot points.
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According to Eq. (47), rI
ws can be calculated as 2.30. Moreover, using Eq. (9), rinws can be calculated as 3.16.

Hence, there is 27% of improvement.
Now, let us formulate the stop-band frequency of a Type II anti-resonant vibration isolator, which is shown

in Fig. 6.
The equation of motion is

ð1þ ma2Þ €xþ o2
0x ¼ ðmaða� 1ÞÞ €yþ o2

0y; where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; m ¼ mis=m; a ¼ l1=l2. (48)

In a Type II isolator, the effective mass of the system is larger. Hence, the pole of a Type II isolator is
smaller than that of an equivalent Type I isolator:

op ¼
o0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ma2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþmisa2

s
. (49)

oz is the same with an equivalent Type I isolator, which is given in Eq. (31). Moreover,

op

oz

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maða� 1Þ

1þ ma2

s
o1 for a41. (50)

By definition, a is greater than one. Hence, in a Type II isolator op is always less than oz. It can be seen that
by replacing a with (1�a) in Eq. (48) one can obtain Eq. (30). Hence, the stop-band frequency of a Type II
isolator can be obtained by replacing a with (1�a) in Eq. (41). Then,

oII
s ¼

o0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T0

a
a� 1

� �� �
1þ

1

T0

� �s
¼

o0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T0

1� a
þ

1

T0
� T0

s
. (51)

So, rII
ws can be calculated as

rII
ws ¼

oII
s

o0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� T0

a
a� 1

� �� �
1þ

1

T0

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1þ T0

1� a
þ

1

T0
� T0

� �s
. (52)

It can be seen that as a!1, rII
ws converges to the same equation as rI

ws does in Eq. (43). So, in this case, the
Type II isolator has the same properties of an equivalent Type I isolator. However, according to Eq. (52),
given T0, if a gets smaller then rII

ws also gets smaller. In other words, as m increases the performance of a Type II
isolator does not decrease as in the case of a Type I isolator, but the performance also increases.

Now, let us obtain oII
s as a function of o0, T0 and m. To do that let us equate o2

p=o
2
z to T0 in Eq. (50) and

solve for a as a function of T0 and m. Hence,

a ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4T0=mÞ � ð4T2

0=mÞ
q

2ð1� T0Þ
. (53)
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Fig. 7. Transmissibility plots showing the stop-band frequencies of a Type II isolator (———) and a sdof mass–spring system with inertia

block (– – – –) for T0 ¼ 0:1 and m ¼ 0:1.
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Then, let us substitute Eq. (53) in Eq. (51):

oII
s ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut . (54)

Finally, rII
ws as a function of T0 and m can be obtained as

rII
ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut . (55)

Let us now compare a Type II isolator with an equivalent sdof mass–spring system with inertia block. As an
example, let T0 ¼ 0:1 and m ¼ 0:1. Fig. 7 shows the transmissibility plots of a Type II isolator and a sdof
mass–spring system with inertia block.

According to Eq. (55), rII
ws can be calculated as 2.05. Moreover, using Eq. (9), rinws can be calculated as 3.16.

Hence, there is 35% of improvement.
2.3. Stop-band frequency comparisons

As discussed before, few degree-of-freedom isolation systems perform better at transmissibility levels
that are not very small. The lowest degree-of-freedom isolators having non-zero isolator mass are:
sdof mass–spring systems with inertia block, 2-dof DVA equipped spring isolation systems and finally,
Type I and Type II anti-resonant vibration isolators. It has been shown that 2-dof DVA equipped
spring isolation systems cannot have os smaller than o0. Equivalently, rws for these systems is always larger
than one. However, according to Eqs. (42) and (52), rI

ws and rII
ws can be less than one. Moreover, according to

Eq. (9), rinws can also be less than one. The aim in this section is to compare the systems that can have rws smaller
than one. Based on these comparisons, higher degree-of-freedom systems will be synthesized in the next
section.
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In order to compare rinws, rI
ws and rII

ws, all of them should be given in terms of the same variables. Thus, let us
compare Eqs. (9), (47) and (55):

rI
ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut ; rinws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ m

� �
1þ

1

T0

� �s
,

rII
ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T0Þ

2

2þ m� 2T0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CA 1þ

1

T0

� �vuuuut .

First of all, it is clear that rII
ws is always smaller than rI

ws. These relationships only differ by a sign in front of
the square-root term in the denominator. By definition, m 4 0 and 0oT0o1. So, the term 2þ m� 2T0 is
positive. Moreover, ð1� T0Þ

2 is also positive. Hence, the positive sign in front of the square-root term implies
that rII

ws is always smaller than rI
ws.

Now, let us show that rII
ws is always smaller than rinws. In order to do that, it is enough to show that the

following inequality is satisfied for all m40 and 0oT0o1:

ð1� T0Þ
2

2þ m� 2T0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CAo

1

1þ m

� �
. (56)

However,

m40; 0oT0o1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
4m

)
ð1� T0Þ

2

2þ m� 2T0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4mT0 � 4mT2

0

q
0
B@

1
CAo

ð1� T0Þ
2

2þ 2m� 2T0

� �
. ð57Þ

According to Eqs. (56) and (57) it is enough to show that

ð1� T0Þ
2

2ð1þ m� T0Þ
o

1

1þ m
3ð1� T0Þ

2
ð1þ mÞo2ð1þ m� T0Þ

3ð�1� 2T0 þ T2
0Þð1þ mÞ þ 2T0o03ðmÞð�1� 2T0 þ T2

0Þ

þ ð�1þ T2
0Þo0. ð58Þ

Moreover,

0oT0o1) ð�1þ T2
0Þo0; ð�1� 2T0 þ T2

0Þo0.

m40) ðmÞð�1� 2T0 þ T2
0Þo0. ð59Þ

Therefore,

ðmÞð�1� 2T0 þ T2
0Þ þ ð�1þ T2

0Þo0: &

It has been shown that the Type II isolator has the best performance among the previously mentioned
designs. Let us now illustrate the performance of these systems graphically. Fig. 8 shows the dependence of rws

to m, given T0 ¼ 0:1 and Fig. 9 demonstrates the dependence of rws to T0, given m ¼ 0:1.
It can be seen from Fig. 8 that Type II isolator has the lowest rws for all m values. As mentioned in Section

2.3.2, rI
ws is lowest when m ¼ 0. Furthermore, it can be seen that in order to obtain an rws value of 1, one needs

an inertia block having a mass of 10m, where m is the mass of the load. However, by using a Type II isolator,
the same rws value can be achieved if the isolator mass is approximately 3.5m.
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Fig. 9. rws versus T0 comparisons for sdof mass–spring system with inertia block (– – – –), Type I isolator ð� � � � � �Þ and Type II isolator

(———) given m ¼ 0:1.
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Fig. 8. rws versus m comparisons for sdof mass–spring system with inertia block (– – – –), Type I isolator ð� � � � � �Þ and Type II isolator

(———) given T0 ¼ 0:1.
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It can be seen from Fig. 9 that the Type II isolator has the lowest rws for all T0 values. Moreover, it can be
observed that the sdof mass–spring system with inertia block cannot reach rws ¼ 1. However, the Type I
isolator reaches rws ¼ 1 at about T0 ¼ 0:5 and the Type II isolator reaches it at about T0 ¼ 0:35.
3. Design of stiff low-pass filter-type vibration isolators

In Section 2, stop-band frequencies of low-pass filter-type isolators were derived assuming that they all have
the same overall stiffness to load mass ratio. Equivalently, the overall stiffness of all the designs can be chosen
such that every design has the same stop-band frequency for a given level of transmissibility. So, the designs
that have the smallest stop-band frequencies in the first case would be the stiffest in the second case.

The aim in this section is to obtain vibration isolators that can outperform the existing designs at low
transmissibility levels. This can be achieved through mdof low-pass filter-type vibration isolators that have an
equal number of poles and zeros.
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3.1. Building blocks

In Section 2.3, it has been proven that among the lowest degree-of-freedom isolator designs, Type II anti-
resonant vibration isolators yielded the lowest stop-band frequency for any m40 and 0oT0o1. Moreover,
these designs can be combined in series to obtain mdof systems having an equal number of poles and zeros.
One major requirement is that these mdof systems should have the correct order of poles and zeros, that is, all
the poles should precede all the zeros.

According to Eq. (50), Type II isolators always have the correct pole-zero order. However, when they are
combined in series, the order of poles and zeros may shuffle. Hence, certain constraints should be imposed in
order to obtain the correct pole-zero order, which will be discussed later.

Now, let us analyze the n-dof isolator composed of Type II isolators as shown in Fig. 10. In short, let us
denote this system as an n-dof Type II isolator.

The equation of motion for the ith stage is, provided that 1oion,

½�miaiðai � 1Þ mS
i þmiþ1ðaiþ1 � 1Þ2 þmiðaiÞ

2
�miþ1aiþ1ðaiþ1 � 1Þ�

€xi�1

€xi

€xiþ1

2
664

3
775

þ ½�ki ki þ kiþ1 � kiþ1�

xi�1

xi

xiþ1

2
664

3
775 ¼ 0. ð60Þ
[Load]

y

xn-1

xn = x

k1

kn

m2

x1

x2

m2

m1

mn

k2

mn-1

mn = m

S

S

S

m1
S

Fig. 10. Base excited n-dof Type II isolator: here, y is the displacement of the base, xi is the displacement of the ith stage, mS
i is the mass of

the ith stage, mi is the mass of the ith isolator, ai is the lever ratio of the ith isolator, and ki is the spring stiffness of the ith stage. It can be

seen that load is in the uppermost stage.
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The equation of motion for the first stage can be obtained by replacing xi�1 by y in Eq. (60). Moreover, the
equation of motion for the last stage is

½�mnanðan � 1Þ mS
n þmnðanÞ

2
�
€xn�1

€xn

" #
þ ½�kn kn�

xn�1

xn

" #
¼ 0. (61)

The equations of motion for this system in matrix form are

M €Xþ KX ¼ F, (62)

where

M ¼

mS
1 þm1ða1Þ

2
þm2ða2 � 1Þ2 �m2a2ða2 � 1Þ

�m2a2ða2 � 1Þ mS
2 þm2ða2Þ

2
þm3ða3 � 1Þ2 �m3a3ða3 � 1Þ 0

:

:

0 :

�mnanðan � 1Þ mS
n þmnðanÞ

2

2
6666666664

3
7777777775
,

K ¼

k1 þ k2 �k2

�k2 k2 þ k3 �k3 0

:

:

0 �kn�1 kn�1 þ kn �kn

�kn kn

2
666666666664

3
777777777775
; X ¼

x1

x2

:

:

:

xn

2
666666666664

3
777777777775
,

F ¼

k1 yþm1a1ða1 � 1Þ €y

0

:

:

:

0

2
666666666664

3
777777777775
.

Assuming harmonic motion, the resonance frequencies of the system can be obtained by solving the
eigenvalue problem

M�1KX
�
¼ o2

p X
�
. (63)

Besides the n resonance frequencies, there are n anti-resonance frequencies in this system. n� 1 of the anti-
resonance frequencies are obtained by equating the off-diagonal terms of the matrix K� o2

zM to zero, and the
last one comes from equating the forcing term to zero. They are all in the form

ozi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki

miaiðai � 1Þ

s
. (64)

By making use of the n resonance frequencies and n anti-resonance frequencies, transmissibility is
determined as

TðoÞ ¼
Qn

i¼1ð1� ðo=oziÞ
2
ÞQn

i¼1ð1� ðo=opiÞ
2
Þ
. (65)
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In order for this system to function as a low-pass filter, all the zeros should be after the highest pole.
Assuming both poles and zeros are indexed in increasing order, then

opnooz1. (66)

Subsequently, once all the poles and zeros are known and T0 is given, the stop-band frequency, os, can be
determined uniquely from the equalityQn

i¼1ð1� ðos=oziÞ
2
ÞQn

i¼1ð1� ðos=opiÞ
2
Þ
¼ ð�1ÞnT0. (67)
3.2. The optimization problem

In a sdof Type II isolator, mount stiffness k and the load mass m are the parameters that are used to scale
the resonance and anti-resonance frequencies of the system. Once the constraints T0 and m are known, the two
variables that define the system, a and mis, are determined uniquely. However, in an n-dof Type II isolator
there are more variables than the number of constraints. As a result, there is the opportunity of minimizing the
stop-band frequency through optimization.

Before stating the optimization problem, let us make some explanations. In this system, the aim is to group
the n zeros after the highest pole. In that case, there will be ðn� 1Þ local peaks in the transmissibility function
until the function converges to a constant value. Let us index the peaks in increasing order and let oi

peak be the
ith peak frequency. The statement of the optimization problem is as follows:

minimize os

subject to hi : Tðoi
peakÞ ¼ ð�1Þ

nþiT0 for i ¼ 1; 2; . . . ; n� 1;

hn : Tð1Þ ¼ T0;

hnþ1 :
Pn�1
i¼1

mS
i þ

Pn
i¼1

mi ¼ mm;

hnþ2 :
Pn
i¼1

1

ki

¼
1

k
;

g1 : opnooz1;

kiXk; miX0; aiX1; for i ¼ 1; 2; . . . ; n;

mS
i X0 for i ¼ 1; 2; . . . ; n� 1:

There are ð4n� 1Þ variables and ðnþ 2Þ equality constraints in this problem. Therefore, the solution space is
ð3n� 3Þ dimensional. As mentioned earlier, for the case of n ¼ 1, there is a unique solution. However, if n41,
then there is room for optimization.

In order to obtain some quantitative results, let us try to solve the optimization problem for the case of
n ¼ 2. There are seven variables in this problem, which are m1, m2, a1, a2, k1, k2 and mS

1 .
Let us focus on the variable mS

1 . This variable represents the mass of the first stage and it will be shown that
in order to achieve low pole values, or equivalently low stop-band frequency, this variable should be equated
to zero.

Similar to Eq. (25), the product of the poles of this system is given by detðKÞ= detðMÞ. Hence, in order to
lower the values of the poles, detðKÞ= detðMÞ should be decreased. Since K is independent of the variable mS

1 ,
let us just consider det(M). According to Eq. (61), det(M) can be calculated as

detðMÞ ¼ ðmS
1 þm1ða1Þ

2
þm2ða2 � 1Þ2Þðmþm2ða2Þ

2
Þ � ðm2a2ða2 � 1ÞÞ2. (68)

Given m and m, there is a constraint on the sum of the values of m1, m2 and mS
1 as stated in the optimization

problem. If a141, then m1ða1Þ
24mS

1 provided m1 ¼ mS
1 . So, if the sum of m1 and mS

1 is given then m1ða1Þ
2
þ

mS
1 is maximum when mS

1 ¼ 0. However, in order to have a lever, a1 should be greater than one. Therefore, to
maximize the value of det(M), mS

1 should be equal to zero. Through mathematical induction, one can show
that the above argument is also valid for n-dof systems, i.e., mS

i should be equal to zero for i ¼ 1; 2; . . . ; n� 1.
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This then reduces the number of variables in an n-dof system to 3n. Therefore, the solution space of the
problem becomes ð2n� 2Þ dimensional.

Let us again concentrate on the problem when n ¼ 2. After elimination of the variable mS
1 , the number of

variables in the optimization problem reduces to 6, which are k1, k2, m1, m2, a1 and a2. There are six variables
and four equality constraints. Let us call the variables k2, m2, a1 and a2 as state variables that satisfy the four
equality constraints. The remaining two variables, k1 and m1, are called the decision variables.

The state variables m2 and k2 can easily be solved in terms of the decision variables using equality
constraints h3 and h4, respectively. Although, os, o1

peak and Tðo1
peakÞ can be determined analytically, it is not

feasible to solve for a1 and a2 analytically using the equality constraints h1 and h2. However, a1 and a2 can
easily be determined via Newton’s method using the equality constraints h1 and h2. To determine the values
of the decision variables that minimize os, any gradient-based algorithm can be used. In this paper,
Newton’s method with variable step length is used in order not to violate the set constraints and the inequality
constraint g1.

For some m and T0 values the optimum appeared at the boundary of the solution space and for others the
optimum was in the interior. Given m and T0, to check whether the local minimum obtained through the
optimization routine is actually a global minimum, different initial conditions are used. It has been observed
that all the initial conditions gave the same outputs whether it is a boundary or an interior solution. Therefore,
it is highly probable that the search space has a single minimum for any reasonable value of m and T0.

3.3. Numerical results

Let us compare the designs obtained through the optimization routine with the equivalent Type II isolators,
which after all offer the smallest stop-band frequency among the lowest degree-of-freedom isolation systems.
In all the comparisons, let k ¼ 1 and m ¼ 1.

Let us first choose m ¼ 0:1 and T0 ¼ 0:1. For the Type II isolator, m ¼ 0:1, m ¼ 1) mis ¼ 0:1. Moreover,
m ¼ 0:1, T0 ¼ 0:1) a ¼ 1:747. For the 2-dof optimum design, the values of the variables are: m1 ¼ 0:09818,
m2 ¼ 0:00182, k1 ¼ 9:836, k2 ¼ 1:113, a1 ¼ 6:172, a2 ¼ 9:370. Fig. 11 shows the transmissibility plots of the
two systems.

By using Eq. (55), normalized stop-band frequency of the Type II isolator, rII
ws, can be found as 2.05.

Moreover, the normalized stop-band frequency of the 2-dof optimum design, ropws , is calculated as 1.75. Let
Rrws be the ratio of ropws to rII

ws. Then, Rrws ¼ 0:852. Hence, the stop-band frequency of the optimum design is
85% of the Type II isolator’s.

It can be seen that although Rrws is less than one, the pole and zero values are quite close in the optimum
design. This is not a desirable property, since isolation characteristics deteriorate quite abruptly near the
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Fig. 11. Stop-band frequency comparison of a Type II isolator (– – – –) and the 2-dof optimum design (———) for m ¼ 0:1 and T0 ¼ 0:1.
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Fig. 13. Stop-band frequency comparison of a Type II isolator (– – – –) and the 2-dof optimum design (———) for m ¼ 0:5 and T0 ¼ 0:1.
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Fig. 12. Stop-band frequency comparison of a Type II isolator (– – – –) and the 2-dof optimum design (———) for m ¼ 0:1 and T0 ¼ 0:01.
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stop-band frequency. However, if a lower level of transmissibility were required, then the pole-zero separation
would be larger. To see this numerically, let us keep m ¼ 0:1 and decrease T0 to 0.01. Then, for the Type II
isolator, mis ¼ 0:1 and a ¼ 1:102. However, for the 2-dof design, the optimum is achieved when m2! 0. In
that case, a2!1. However, this is physically not realizable. Besides, k1 converges to a number close to 3.80.
Nevertheless, the value of rws changes negligibly if a2414. So, let us choose m1 as 0.0999 and k1 as 3.80 and
obtain the rest of the variables using the constraint equations. Here are the values of the variables for the 2-dof
quasi-optimal design: m1 ¼ 0:0999, m2 ¼ 0:0001, k1 ¼ 3:8, k2 ¼ 1:357, a1 ¼ 2:066, a2 ¼ 14:89. Fig. 12 shows
the transmissibility plots of the two systems.

In this case, the normalized stop-band frequency of the Type II isolator can be found to be 6.71. Moreover,
the normalized stop-band frequency of the 2-dof quasi-optimal design is calculated as 4.00. Then,
Rrws ¼ 0:596, which is quite low compared to 0.852. Besides, pole-zero separation is not as critical as before.
In addition, to see the performance improvement over the mass–spring chains and DVA equipped spring
isolation systems, please compare Figs. 11 and 12 with Fig. 3, which was also generated for the case of m ¼ 0:1.

Now, let us investigate the effect of m. In order to make comparisons with the first example shown in Fig. 11,
let us keep T0 ¼ 0:1 and increase m to 0.5. Then, for the Type II isolator, mis ¼ 0:5 and a ¼ 1:284. For the
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Fig. 15. Graph representing Rrws versus T0 for m ¼ 0:1.
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Fig. 14. Graph representing Rrws versus m for T0 ¼ 0:1.
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2-dof optimum design, here are the values of the variables: m1 ¼ 0:356, m2 ¼ 0:144, k1 ¼ 6:755, k2 ¼ 1:174,
a1 ¼ 3:537, a2 ¼ 1:800. Fig. 13 shows the transmissibility plots of the two systems.

In this case, the normalized stop-band frequency of the Type II isolator can be found to be 1.74. Moreover,
normalized stop-band frequency of the 2-dof quasi-optimal design is calculated as 1.43. Then, Rrws ¼ 0:822,
which is little bit less than 0.852. So, there is only slight increase in relative performance of the 2-dof system
due to a substantial increase in isolator mass. There is also some increase in the pole-zero separation, but not
as much as the case of m ¼ 0:1 and T0 ¼ 0:01.

The two systems can be compared for other values of m and T0. Figs. 14 and 15 show the effect of each
parameter on Rrws. In each graph, only one parameter is changed at a time.

It can be inferred from Fig. 14 that as m decreases, the relative performance of the sdof system increases, and
as m increases, the two systems’ relative performance converges to a fixed ratio. Fig. 15 displays the expected
dependence of transmissibility on the degree-of-freedom. At low transmissibility values the 2-dof system has
substantially better performance.
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4. Conclusion

In this paper, stop-band frequencies of various low-pass filter-type vibration isolators are formulated using
two non-dimensional numbers. It has been shown that to achieve low stop-band frequencies, the isolator mass
should not be distributed over the spring that supports the load as in the mass–spring chains, instead all the
isolator mass should be utilized to generate anti-resonance frequencies. Two new n-dof isolator designs are
introduced having this property.

The first design has n� 1 zeros, which are generated by n� 1 sdof dynamic vibration absorbers (DVAs).
Hence, the isolator mass is distributed among the absorbers. It has been proven that this system has a lower
stop-band frequency than an equivalent resonance-only mass–spring chain. The second design is synthesized
using lever-type anti-resonant vibration isolators. The order of the pivot points plays an important role in the
dynamics of lever-type anti-resonant vibration isolators. So, according to the order of their pivot points they
are categorized as Type I and Type II anti-resonant vibration isolators. Based on the stop-band frequency
formulations, Type II anti-resonant vibration isolators offer the lowest stop-band frequency among the sdof
systems. So, an n-dof isolator is synthesized using n Type II isolators in series. In this n stage system, there are
n zeros and all of the isolator mass is concentrated on the lever tips to obtain the lowest stop-band frequency in
the optimization routine. Finally, the advantage of having multiple stages in lever-type anti-resonant vibration
isolators is demonstrated via parametric studies for the case of two stages.
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