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Abstract

Available machine fault diagnostic methods show unsatisfactory performances on both on-line and intelligent analyses

because their operations involve intensive calculations and are labour intensive. Aiming at improving this situation,

this paper describes the development of an intelligent approach by using the Genetic Programming (abbreviated as GP)

method. Attributed to the simple calculation of the mathematical model being constructed, different kinds of machine

faults may be diagnosed correctly and quickly. Moreover, human input is significantly reduced in the process of fault

diagnosis. The effectiveness of the proposed strategy is validated by an illustrative example, in which three kinds of valve

states inherent in a six-cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance and gas

leakage faults, are identified. In the example, 22 mathematical functions have been specially designed and 8 easily obtained

signal features are used to construct the diagnostic model. Different from existing GPs, the diagnostic tree used in the

algorithm is constructed in an intelligent way by applying a power-weight coefficient to each feature. The power-weight

coefficients vary adaptively between 0 and 1 during the evolutionary process. Moreover, different evolutionary strategies

are employed, respectively for selecting the diagnostic features and functions, so that the mathematical functions are

sufficiently utilized and in the meantime, the repeated use of signal features may be fully avoided. The experimental results

are illustrated diagrammatically in the following sections.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many mechanical fault-diagnosing techniques based on vibration analysis have been fully developed over
the last few decades [1]. Among them the well-known Fast Fourier Transform (FFT) is one of the most widely
used and well-established methods. Based on the FFT, Qu et al. [2] developed an effective tool namely the
Holospectrum for diagnosing rotating machinery and Yang et al. [3] successfully applied it to the diagnosis of
a cracked rotor; unfortunately, the FFT-based methods failed to deal with non-stationary signals. Therefore,
some time-frequency analysis methods such as Short Time Fourier Transform (STFT) [4], Wigner-Ville
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Distribution (WVD) [5], Wavelet Transform (WT) [6] and the Instantaneous Power Spectrum (IPS) [7] were
proposed and thereafter, their improved versions were further developed [8,9]. But few of them can meet the
practical requirements completely with respect to on-line and intelligence performances because their
operation needs human input and involve intensive calculations. For instance, the vibratory orbit of a rotor
provides a useful clue for diagnosing the faults occurring in rotor-bearing system, but current computer
programs cannot easily distinguish the orbit shapes automatically. Likewise, when diagnosing the faults in a
rolling-element bearing, the quasi-periodic interval between neighbouring impulses in the signal is a very
important indication that characterizes the type of bearing fault. But its automatic identification is also not
easily programmed into a computer. In most cases, both the shape of rotor vibratory orbit and the
aforementioned quasi-periodic interval in bearing signal are estimated by the means of visual observation or
manual measurement. Sometimes, however, manual methods cannot work effectively, in particular, when
diagnosing the machinery with complex structures such as diesel engines. In these cases, the vibratory features
characterizing different kinds of faults overlap together, so that engineers cannot diagnose the faults at all
from the direct observation of the signals. In order to tackle this difficulty in the diagnosis of faults inherent in
complex machinery, an intelligent approach has been developed in this study using the Genetic Programming
(abbreviated as GP) method.

The GP was first clearly defined by Koza [10]. It involves finding both the functional form (the structure of
the tree) and the numeric coefficients (terminals) for the model. In comparison with the conventional Genetic
Algorithm (GA) [11], its individual component parts are represented by binary trees and terminals rather than
by coded strings of numbers. As GP allows the optimization of much more complex structures, it can therefore
be applied to a greater diversity of problems [12–14]. Recently, Chen et al. [7] adopted it to diagnose the faults
occurring in rolling-elements bearings. However, most of the available GPs use a few predefined binary tree
structures and a small number of basic mathematical operators (e.g. +, �, � , C and power). Moreover,
every terminal plays an equal role in the model. This is not true in reality and affects the flexibility of the
optimization. In view of the aforementioned insufficiencies of existing GPs, a new GP approach is proposed in
this paper. Using this proposed GP approach, many more mathematical functions, instead of the basic
operators, will be introduced and the diagnostic tree will be constructed intelligently by applying an adaptive
power-weight coefficient to each terminal (i.e. signal features). The structure of the tree is optimized adaptively
with the variation of the power-weight coefficients between 0 and 1. In addition, different evolutionary
strategies will be employed, respectively for the selections of the functions and signal features, so that the
designed functions may be sufficiently utilized whilst in the meantime, the repeated use of signal features
can be completely avoided. A group of constant numbers will be employed to avoid the occurrence of
morbid solutions. In the paper, the effectiveness and feasibility of the proposed approach will be verified
by an example where a mathematical model has been designed to diagnose the running states of an exhaust
valve in a six-cylinders/four-stroke cycle diesel engine. The remaining parts of the paper are organized as
follows.

In Section 2, the characteristics of both the vibratory signals collected from the exhaust valve and the
corresponding cylinder pressure signals are analysed, based on which 8 signal features are considered to be the
possible terminals of the diagnostic tree. Moreover, the same number of power-weight coefficients are
designed simultaneously, from which the importance of the role of every feature in the mathematical model is
indicated.

In Section 3, the 22 mathematical functions or ‘operators’ are deliberately designed for constructing the
diagnostic tree. In the meantime, the same number of constants are used in order to avoid the occurrence of
morbid solutions (e.g. the quantity in the model is divided by zero).

In Section 4, the fitness function that drives the evolutionary process is designed. Meanwhile, different
evolutionary strategies are applied to the selections of the features, the ‘operators’ and the power-weight
coefficients as well as the constant numbers, respectively.

In Section 5, using the specially designed GP program, the diagnostic tree is optimized adaptively until
either the pre-defined maximum iteration time is reached or the satisfied fitness value is achieved. The
optimized diagnostic tree is eventually formulated into a mathematical equation.

Finally, the effectiveness of the mathematical model identifying the running states of an engine valve is
demonstrated by an illustrative experiment in Section 6.
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2. Characteristics of engine signals

Nowadays, the need to further improve the diagnostic technique of engine faults has been widely
recognized, but due to the complex structure and the presence of multi-excitation sources, the vibratory signals
collected from engines are complicated in composition. Moreover, the features of the signals collected in
different fault conditions often overlap together with each other. Thus, the engine faults are very difficult to
diagnose by convenient means. Fig. 1 shows the vibratory signals collected from an exhaust valve of a six-
cylinders/four-stroke cycle diesel engine. The valve works under three different conditions, (1) the normal
condition, (2) the valve-tappet clearance faulty condition and (3) the gas leakage fault condition. The normal
valve clearance is 0.1mm and in the experiments, a severe valve clearance fault was simulated and the
clearance was adjusted to be 0.5mm. The gas leakage fault was simulated by producing a 3mm long crack on
the cap of the valve. Two kinds of signals were considered in the calculation, one was the vibration signal
collected from the cap of the exhaust valve and another was the cylinder pressure. The latter was measured
using a pressure sensor fitted to an adapted cylinder pressure indicator port that would normally be
terminated with a mechanical pressure gauge. This arrangement proved convenient as it was not possible to
install a pressure sensor directly in the combustion chamber of the engine. The sampling frequency was 25 kHz
and during the data acquisition process, the rotating speed of the engine was kept at a constant 1500 rpm.

From Fig. 1, it was found that the signals collected under different valve running conditions showed
different complexities in structure. But the signal at every stage appeared similar in the form of the impulses
with decaying amplitudes and periods, despite the running states of the valve. Among the five stages, the
fourth stage showed the strongest vibration. Moreover, the vibration at each stage increased or decreased
more or less when the valve worked abnormally. Based on these observations the following criteria were
designed for characterizing the signals. If it was assumed that the time series signal is xi ði ¼ 1; 2; . . . ;NÞ, then

(1) General vibration intensity E1:

E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

x2
i =N

vuut , (1)

where N denotes the number of data.
(2) Vibration intensity at the second stage E2:

E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼l

x2
i =ðm� l þ 1Þ

s
, (2)

where l and m indicate the first and the last number of data collected at the second stage, respectively.
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Fig. 1. Vibration signal collected from the exhaust valve of the engine.
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(3) Vibration intensity at the third stage E3:

E3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼mþ1

x2
i =ðn�mþ 2Þ

s
, (3)

where n indicates the last number of data collected at the third stage.
(4) Structural complexity S:

S ¼ �
XO
i¼1

N 0i
N

log2
N 0i
N

� �
, (4)

where S, in essence, is the structural entropy of the signal. Herein, the amplitude region of the signal is divided
into O sub-regions. N 0i ndicates the number of the data located in the ith sub-region.

From the long-term observations, it was also found that the vibratory energy of the valve was redistributed
in the frequency domain when the valve worked abnormally, as shown in Fig. 2. It is necessary to note that the
sub-plots in Fig. 2 are the frequency spectra of those signals shown in Fig. 1.

From Fig. 2, it was observed that when the valve worked abnormally, the vibration energy moved forward
towards the high-frequency region (i.e. larger than 9 kHz) and in consequence, the low-frequency vibration
decreased correspondingly at the same time. The observation showed that the remarkable differences among
the spectra occurred in the regions (6.5 kHz, 9 kHz) and (9 kHz, 12.5 kHz), respectively. In order to
characterize these phenomena, the fifth and the sixth criteria were designed.

(5) The ratio of the vibration in the region from 6.5 to 9 kHz, R1:

R1 ¼

Pb
i¼adiPN
j¼1dj

, (5)

where dj ðj ¼ 1; 2; . . . ; i; . . . ;NÞ are the spectral data derived by the FFT, and a and b represent the first and the
last number of spectral data in the region (6.5 kHz, 9 kHz), respectively.

(6) The ratio of the vibration in the region from 9 to 12.5 kHz, R2:

R2 ¼

PN
i¼bdiPN
j¼1dj

. (6)

In order to see whether these vibratory criteria can really work in identifying the running states of the valve,
Fig. 3 plots their calculated results obtained during a series of experiments.
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Fig. 2. The frequency spectra of the signals shown in Fig. 1.
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Fig. 3. Computational results of the six vibratory criteria. (a) E1, (b) E2, (c) E3, (d) S, (e) R1, and (f) R2.
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From Fig. 3, it was found that the vibratory criteria, derived under different valve running conditions, either
overlapped together or were very close to each other. Obviously, they cannot be directly applied to the
identification of valve states, but from Eqs. (1)–(6), it is seen that these criteria are much more easily obtained
than those used by Chen et al. [7].
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Fig. 4. Cylinder pressure signals collected under different running conditions of the valve.
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Experiments revealed that cylinder pressure was also an important feature for diagnosing valve states, as
shown in Fig. 4. From this figure, it is clearly seen that when the running state of the valve has changed
especially when a gas leakage fault occurs, the maximum value of the cylinder pressure will change
significantly. Moreover, the decreasing ratio of the cylinder pressure in one working cycle is modified as well.

Based on the above observations, the seventh and eighth features were further designed.
(7) The maximum cylinder pressure Pmax:

Pmax ¼ maxðpiji ¼ 1; 2; . . . ;MÞ, (7)

where M indicates the number of data included in the cylinder pressure signal pi ði ¼ 1; 2; . . . ;MÞ.
(8) The decreasing ratio Rp of the cylinder pressure signal:

Rp ¼
DP

Pmax
. (8)

The Pmax and DP are illustrated in Fig. 5. Their calculation results derived during experiments are shown in
Fig. 6.

From Fig. 6, it is seen that the Pmax derived under different valve conditions overlap together with each
other and so does the Rp. Numerical results, shown in Figs. 3 and 6, suggest that the valve states cannot be
identified correctly by directly using the calculated results of these criteria. This is why a new approach has
been developed and described in this paper.

Using the aforementioned 8 criteria, the set of features for constructing the diagnostic tree is written as a
3� 8 matrix F ¼ [E1, E2, E3, S, R1, R2, Pmax, Rp], where, E1 ¼ ½E

0
1 E001 E0001 �

0. E01, E001 and E0001 are the E1,
respectively derived at three different kinds of valve states. The other features in the matrix F have similar
expressions.

In addition, the research carried out in Ref. [15] reveals that different signal features play different roles in
fault diagnosis. In other words, some features play more important roles, while others play less important
roles or even, in some cases, do not play any role in the diagnosis. In view of this, a particular set of power-
weight coefficients C ¼ f0pcip1ji ¼ 1; 2; . . . ; 8g was further designed. They corresponded to the aforemen-
tioned 8 criteria, and indicate the importance of the roles that these criteria play in the construction of the
diagnostic tree. With the aid of C, the flexibility of the optimization of the diagnostic tree is dramatically
improved. For example, in case of ci ¼ 0, the ith feature in the set of terminals F does not play any role in the
tree, so the binary tree related to this feature can be cut off from the main trunk. Conversely, the binary trees
related to those features with cia0 ði ¼ 1; 2; . . . ; 8Þ will be reserved.
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Fig. 5. Cylinder pressure signatures Pmax and DP.
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3. Mathematical functions

Instead of using a few basic operators adopted by conventional GPs, a series of mathematical functions are
taken as the ‘operators’ in the proposed GP so that more complex mathematical computation forms can be
involved in the optimization process. The designed ‘operators’ are listed in Table 1.

In the functions, yj is the result derived from the jth iterative calculation. f i represents the ith feature in the
set of terminals F. ci denotes the power-weight coefficient corresponding to f i. In addition, a group of constant
numbers e ¼ f0oeip1ji ¼ 1; 2; . . . ; 8g was also designed for avoiding the occurrence of morbid solutions. The
coded constant numbers in the set ei (i ¼ 1; 2; . . . ; 8) can be optimized as well. From Table 1, it should be
noticed that in designed ‘operators’, the feature f i is multiplied by the power-weight coefficient ci first before
carrying out further calculations of the function, so that the roles of the features play in the mathematical
model are taken into account in the calculation. Moreover, through optimizing ci (i ¼ 1; 2; . . . ; 8), the structure
of the diagnosing tree may be optimized adaptively whilst in contrast, the convenient GPs do not possess this
merit. The diagram of the diagnostic tree is shown in Fig. 7.

In this figure, the composite criterion w is finally derived from the diagnostic tree, which can be taken as the
measure for identifying the running states of the valve.
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Table 1

Mathematical functions

No. Functions No. Functions

1 yjþ1 ¼ cif i þ yj 12 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyj=ðei þ cif iÞj

q
2 yjþ1 ¼ cif i � yj 13 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffi
jcif ij

p
þ yj

3 yjþ1 ¼ cif iyj 14 yjþ1 ¼ cif i þ
ffiffiffiffiffiffiffi
jyj j

p
4 yjþ1 ¼ jcif iyj j 15 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffi
jcif ij

p
� yj

5 yjþ1 ¼ cif i=ðei þ yjÞ 16 yjþ1 ¼ cif i �
ffiffiffiffiffiffiffi
jyj j

p
6 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcif i þ yj j

p
17 yjþ1 ¼ yj

ffiffiffiffiffiffiffiffiffiffi
jcif ij

p
7 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcif i � yj j

p
18 yjþ1 ¼ cif i

ffiffiffiffiffiffiffi
jyj j

p
8 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcif iyj j

p
19 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffi
jcif ij

p
=ðei þ yjÞ

9 yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cif i=ðei þ yjÞ
�� ��q

20 yjþ1 ¼ cif i= ei þ
ffiffiffiffiffiffiffi
jyj j

p� �
10 yjþ1 ¼ yj � cif i 21 yjþ1 ¼ ðcif iÞ

2
þ yj

11 yjþ1 ¼ yj=ðei þ cif iÞ 22 yjþ1 ¼ cif i þ y2j

F(1)C(1)

operator (j) (j=1,2,…,22)

Composite criterion w

operator (j) (j=1,2,…,22)

C(2)

F(2)

F(3)C(3)

operator (j) (j=1,2,…,22)

F(8)C(8)

Fig. 7. The diagram of the diagnosing tree.
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4. Evolutionary strategies

During the evolutionary process, four factors will be involved in the optimization. They are the orders of the
features in the set F, the coded coefficients in the set C, the coded constant numbers in the set e as well as the
orders of the functions in the set of ‘operators’, respectively. For the last three factors, their evolution will be
realized by performing the conventional crossover and mutation operations. The details of the crossover and
mutation operations may be found from Ref. [11]. But the optimization of the orders of the features cannot be
manipulated in the same way, otherwise the features in the set F could be used repeatedly. In essence, the
optimization of the orders of the features belongs to the type of travelling salesman problems (TSPs). The
related description about the TSPs may be found in Ref. [16]. Whilst aiming at solving the TSPs by using
genetic algorithms, the author has been innovative and proposed an improved genetic operator namely
‘Immigration Operator (IO)’ [17]. A brief introduction of the IO is given as follows.
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The IO is a special strategy for generating individuals at the outside of the population and then introducing
the fitter ones into the population to substitute for those inferior individuals. The operating scheme of the IO
is depicted in Fig. 8, where, M represents the scale of the population, Pimmigration the probability of
immigration operation, I the number of individuals that will be generated, fi the fitness value of the ith
individual, and fmean the mean fitness of the individuals contained in present population.

As depicted in Fig. 8, the individuals are generated stochastically, but the population will not accept all
individuals being generated. Only those with the fitness larger than the mean fitness of the available individuals
contained in present population may be regarded as the ‘‘qualified ones’’. Hence, the individuals accepted by
the population possess better fitness. This is why the IO can drive the evolution of the population more
efficiently. Other merits of the IO may be found from Ref. [17].

Using different evolutionary strategies, the GP program was designed and its operating diagram is shown in
Fig. 9.

In order to accomplish a perfect classification of different valve states, both the largest pseudo-space
distances among different groups of samples and the smallest pseudo-space distances among different samples
contained in the same group are considered simultaneously. The fitness function for the GP is designed as

f ¼

Pa
j;k¼1;jak

Pb
i;l¼1ðwij � wlkÞ

h i
Pa

k¼1

Pb
i;l¼1;ialðwik � wlkÞ

h i , (9)
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where a indicates the number of valve states being considered, b the number of signals collected at each valve
state wij denotes the composite criterion derived from the ith signal collected under the jth running state of the
valve. wlk and wik have similar meanings.
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5. The implementation of the GP

Adopting the GP algorithm depicted in Fig. 9 and taking the fitness function f described by Eq. (9) as the
measure for evaluating the fitness levels of the individuals, the diagnostic tree, shown in Fig. 7, is optimized for
diagnosing three such kinds of valve running states as (1) the normal condition, (2) the valve-tappet clearance
fault and (3) the gas leakage fault. The recorded evolutionary history is shown in Fig. 10.

The optimized results are listed in Table 2.
After substituting the optimized results listed in Table 2 into the diagnostic tree, the following mathematical

model for identifying the valve state is readily derived:

w ¼
0:67452 � Rp � Pmax

0:5746þ 0:0515� S þ 0:1540�R1

0:0279þ
0:5351�R2=0:6619j j1=2�0:0212�E2

0:9965þ0:6745�E3

��� ���� �1=2

�������
�������

2
64

3
75
1=2

¼
0:4550� Rp � Pmax

0:5746þ 0:0515� S þ 0:1540�R1� 0:9965þ0:6745�E3j j1=2

0:0279� 0:9965þ0:6745�E3j j1=2þ 0:8991� R2j j
1=2�0:0212�E2j jð Þ

1=2

����
����

� �1=2 . ð10Þ

From Eq. (10), it is noticed that only 7 features appear in the mathematical model, though 8 criteria were
considered during the optimization. This is because the first function in the optimized result is yjþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcif iyjj

p
(refer to Tables 1 and 2). As at the beginning of the GP, the initial value of yj is zero, this function does not
play any role in the model and the role of the first feature in the optimized set F is ignored. From Table 2, it is
found that this feature is E1. That is also why E1 does not appear in the final mathematical model.
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Fig. 10. The recorded evolutionary history.

Table 2

Optimized results

Items Optimized results

The orders of the features in the set F {1, 6, 2, 3, 5, 4, 8, 7}

The coefficients in the set C {0.1526, 0.5351, 0.0212, 0.6745, 0.1540, 0.0515, 0.6745, 0.6745}

The constant numbers in the set e {0.3647, 0.6619, 0.5746, 0.9965, 0.0279, 0.4955, 0.5746, 0.3860}

The orders of the functions in the set of ‘operators’ {8, 9, 10, 11, 20, 14, 5, 3}
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6. Application of the mathematical model in the diagnosis of valve states

Aiming at demonstrating the effectiveness of the derived mathematical model in identifying the running
states of the valve, 29 additional signals were collected under each kind of valve running condition. After
extracting the features specified by set F from the sample data, the features were substituted into Eq. (10). The
Composite Criterion w was calculated and the results were plotted in Fig. 11.

Fig. 11 shows that using the mathematical model derived by the GP, the three different kinds of valve states
are distinguished correctly and efficiently. The overlapping phenomenon among them does not occur at all on
the composite criterion w. In order to further prove the merit of the derived mathematical model on valve state
classification, the following experiments were also carried out for comparison.

The Principal Component Analysis (PCA) method has been widely accepted as a favoured tool for
constructing the classification models [15]. Hence, the PCA was also employed to solve the present problem.
The numerical results of the first, the second and the third orders of principal components (PC1–PC3) derived
by the PCA are given in Fig. 12.

From Fig. 12, it is easily found that using the mathematical model derived from the PCA method, the three
kinds of valve states cannot be distinguished satisfactorily because of the overlapping phenomenon existing
among them. The accuracy of the classification may be improved by employing the Kernel Principal
Component Analysis (KPCA) method [15], but in the case of using KPCA, the mathematical model is difficult
to establish as the nonlinear operation is involved in the computing algorithm.

7. Concluding remarks

From the aforementioned research studies, the merits of the proposed GP approach may be summarized as
follows:
(1)
 In comparison with the features adopted by Chen et al. [7], the signal features used in the proposed GP are
more easily obtained. No further complex calculation is needed.
(2)
 The introduction of the power-weight coefficients into the GP allows the optimization of the diagnostic
tree to be a more logical process, dramatically improving the flexibility of the optimization.
(3)
 The use of different evolutionary strategies fully ensures sufficient utilization of both the signal features
and the ‘operators’. Incorporating the constant numbers introduced, the morbid solutions are completely
avoided.
(4)
 The proposed GP approach produces a simple, feasible and effective mathematical model for diagnosing
the running states of the engine valve. However, such a perfect model is difficult to achieve by using
conventional signal processing methods like wavelet transform or other advanced signal processing tools.
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Fig. 11. The results derived by the mathematical model.
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Fig. 12. The results derived by the PCA method. (a) PC1, (b) PC2, (c) PC3, and (d) three dimensional plot PC1–PC2–PC3.
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(5)
 The simple calculation of the signal features and the mathematical model make it much easier to realize an
intelligent online fault diagnostic system.
(6)
 Compared with the PCA or other conventional classification methods, the proposed GP technique shows
more powerful ability in solving the classification problems.
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