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Abstract

Future MEMS devices will harvest energy from their environment. One can envisage an autonomous condition

monitoring vibration sensor being powered by that same vibration, and transmitting data over a wireless link; inaccessible

or hostile environments are obvious areas of application. The base excitation of an elastically mounted magnetic seismic

mass moving past a coil, considered previously by several authors, is analysed in detail. The amplitude of the seismic mass

is limited in any practical device and this, together with the magnitude and frequency of the excitation define the maximum

power that can be extracted from the environment. The overall damping coefficient (part of which is mechanical) is

associated with the harvesting and dissipation of energy and also the transfer of energy from the vibrating base into the

system. It is shown that net energy flow from the base through the damper is positive (negative) for o4on ðooonÞ, but is

zero when o ¼ on. The mechanical part of the damper cannot contribute more power than it dissipates and is neutral, at

best, when o=on !1. Maximum power is delivered to an electrical load when its resistance is equal to the sum of the coil

internal resistance and the electrical analogue of the mechanical damping coefficient, which differs from what has been

claimed. A highly damped system has the advantage of harvesting energy over a wider band of excitation frequencies on

either side of the natural frequency, is smaller, but will harvest marginally less power. One possible strategy for variable

amplitude excitation is proposed.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There has been much recent interest in the concept of low-power microelectromechanical systems (MEMS)
that are able to scavenge, or harvest, energy from their operating environment. For example, one can envisage
an autonomous condition monitoring sensor, measuring vibration level, being powered by the very same
vibration, and transmitting data over a wireless link. Assuming the available power to be small, one envisages
that the sensor would need to be intelligent—harvesting and storing energy for a period of time, before taking
and transmitting a reading, followed by a further period of harvesting. Such devices could be employed in
potentially hostile or inaccessible environments, and would require little or no maintenance.

A mechanical model of such a device, consisting of the base excitation of an elastically mounted seismic
mass has received much attention, and was first proposed by Williams and Yates [1]. While the elastic mount is
typically modelled as a coil spring, in practice a cantilever beam would provide both the flexibility and
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

B flux density
c damping coefficient
E energy
f, F frequency, force
i, i

ffiffiffiffiffiffiffi
�1
p

, current
k, K spring stiffness, electromechanical cou-

pling (transducer) coefficient
l coil length
m mass
N number of coil turns
P power
Q quality factor
r, R frequency ratio, resistance
t, T time, torque
V voltage
x, X displacement, amplitude of seismic mass
y, Y displacement, amplitude of base
z, Z displacement, amplitude of seismic mass

relative to base

a constant
b; e factors
f; c phase angles
t period
o; O radian frequency, angular velocity
x damping ratio

Subscripts

av average
cont contribution
des design
diss dissipated
e electrical
inst instantaneous
int internal
m mechanical
max maximum
n natural
R resonant
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necessary constraint of the seismic mass without the need for bearing surfaces which are prone to high friction
and hence heat generation at small scales. The means of energy extraction may consist of a magnetic seismic
mass moving past a coil, or the beam may be fabricated from piezoelectric material. As far as the mechanical
vibration is concerned, the combination of mechanical and electrical damping is treated as equivalent to linear
viscous damping (proportional to velocity). This is a fair representation for the electromagnetic conversion
considered by Williams and Yates [1], less so for a piezoelectric conversion; nevertheless, many interesting
conclusions may be drawn from this simple model. Prototype devices have been described by El-Hami et al.
[2], Roundy et al. [3], and Williams et al. [4]. Related applications and reviews may be found in Refs. [5–11].

Here, the theory governing the mechanical (and less so electrical) behaviour of such devices is examined in
detail. Although the base excitation of a single degree of freedom (dof) spring–mass–damper model is perfectly
well understood—it is described in most, if not all, typical undergraduate textbooks on vibration (see, for
example Ref. [12])—many of the derived expressions can be written in a bewildering variety of forms, and it is
shown how easy it is to draw erroneous conclusions, as some authors have done. Typically, these relate to the
role of damping. The overall damping coefficient (of which the mechanical damping is a part) plays an
ambiguous role, being associated not only with the harvesting and dissipation of energy, but also the transfer
of energy from the vibrating base into the system. It is shown that net energy flow from the base through the
damper is positive (negative) for o4on (ooon), but is zero when o ¼ on. It is also shown that the
mechanical component of the overall damping cannot contribute more energy than it dissipates; this is
consistent with experimental evidence by Williams et al. [4] indicating that the operation of such a device in a
vacuum is beneficial. Potential design features of future devices are proposed. One must recognise that in any
practical device, the amplitude of the seismic mass is limited to some maximum value and this, together with
the magnitude and frequency of the excitation (the operating environment), define the maximum power that
can be extracted from the environment. A highly damped system has the advantage of harvesting energy over
a wider band of excitation frequencies on either side of the natural frequency, is potentially smaller, but will
harvest marginally less power. The theory is developed first for an alternating force applied directly to the
seismic mass, before considering the more involved case of base excitation; it transpires that while the
dimensionless average powers for the two cases are different in form, their dependence on frequency and
damping ratios is identical. It is noted that three different resonant frequencies can be defined for the two cases
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considered, but maximum power is extracted from the environment when the frequency of excitation is equal
to the undamped natural frequency, irrespective of the damping ratio.

Having considered the effect of total damping—consisting of useful energy harvested, together with
electrical and mechanical dissipation—the effect of these is considered individually. The concept of impedance
matching for maximum power delivery to an electrical load is addressed. Again, various authors have made
conflicting claims, some suggesting that the impedance of the electrical load should be matched to the source
impedance of the generator (coil), others that power delivery is optimised when mechanical and electrical
damping ratios are equal. It is shown that maximum power is delivered to the electrical load when its
resistance is equal to the sum of the coil internal resistance and the electrical analogue of the mechanical
damping coefficient (here such matching is termed EDAM). Practically, this is equivalent to the matching of
electrical and mechanical damping, if the coil resistance is small. However, mechanical damping should be as
small as possible, which defines a minimum electrical damping coefficient dependent on the size of the device.

A possible strategy to harvest energy from a variable amplitude environment is also discussed, suggesting
that controllable electrical damping is advantageous, so the ideal sensor would be intelligent with regard to
both the harvesting of the energy, and its subsequent use.

Last, it is noted that the analysis is directed towards present generation devices that may be loosely
described as millimetre–centimetre sized; however, as size reduction leads towards what may be described truly
as MEMS [13], where characteristic lengths are typically less than 1mm but greater than 1 mm (and are
fabricated using integrated-circuit batch-processing technologies), miniaturisation has the effect of increasing
the ratio of surface area (length2) to mass (length3) so surface effects, typically viscous forces, become more
important. This suggests the reduction of mechanical damping by operating such a device in partial vacuum;
in turn, one can envisage the breakdown of continuum viscous assumptions, and the necessity of stochastic
descriptions (the Langevin equation) for the dynamics of the seismic mass. Such issues are not addressed here.
2. Theory

2.1. Direct mass excitation

The 1dof spring–mass–damper shown in Fig. 1 is subject to a sinusoidal force applied directly to the mass;
the governing equation of motion is [12]

m €xþ c _xþ kx ¼ F sinot; (1)

dot denotes differentiation with respect to time. Multiply by velocity _x, and rearrange as

_xF sinot ¼ cð _xÞ2 þm _x €xþ kx _x

or

_xF sinot ¼ cð _xÞ2 þ
d

dt

m _x2

2
þ

kx2

2

� �
. (2)
c

k

m

x

F sin �t

Fig. 1. Direct force excitation of spring–mass–damper.



ARTICLE IN PRESS
N.G. Stephen / Journal of Sound and Vibration 293 (2006) 409–425412
This represents conservation of power: in words, Eq. (2) states that the instantaneous power into the system is
equal to the instantaneous power dissipated and/or absorbed by the damper plus the time rate of change
(presumably increase) of the sum of the kinetic and strain energies. Of immediate note, is that in the absence of
damping (c ¼ 0) the power dissipated or absorbed is obviously zero, and the power input goes entirely to the
build-up of energy (and amplitude) of the spring–mass oscillator; more importantly, the system will never
achieve a steady-state condition.

The steady-state response is

x ¼ X sinðot� fÞ, (3)

where

X ¼
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk � o2mÞ2 þ c2o2

q (4)

and the phase angle f ¼ tan�1ðco=ðk � o2mÞÞ. The resonant frequency, defined as the frequency for which the
forced response has its maximum, is oR ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
, while the natural frequency is on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. The

damping ratio is x ¼ c=ð2
ffiffiffiffiffiffiffi
km
p

¼ c=2monÞ.
The instantaneous power absorbed by the damper is cð _xÞ2 and, for _x ¼ oX cosðot� fÞ, this becomes

Pinst ¼ co2X 2 cos2ðot� fÞ. (5)

The energy harvested per cycle is

Ecycle ¼ cX 2o2

Z t¼2p=o

0

cos2ðot� fÞdt ¼ pcoX 2, (6)

where t ¼ 2p=o is the period of the cycle. Now define the average power flow as Pav ¼ Ecycle=t, to give

Pav ¼ co2X 2=2. (7)

If one substitutes for the amplitude X from Eq. (4), then the average power becomes

Pav ¼
co2F 2

2ððk � o2mÞ2 þ c2o2Þ
. (8)

The latter can be expressed in dimensionless form by dividing both the numerator and denominator by k2, and
re-arranging to give

P̄av ¼
Pav

F2=ðonmÞ
¼

xðo=onÞ
2

ð1� ðo=onÞ
2
Þ
2
þ ð2xo=onÞ

2
. (9)

Now differentiate this expression with respect to the frequency ratio r ¼ ðo=onÞ, set qP̄av=qr ¼ 0 to give
2xrð1� r4Þ ¼ 0, and r ¼ �1; �i, where i ¼

ffiffiffiffiffiffiffi
�1
p

. Thus, despite the amplitude of vibration having its

maximum value at the resonant frequency oR ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
, maximum power flow occurs for o ¼ on, when

Eq. (9) reduces to

Pav ¼ F2=ð4xonmÞ. (10)

At this stage it is tempting, but quite wrong, to conclude that Pav!1 as x! 0. Setting the damping ratio
to zero implies that one is not harvesting any energy. Moreover, as is clear from Eq. (2), the system is no
longer in a steady-state, so the assumptions leading to this false conclusion are no longer valid. The opposite,
and equally invalid, conclusion may be reached as follows: first, one must recognise that in any practical device
seeking to harvest energy in this way, the amplitude of the seismic mass will be limited to some maximum
value, say Xmax. Eq. (7) then becomes, for o ¼ on,

Pav ¼ co2
nX 2

max=2, (11)

from which one might be tempted to conclude that the damping coefficient should be as large as possible. The
reality, however, is that as damping is increased, the amplitude X would become less than Xmax, unless the
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amplitude of the force F increases accordingly. Thus the conclusion Pav!1 as c!1 would also require
the quite impossible condition that F !1. On the other hand, it is perfectly clear from Eq. (11) that the
power extracted is zero, when damping is zero.

A third approach for a force of specified magnitude F and frequency o, and for some maximum allowable
displacement Xmax, is to (part) substitute from Eq. (4) into Eq. (7) to give

Pav ¼
co2FXmax

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � o2mÞ2 þ c2o2

q (12)

or in dimensionless form

P̄av ¼
Pav

oFXmax
¼

xðo=onÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðo=onÞ

2
Þ
2
þ ð2xo=onÞ

2
q . (13)

The condition for a maximum is that qP̄av=qr ¼ qP̄av=qx ¼ 0, and both of these are satisfied for r ¼ 1, that is
when the frequency of excitation is equal to the undamped natural frequency, not the resonant frequency.
Substituting o ¼ on into Eqs. (12) or (13) gives

Pav ¼ onFXmax=2. (14)

It should be emphasised that this expression represents the maximum flow of power into the device, i.e.
extracted from the alternating force. The maximum useful electrical power that could be harvested (delivered
to an electrical load) would be subject to further constraints; this is considered in Section 3 for the case of base
excitation. At first sight, the fact that Eq. (14) is independent of the damping ratio suggests that this amount of
power can be harvested even when damping ratio is zero. A similar anomaly has been noted previously by
Langley [14], who showed that that possibility can be discounted because, as above, one would not have
steady-state conditions; rather, when damping ratio is zero the expression Pav ¼ onFX=2 still represents the
power flow into the device, but this goes towards increasing the amplitude of the oscillator. Eq. (14) can be
found more directly by integrating the left-hand side of Eq. (2) to give the power flow into the device as
pFX sinf per cycle, and average power as oFX sinf=2; this achieves its maximum value for o ¼ on when the
phase angle f is equal to 901, irrespective of the damping ratio.

A surface plot of the non-dimensional power as expressed by Eq. (13) is shown in Fig. 3, and the following
observations are made:

(a) Suppose that the magnitude of the force F is small. The displacement amplitude X of the seismic mass is
related to this force by the expression X ¼ F=ð2mxo2

nÞ, which is obtained by setting o ¼ on in Eq. (4), so in
turn X will be small, perhaps less than the maximum value. By reducing the damping ratio, X can be allowed
to increase to its maximum value, so the device will absorb the maximum possible power from the
environment; the latter will be small, however, because force F is small.

(b) On the other hand, suppose that the magnitude of the force F is large. In turn, X would be large, possibly
exceeding the allowable value. Damping would now have to be increased, so that the displacement of the
seismic mass does not exceed its maximum value; the power absorbed from the environment would still be
expressed by Eq. (14), but would now be large because the force F is large. Thus one role of damping is to
maintain X equal to Xmax.

(c) It is clear from the above, that the power that can be absorbed is limited by Xmax, so this should be as
large as possible in any potential device, notwithstanding that if the device is intended to be small, then Xmax

in turn will be small. Power is also proportional to the magnitude of the force, so this should be as large as
possible. On the other hand, Pav! 0 as F ! 0. This is the situation that holds when damping ratio goes to
zero—for a force of fixed magnitude, the displacement amplitude tends to infinity at o ¼ on: this is the
familiar concept of resonance. An alternative interpretation is that the force magnitude required to maintain
displacement amplitude equal to its maximum value, goes to zero at o ¼ on. So again, there is no anomaly
regarding Eq. (14) being independent of damping ratio x.

(d) If the force is small, then light damping results in a highly tuned system, capable of harvesting its
maximum value only at, or very close to, a frequency ratio of unity. If the force is large, not only will the
maximum power be proportionately larger, so too will the damping ratio, and the device would be capable of
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Fig. 2. Base excitation of spring–mass–damper.
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extracting power close to the theoretical maximum value over a range of excitation frequencies either side of
the natural frequency.

(e) Last, suppose that one had a force of variable magnitude; the ideal device would, in turn, have variable
damping, indeed exactly the amount necessary to maintain the seismic mass displacement amplitude at its
maximum value. This suggests the need for the device to be intelligent—to extract precisely the amount of
energy necessary to maintain displacement amplitude at its maximum allowable value.

2.2. Base excitation

Referring to Fig. 2, the governing differential equation is

m €xþ cð _x� _yÞ þ kðx� yÞ ¼ 0. (15)

Multiplication by _x, and re-arrangement leads to the expression

kðy� xÞ _yþ cð _y� _xÞ _y ¼ cð _x� _yÞ2 þm €x _xþ kðx� yÞð _x� _yÞ

or

kðy� xÞ _yþ cð _y� _xÞ _y ¼ cð _x� _yÞ2 þ
d

dt

m _x2

2
þ

kðx� yÞ2

2

� �
. (16)

Again, this is an expression of conservation of power: the instantaneous power into the system is equal to the
power absorbed by the damper plus the time rate of increase of the sum of the kinetic and strain energies. As
with direct mass excitation, in the absence of damping the power goes entirely towards the build-up of energy
(and amplitude) of the spring–mass oscillator, with no steady-state being achieved. The damping coefficient
will consist of mechanical and electrical contributions, and may be expressed as c ¼ cm þ ce. In contrast with
Eq. (2), the damping coefficient appears on both sides of Eq. (16), so the mechanical contribution cm seemingly
plays a beneficial role in the transfer of energy from the environment into the device, while simultaneously
dissipating energy. However, as will be seen in Section 2.2.1, the energy per cycle contributed by the damper
can be both positive and negative, and is zero when the frequency of excitation is equal to the natural
frequency. Moreover, the mechanical component cannot contribute more energy than it dissipates.

Eq. (15) can be solved for the absolute displacement of the seismic mass, or for its displacement relative to
the moving base. For the latter case, set z ¼ x� y, and for harmonic base excitation y ¼ Y sinot, one has

m €zþ c_zþ kz ¼ mo2Y sinot. (17)

This equation is identical in form to Eq. (1) if one replaces F by mo2Y , and x by z. Accordingly, the steady-
state solution is

z ¼ Z sinðot� fÞ, (18)
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where

Z ¼
mo2Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk � o2mÞ2 þ c2o2

q (19)

and the phase angle is the same as for direct mass excitation. The absolute displacement of the seismic mass
can then be calculated as x ¼ yþ z, although in practice it is easier to approach Eq. (15) afresh, using complex
algebra [12]. The steady-state solution is

x ¼ X sinðot� cÞ, (20)

where

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ c2o2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � o2mÞ2 þ c2o2

q (21)

with phase angle

c ¼ tan�1
mco3

kðk � o2mÞ þ c2o2

� �
. (22)

One may define two different resonant frequencies for base excitation, both of which differ from that of
direct mass excitation; the seismic mass has its maximum (absolute) displacement amplitude X when excited at
frequency [12]

oR ¼
on

2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8x2

q
� 1

� �1=2

. (23)

This frequency is always less than the undamped natural frequency; employing the binomial expansion, the
radical in the above expression can be written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8x2
q

¼ 1þ 4x2 � 8x4 þ 32x8 � � � � . (24)

Assuming damping ratio to be small, then ignoring terms higher than x2 leads to oR ¼ on;

ignoring terms higher than x4 leads to oR ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
, while ignoring terms higher than x8 leads to
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p
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1þ 8x2

p
� 1Þ1=2=ð2xÞ; (c) base excitation, maximum response relative to the base oR=on ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2

p
.
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oR ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x2 þ 8x6

p
. Thus one concludes that the difference between this resonant frequency, and that for

direct mass excitation, is small at least when damping ratio is small. Indeed, as seen in Fig. 4, the difference is
practically indistinguishable for xo0:3. On the other hand, the seismic mass has its maximum displacement
amplitude relative to the base, Z, when excited at frequency [12]

oR ¼
onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2x2
p , (25)

which is always greater than the undamped natural frequency. This characteristic is also shown in Fig. 4,

where the damping ratio range extends only to x ¼ 1=
ffiffiffi
2
p

; for larger values, there is no resonant maximum
amplitude for two of the three defined resonant frequencies.

The average power, in terms of the relative displacement amplitude of the seismic mass, is identical to Eq.
(7) derived in Section 2.1, so long as one replaces X by Z, and is

Pav ¼ co2Z2=2 ¼ xmono2Z2. (26)

Substituting for Z from Eq. (19), we also have

Pav ¼
cm2o6Y 2

2ððk � o2mÞ2 þ c2o2Þ
(27)

or in near dimensionless form

Pav ¼
mxY 2ðo=onÞ

3o3

ð1� ðo=onÞ
2
Þ
2
þ ð2xo=onÞ

2
¼

mxY 2ðo=onÞ
6o3

n

ð1� ðo=onÞ
2
Þ
2
þ ð2xo=onÞ

2
(28)

which is the expression derived by Williams and Yates [1], El-Hami et al. [2] and Mitcheson et al. [11], amongst
others; note that the expression given by Roundy et al. [3] contains a typographical error. Again, it is very easy
to draw false conclusions from these expressions. In the anticipation that the power would be largest when the
system is close to resonance, set o ¼ on in Eq. (28), to give

Pav ¼ o3
nmY 2=ð4xÞ. (29)
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It is tempting, but quite wrong, to conclude that Pav!1 as x! 0, for exactly the reasons described in
Section 2.1—one would not have steady-state conditions. However, this was the conclusion reached by
Williams and Yates [1], claiming that ‘‘In principle, a damping factor of zero would generate infinite power at
resonance, but in practice this is not possible.’’ More recently Mitcheson et al. [11] also claimed that the
optimal damping ratio was zero for o ¼ on, suggesting that ‘‘the power extracted can be increased without
limit by decreasing x’’, but qualified this by noting that zero damping would lead to excessive relative
displacement of the seismic mass. On the other hand, from Eq. (26), one might conclude that Pav!1 as
x!1, but this would also require that Y !1, which again is impossible.

Further, one can see from the above the reasoning behind the claim that the electrical and mechanical
damping ratios should be equal. If one writes x ¼ xm þ xe, and then regard the electrical part as potentially
useful, then Eq. (28) with o set equal to on becomes

Pav elec ¼
mxeY 2o3

n

4ðxm þ xeÞ
2
; (30)

now set dPav elec=dxe ¼ 0 to give xe ¼ xm; these steps are valid, as the electrical and mechanical damping ratios
are independent. This was the conclusion reached in Refs. [3,4]: for maximum power flow into the electrical
domain, one requires matching between mechanical and electrical loads. However, it should be noted that
what is really required is not maximum power into the electrical domain (where there are further inevitable
losses), rather maximum power flow into the electrical load. One may partition the electrical damping ratio as
xe ¼ xe load þ xe loss, when the useful average power to the electrical load may be written as

Pav elec load ¼
mxe loadY 2o3

n

4ðxm þ xe loss þ xe loadÞ
2
; (31)

add the mechanical damping loss to the electrical loss to give the total loss as xloss ¼ xm þ xe loss, when Eq. (31)
becomes

Pav elec load ¼
mxe loadY 2o3

n

4ðxloss þ xe loadÞ
2
. (32)

It is tempting to set dPav e load=dxe load ¼ 0, to give xe load ¼ xloss; however, this approach is invalid, as xe load

and xe loss (and hence xloss) are not independent, as will be seen in Section 3. Load matching must be applied
within the domain to which power is being delivered, Ref. [15], and in the above, one is attempting to
maximise electrical power from the viewpoint of the mechanical domain.

As with the case of direct mass excitation, a practical device will have a maximum displacement amplitude
of the seismic mass relative to its housing, Zmax, and the average power can be expressed as

Pav ¼
cmo4YZmax

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � o2mÞ2 þ c2o2

q (33)

or in dimensionless form

P̄av ¼
Pav

mo3YZmax
¼

xðo=onÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðo=onÞ

2
Þ
2
þ ð2xo=onÞ

2
q . (34)

The right-hand side of the above is identical to that of Eq. (13), which means that the observations made for
direct mass excitation are broadly transferable to the case of base excitation; again it must be emphasised that
these observations pertain to the flow of energy from the environment into the device, not power delivery to an
electrical load. In particular, it should be designed to operate at a frequency ratio r ¼ 1, that is o ¼ on, when
the average power flow into the device is Pflow av ¼ mo3

nYZmax=2 which again is independent of the damping
ratio. Clearly, excitation amplitude Y should be as large as possible, but this is a characteristic of the
environment. The allowable excursion of the seismic mass m within the device, and the mass itself, should also
be large, notwithstanding that a small device inevitably implies that Zmax will be small. However, damping
needs to be controllable according to the magnitude of Y. If the latter is small, then damping should be small
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to allow Z to approach its maximum value; the power extracted will be small, because Y is small. If Y is large,
then greater damping is required so that Z does not exceed Zmax although now, more power is absorbed,
because Y is large. Again, the above expression does not suggest that power can be extracted for zero
damping—suppose that the magnitude of Y is variable; then, as damping approaches zero, so the required
value of Y necessary to maintain Z equal to its maximum value also approaches zero and so, in turn, does
Pflow av. From Fig. 3, it is again clear that the bandwidth of the device is greater when the damping ratio is
large.

2.2.1. Power flow contributions

For base excitation y ¼ Y sinot and steady-state response z ¼ Z sinðot� fÞ, with z ¼ x� y, Eq. (16)
becomes

�kz _y� c_z _y ¼ c_z2. (35)

Integrating over a cycle and noting the resultsZ t¼2p=o

0

cos2ðot� fÞdt ¼ p=o;
Z t¼2p=o

0

cosot cosðot� fÞdt ¼ cosf� p=o

and Z t¼2p=o

0

sinðot� fÞ cosotdt ¼ � sinf� p=o,

leads to the energy relationship

kpYZ sinf� copYZ cosf ¼ copZ2, (36)

from which the following conclusions may be drawn:
(a) The phase angle f falls within the range 0pfpp, so sinfX0 and the net energy contribution by the

spring—the term involving k on the left-hand side of Eq. (36)—cannot be negative.
(b) For ooon, the phase angle fop=2 so cosf is positive, and the net energy contribution by the

damper—the term involving c on the left-hand side of Eq. (36)—is negative.
(c) For o ¼ on, the phase angle f ¼ p=2 so the net energy contribution by the damper over a cycle is zero.

Eq. (36) reduces to kY ¼ conZ, or Z ¼ kY=ðconÞ ¼ monY=c, which is also what one finds from Eq. (19).
(d) For o4on, the phase angle f4p=2 so cosf is negative, and the net energy contribution by the damper

is positive. The spring and the damper make equal contributions when k sinf ¼ �co cosf, or
tanf ¼ �co=k; the general expression for the phase angle is tanf ¼ co=ðk � o2mÞ, and equality requires
that o ¼

ffiffiffi
2
p

on. This explains, physically, the existence of a cross-over point at o ¼
ffiffiffi
2
p

on, and the beneficial
(adverse) effect of damping on vibration isolation for oo

ffiffiffi
2
p

on (o4
ffiffiffi
2
p

on). When o� on, the phase angle
f! p irrespective of the damping ratio, so sinf! 0 and the energy contributed by the spring approaches
zero. Eq. (36) then reduces to Y ¼ Z. If the damping coefficient is partitioned as c ¼ ce þ cm, then the energy
per cycle contributed by the mechanical damping is Em cont ¼ �cmopYZ cosf, while that dissipated is
Em diss ¼ cmopZ2. It is straightforward to show that Em cont=Em diss ¼ 1� ðo=onÞ

�1, in which case the
mechanical component of the damping will always contribute less energy that it dissipates; it is neutral, at best,
in the limit ðo=onÞ ! 1.

3. Electrical power generation

The arguments presented so far have made no real distinction between desirable damping—electrical energy
harvesting from the device—and the inevitable mechanical and electrical losses. Also, they have focused on
power flow from the environment into the device, rather than the delivery of useful power to an electrical load.
These issues are now discussed in more detail for the case of base excitation. In common with most previous
investigations, inductance is ignored. The simplest form of electromechanical coupling, as typified by a
permanent-magnet DC motor, is assumed. In this model, torque T is related to current i according to T ¼ Ki,
where the transducer coefficient K has units Nm/amp, and voltage (back emf) V is related to angular velocity
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cm (x _ y)k (x _ y) . .

Fig. 5. Base excitation: free-body diagrams and electrical circuit.

N.G. Stephen / Journal of Sound and Vibration 293 (2006) 409–425 419
O by the same coefficient as V ¼ KO, where the coefficient now has units volts/rad/s; such transduction is
100% efficient. For the movement of the magnetic seismic mass past the coil, the above is modified such that
force F is proportional to current and voltage is proportional to relative translational velocity.

Referring to Fig. 5, Kirchhoff’s voltage law for the electrical circuit gives

iðRload þ RintÞ � Kð _x� _yÞ ¼ 0 (37)

while Newton’s second law for the seismic mass gives

�kðx� yÞ � cmð _x� _yÞ � Ki ¼ m €x; (38)

eliminating the current i, gives

m €xþ cð _x� _yÞ þ kðx� yÞ ¼ 0, (39)

where the total damping coefficient is

c ¼ cm þ K2=ðRload þ RintÞ; (40)

this also defines the electrical damping coefficient as ce ¼ K2=ðRload þ RintÞ. Note that the electromechanical
coupling coefficient K may be written as K ¼ NBl where N is the number of coil turns, B is the average
magnetic flux density in the air-gap and l is the coil length across the magnetic flux [5,6], so K will be
approximately linearly related to the internal resistance of the coil and one may write K ¼ aRint, where a is a
constant dependent on the construction of the coil.

For o ¼ on, which is assumed in what follows, the seismic mass has displacement

z ¼
monY

c
sinðont� fÞ ¼ Z sinðont� fÞ, (41)

so the amplitudes of the base excitation and the seismic mass are related as

Z ¼ monY=c ¼ monY=ðce þ cmÞ. (42)

The earlier statement that Zmax should be as large as possible is now qualified. From Eq. (42), the relationship
between base and seismic mass amplitudes can be expressed as

Z ¼
monY

cm þ K2=ðRload þ RintÞ
¼

monY

cm þ a2R2
int=ðRload þ RintÞ

. (43)

For a given Y, one can always increase Z by reducing K until eventually the latter is zero. Assuming some
lower limit on cm, Z would then have its maximum possible value, and maximum power will flow from the
environment into the device; however no power is transferred into the electrical domain, rather it is dissipated
entirely through mechanical damping.
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Delivery of power to an electrical load, and impedance matching, is now considered; from Eqs. (37) and
(41), the current is

i ¼
K

Rload þ Rint
onZ cosðont� fÞ (44)

and as the overall damping coefficient increases, so Z becomes smaller, and so too does the current. For a
maximum excursion of the seismic mass Zmax (defined by the physical dimensions of the device), the current
can be expressed as

i ¼
K

Rload þ Rint
onZmax cosðont� fÞ; (45)

the instantaneous power transferred to the electrical load is then

Pload inst ¼ i2Rload ¼
K2Rloado2

nZ2
max

ðRload þ RintÞ
2
cos2ðont� fÞ, (46)

and the average value is

Pload av ¼
K2Rloado2

nZ2
max

2ðRload þ RintÞ
2
. (47)

The power can also be expressed in terms of the product of Y and Zmax, as

Pload av ¼
K2Rloadmo3

nYZmax

2ðRload þ RintÞðcmðRload þ RintÞ þ K2Þ
, (48)

or in terms of the amplitude of the base excitation Y, as

Pload av ¼
K2Rloadm2o4

nY 2

2ðcmðRload þ RintÞ þ K2Þ
2
. (49)

Further, if one rearranges Eq. (49) as

Pload av ¼
ðK2Rload=ðRload þ RintÞ

2
Þm2o4

nY 2

2ðcm þ K2=ðRload þ RintÞÞ
2

, (50)

and identify ce load ¼ K2Rload=ðRload þ RintÞ
2 and ce loss ¼ K2Rint=ðRload þ RintÞ

2, so that ce ¼ ce load þ ce loss ¼

K2=ðRload þ RintÞ, then Eq. (50) reduces to

Pload av ¼
ce loadm2o4

nY 2

2ðcm þ ce loss þ ce loadÞ
2
. (51)

Writing c ¼ 2monx for each of the contributors to the total damping (electrical load and loss, and
mechanical), this becomes equal to Eq. (32); in particular it becomes clear that the two electrical damping
ratios are not independent—a change in any parameter of the electrical system (K, Rload or Rint) will affect
both of the electrical damping ratios.

Various load matching conditions are now considered. The requirement for maximum power transfer,
dPload av=dRload ¼ 0, yields different conditions when applied to Eqs. (47–49).

3.1. Electrical resistance matching

Application to Eq. (47), assuming Zmax and Rint to be constant, leads to the familiar requirement of
electrical resistance matching, which is Rload ¼ Rint. This derivation is perfectly analogous to that for a non-
reactive purely electrical circuit consisting of internal and load resistances, and a voltage source of constant
magnitude V ¼ KonZmax=

ffiffiffi
2
p

. However, this approach is incorrect, as it implies that for base excitation of
fixed amplitude Y, the seismic mass excursion is equal to Zmax irrespective of the amount of damping present,
which is untrue (rather it is given by Eq. (42)). It would be valid only if changes in the magnitude of Rload

conspired with other changes—for example, the magnitude of the mechanical damping coefficient, cm—in such
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a way as to keep the overall damping ratio constant. With such matching, the average power delivered to the
electrical load may be expressed as

P
ð1Þ
load av ¼

K2Rintm
2o4

nY 2

2ð2cmRint þ K2Þ
2
. (52)

Applying dðPload avÞ=dRload ¼ 0 to Eq. (48) leads to the expression R2
load ¼ R2

int þ RintK
2=cm, but this

approach is again incorrect because it assumes that Z is equal to Zmax, irrespective of the overall damping.

3.2. Domain matching

Setting the electrical damping coefficient equal to the mechanical, implies cm ¼ ce ¼ K2=ðRload þ RintÞ, or
Rload ¼ K2=cm � Rint. With such matching, the average power delivered to the load may be expressed as

P
ð2Þ
load av ¼

ðK2=cm � RintÞm
2o4

nY 2

8K2
. (53)

3.3. Electrical domain analogue matching (EDAM)

The correct approach is to apply dðPload avÞ=dRload ¼ 0 to Eq. (49), when one finds the relationship

Rload ¼ Rint þ K2=cm. (54)

This is what one would expect from the concept of resistance matching within the electrical domain, when it
includes the electrical analogue of the mechanical damping, in order to transfer maximum power to an
electrical load, Ref. [15]. With such matching, the average power delivered to the electrical load may be
expressed as

P
ð3Þ
load av ¼

K2m2o4
nY 2

8cmðcmRint þ K2Þ
. (55)

One can see that this is greater than the power delivered with simple electrical resistance matching by noting
that P

ð3Þ
load av=P

ð1Þ
load av ¼ 1þ K4=ð4cmRintðcmRint þ K2ÞÞ, which is clearly greater than unity. Similarly, for

comparison with domain matching, one can derive P
ð3Þ
load av=P

ð2Þ
load av ¼ 1þ c2mR2

int=ðcmRloadðcmRint þ K2ÞÞ where
Rload ¼ K2=cm � Rint; again this is clearly greater than unity.

This maximum average power transferred to the electrical load, Eq. (55) can be expressed as

Pload av max ¼
m2o4

nY 2

8cm

1�
Rint

Rload

� �
¼

mo3
nY 2

16xm

1�
Rint

Rload

� �
(56)

and a variety of other forms, such as

Pload av max ¼
mo3

nYZmax

4

Rload � Rint

Rload þ Rint

� �
¼

mo3
nYZmax

4

ce

cm

� �
¼

Pflow av

2

ce

cm

� �
. (57)

The power dissipated within the coil internal resistance is

Pint ¼
mo3

nYZmax

4

Rint

Rload

Rload � Rint

Rload þ Rint

� �
¼

mo3
nYZmax

4

Rint

Rload

ce

cm

� �
, (58)

while the power dissipated within the mechanical domain is

Pmech ¼
mo3

nYZmax

4

Rload þ Rint

Rload

� �
. (59)
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It is straightforward to show that power is conserved, that is

Pload av max þ Pint þ Pmech ¼ Pflow av. (60)

The power delivered to the electrical load can be related also to the flow of power into the device from the
environment as

Pload av max ¼
Pflow av

2

Rload � Rint

Rload þ Rint

� �
¼

Pflow av

2

ce

cm

� �
¼

Pflow av

2

xe

xm

� �
, (61)

from which it is clear that the internal resistance Rint should be as small as possible. From the relationship
K ¼ aRint, one concludes that the ideal electromechanical transducer should have large a (high flux density)
with internal resistance as small as possible. The maximum power transferred to the electrical load will always
be less than one-half of that flowing into the device. Given the relationship implicit within Eq. (61), i.e.
ce=cm ¼ ðRload � RintÞ=ðRload þ RintÞ, the impedance matching condition EDAM leads to the conclusion that
the electrical damping ratio will be less than the mechanical. In the ideal limit Rint! 0 (with a!1, so that K

is finite) the matching condition reduces to Rload ¼ K2=cm, which implies resistance matching between the
electrical and the mechanical domains, or ce ¼ cm, which is the condition claimed by Roundy et al. [3] and
Williams et al. [4]. However, it has also been shown that mechanical damping always has an adverse effect, so
a second ideal limit is cm ! 0. The EDAM condition, Eq. (54), then suggests that the load resistance should
increase without limit, implying that ce ! 0; in turn, the relative seismic mass displacement Z!1. In
reality, the minimum damping coefficient is constrained by the size of the device, from Eq. (42), as
ce þ cmXmonY=Zmax, and in the ideal limit that mechanical damping is zero, ceXmonY=Zmax.

4. Relationship with other published work

Despite claiming that damping ratio should be small in order to harvest the maximum amount of power,
Williams and Yates [1] presented theoretical predictions of generated power for a range of frequencies of
excitation, amplitude of vibration source, and seismic mass displacement (relative to the base) for a damping
ratio x ¼ 0:3. In fact these represent power extracted from the environment, rather than power delivered to an
electrical load, for the reasons stated above; the numerical values presented in Table 1 of Ref. [1] are in
agreement with Eq. (34), as they must—the relationship between the amplitude of the base excitation Y, and
the excursion of the seismic mass, Z, from Eq. (42), is fixed as Z=Y ¼ 1=ð2xÞ ¼ Q for o ¼ on.

On the other hand, El-Hami et al. [2] report measured and calculated usable power (themselves in very good
agreement) significantly less than the maximum values predicted in the present paper. For example, at a
frequency of f ¼ 322 Hz, base amplitude of Y ¼ 25� 10�6 m, seismic mass m ¼ 0:51� 10�3 kg and seismic
mass displacement (it is not clear whether this is absolute or relative displacement) of 0:94� 10�3 m, a useful
electrical power of 0.53mW was reported. First, note that the ratio of the seismic mass displacement to base
amplitude is ð0:94� 10�3Þ=ð25� 10�6Þ ¼ 37:6, which describes a very lightly damped system; moreover, this
indicates that any ambiguity as to whether the reported seismic mass displacement is relative or absolute, is
unimportant regarding the following observations, as the difference between the two is at most
�1=37:6 ¼ �2:66%. From Eq. (34), the power flow from the environment into the device would be
49.63mW, which is approximately one-hundred times greater than the electrical power delivered to the load
(0.53mW). A Q factor of 37.6 indicates an overall damping ratio of x ¼ 1=ð2� 37:6Þ ¼ 0:0133. The magnitude
of the mechanical damping ratio was unknown, but estimated in Ref. [2] as xm ¼ 0:013, in which case the
electrical damping ratio would be xe ¼ 0:0003. This implies that the majority of the power flowing into the
device, as expressed by Eq. (34), is being dissipated as a mechanical loss rather than being harvested as useful
electrical power; amplitude Z was being maximised, rather than delivered power. If the system was designed to
achieve mechanical and electrical resistance matching, the overall damping ratio would be x ¼ 0:026, the
displacement amplitude of the seismic mass would be (more or less) halved, as would the flow of power from
the environment into the device, but the power delivered to the electrical domain would be approximately
12.7mW, a 24 fold increase.



ARTICLE IN PRESS
N.G. Stephen / Journal of Sound and Vibration 293 (2006) 409–425 423
5. Behaviour of an intelligent device

Now consider the possible behaviour of an intelligent device in response to variable amplitude base
excitation: we suppose that the device has been designed for maximum power transfer into the electrical

domain (xe ¼ xm, or Rload þ Rint ¼ K2=cm) for some target excitation amplitude Y 0, with a maximum seismic
mass excursion, from Eq. (42), of

Zmax ¼ Y 0=ð4xeÞ; (62)

this defines the minimum electrical damping ratio. The (design) power flow into the electrical domain may be
written as

Pdes ¼
ce

2ðce þ cmÞ
mo3

nY 0Zmax ¼ mo3
nY 0Zmax=4, (63)

which is one-half of the power flowing from the base into the device. Now suppose that Y 0 reduces to 9Y 0=10;
the magnitude of the coil internal resistance and the mechanical damping are fixed so unless the electrical load
resistance increases (that is, the electrical damping decreases), Z will also reduce to 9Zmax=10, and the power
transferred to the electrical domain reduces to

Pe ¼ ð9=10Þ
2mo3

nY 0Zmax=4 ¼ 0:81� Pdes, (64)

which is a 19% reduction. Instead, allow the electrical damping coefficient to reduce from ce ¼ cm to ce ¼ bcm

where b is less than unity, and determine the required value of b to allow Z to resume its maximum value; this
requires, from Eq. (43)

Zmax ¼
monY 0

2cm

¼
monð9Y 0=10Þ

cm þ bcm

, (65)

which leads to b ¼ 0:8. The power transferred to the electrical domain is now, from Eq. (63)
Pe ¼ ð0:8cm=ð2ð0:8cm þ cmÞÞÞmo3

nð9=10ÞY 0Zmax ¼ 0:8� Pdes. From this example, one concludes that seeking
to maintain Z at its maximum is actually counter-productive. Instead, suppose we allow Z to reduce to eZmax

by reducing the electrical damping coefficient from ce ¼ cm to ce ¼ bcm where both e and b are less than unity,
and seek to improve upon the power, according to Eq. (64). First, one has

eZmax ¼
emonY 0

2cm

¼
monð9Y 0=10Þ

cm þ bcm

(66)

from which e ¼ 1:8=ð1þ bÞ. We now require

Pe ¼
bcm

2ðbcm þ cmÞ
mo3

nð9=10ÞY 0ðeZmaxÞ4ð9=10Þ
2mo3

nY 0Zmax=4 (67)

which leads to the requirement 04ð1� bÞ2; this is impossible as the right-hand side of the inequality is clearly
positive. One concludes that an intelligent device would be unable to ameliorate a reduction in base excitation
amplitude.

On the other hand, suppose that Y 0 increases to 10Y0/9. The electrical damping coefficient must be
increased to ce ¼ bcm, with b41, to maintain Z equal to Zmax; this requires

Zmax ¼
monY 0

2cm

¼
monð10Y 0=9Þ

cm þ bcm

, (68)

leading to b ¼ 11=9. The power delivered to the electrical domain is then

Pe ¼
ð11=9Þcm

2ðð11=9Þcm þ cmÞ
mo3

nð10=9ÞY 0Zmax ¼ ð11=9Þmo3
nY 0Zmax=4 ¼ ð11=9ÞPdes, (69)

which is 22.2% greater than Pdes. Had the device been designed from the outset for a base amplitude of 10Y0/
9, with a commensurate increase in Zmax to 10Zmax/9, then the electrical power would have increased by the
factor ð10=9Þ2 ¼ 1:235, which is an increase of 23.5%; however this design would be larger by the factor 10/9.
This sample calculation suggests that the power density of the device increases with the damping ratio, and is
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consistent with the statement by Roundy et al. [3], that ‘‘a highly damped system will only slightly
underperform a lightly damped system provided that most of the damping is electrically induced.’’ One
concludes that an intelligent device would be able to respond to an increase in base excitation amplitude, and
increase power delivered to the electrical domain accordingly. This suggests that for an environment in which
the base excitation amplitude is of variable magnitude, the device should be designed for an amplitude toward
the lower end of the range, but have the intelligence to increase electrical damping (by reducing Rload), and
harvest more energy, for the higher amplitudes.

6. Conclusions

The extraction of energy from a vibrating environment has been analysed in some detail. For both direct
mass (force) and base excitation, the maximum power flow into the device depends on the vigour of the
environment (frequency and amplitude of force, or base) and the size of the device. The dependence on
frequency and damping ratios is the same for both cases, with maximum flow when the frequency of excitation
is equal to the undamped natural frequency. A highly damped system would extract energy over a wide
bandwidth of frequencies either side of the natural frequency, would be smaller, but would extract marginally
less power. For base excitation, the overall damping coefficient (part of which is mechanical) is associated with
both the harvesting and dissipation of energy and also the transfer of energy from the vibrating base into the
system. It is shown that net energy flow from the base through the damper is positive (negative) for
o4on ðooonÞ, but is zero when o ¼ on. The mechanical component of the overall damping dissipates more
power than it contributes and is, at best, neutral when o=on !1.

Employing the simplest form of electromagnetic transduction, as exemplified by a permanent magnetic DC
motor/generator, the delivery of useful power to an electrical load is considered for the case of base excitation.
Maximum power is delivered to an electrical load when its resistance is equal to the sum of the coil internal
resistance and the electrical analogue of the mechanical damping coefficient, which differs from what has been
claimed. At the same time, coil internal resistance and mechanical damping should be minimised, in which
case a minimum overall damping coefficient is defined by the maximum excursion of the seismic mass. Greater
electrical damping leads to a smaller device, and increased power density.

Possible behaviour of an adaptive device designed to operate within a variable amplitude environment has
also been considered. It would be unable to ameliorate a reduction in base excitation amplitude, but could
increase power delivered to the electrical domain in response to an increase in base excitation amplitude. This
suggests that for an environment in which the base excitation amplitude is of variable magnitude, the device
should be designed for an amplitude toward the lower end of the range, but have the intelligence to increase
electrical damping (by reducing Rload), and harvest more energy, for the higher amplitudes.
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