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Abstract

In this note, the performance of mechanical band-pass filters to be used in energy scavengers is studied. Such a filter

consists of an ensemble of cantilever beams where at the tip of each beam a mass, known as the proof mass, is mounted.

Two questions are raised regarding the performance of the filter: (i) What is the best possible performance of the filter?

(ii) How can a filter with such a performance be designed? In answering these questions, the limits of performance of the

filter are determined. Knowledge of such limits leads to a systematic procedure for determining dimensions of the beams

and masses of the proof masses of high-performance band-pass filters.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The concept and practice of energy scavenging from the environment have been receiving much attention in
recent years. An example of energy scavenging is the conversion of the energy of vibration sources, which is
usually neglected, into usable but small electricity to power micro-electronic devices; see, e.g., Refs. [1–9].
Examples of vibration sources, the energy of which to be scavenged, are buildings, bridges, cars, trains,
aircraft, ships, manufacturing tools, etc.

A device that scavenges energy efficiently from the environment is called an energy scavenger. A typical
energy scavenger consists of a cantilever beam on which a piezoelectric film and a mass are mounted; see Fig.
1. This device will be referred to as either the energy scavenger or the beam–mass system. The mass on the
cantilever beam is known as the proof mass. When the scavenger is mounted on a vibration source, say a
panel, the cantilever beam would vibrate. The vibration of the beam is converted into electricity by the
piezoelectric film.

It is argued in Ref. [10] that in order to scavenge energy efficiently from a variety of vibration sources, an
energy scavenger should have sufficient bandwidth in designated frequency intervals. A device with such a
property is nothing but a mechanical band-pass filter.

In Ref. [10], a mechanical band-pass filter is proposed. The proposed filter is an ensemble of beam–mass
systems; see Fig. 2. It is shown in Ref. [10] that such an ensemble can be made into a band-pass filter when
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. A typical energy scavenger consists of a cantilever beam on which a piezoelectric film and a mass, known as the proof mass, are

mounted.

Acceleration ü(·)

Cantilever Beams and Proof Masses

Fig. 2. An ensemble of cantilever beams with proof masses at their tips. When the dimensions of the beams and masses of the proof masses

are chosen appropriately, this ensemble can function as a band-pass filter.
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dimensions of the beams and masses of the proof masses are chosen appropriately. Moreover, it is shown that
the frequency band of the filter is limited and cannot be chosen arbitrarily large: the frequency band is
independent of dimensions of the beams and masses of the proof masses.

In this note, the goal is to determine the limits of performance of the device in Fig. 2 when it functions as a
band-pass filter. The organization of the note is as follows. In Section 2, a mathematical model that describes
the transversal vibration of a beam–mass system is presented. In Section 3, using the results for one
beam–mass system, the limits of performance of the device in Fig. 2 are determined. Based on such limits, a
systematic procedure for determining dimensions of the beams and masses of the proof masses of high-
performance band-pass filters is given. In Section 4, two examples are presented.

2. A mathematical model of vibrating beam–mass systems

In Fig. 3, consider a schematic of the beam–mass system shown in Fig. 1. The length, width, and thickness
of the beam are denoted by l, w, and h, respectively. The mass density and the modulus of elasticity of the
beam are denoted by r and E, respectively. The proof mass at the tip of the beam is assumed to be a point
mass of mass M. The vibration source on which the cantilever beam is mounted exerts the acceleration €uð�Þ.
Due to this external input, the beam vibrates transversally. The transversal displacement of the beam at an
x 2 ½0; l� and a tX0 is denoted by yðx; tÞ 2 R.

With this setup, a mathematical model describing the dynamics of the beam–mass system is derived in Ref.
[10]. This model, which is adopted in this note, is based on the generalized single-degree-of-freedom (sdof)
system corresponding to the beam–mass system; see, e.g., Ref. [11, pp. 140–145] for the definition of the
generalized sdof system. The model is described briefly in the following. The transversal displacement of the
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Fig. 3. A schematic of a beam with a proof mass at its tip. The vibration source exerts the acceleration €uð.Þ. The transversal displacement

of the beam at an x 2 ½0; l� and a tX0 is denoted by yðx; tÞ.
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beam is written as

yðx; tÞ ¼ fðxÞqðtÞ, (1)

for all x 2 ½0; l� and tX0. In Eq. (1), the real- and scalar-valued function x 7!fðxÞ is chosen as

fðxÞ ¼ aðaÞ
x

l

� �2
� bðaÞ

x

l

� �3
, (2)

for all x 2 ½0; l�, with

a :¼
M

rwhl
, (3a)

aðaÞ ¼
sin lðaÞ þ sinh lðaÞ
cos lðaÞ þ cosh lðaÞ

l2ðaÞ; bðaÞ ¼
1

3
l3ðaÞ, (3b)

where the dependence of l on a is given in Ref. [12, p. 188, Table 6.7(a)].
The real- and scalar-valued function t 7! qðtÞ in Eq. (1) is the solution of following second-order ordinary

differential equation:

m €qðtÞ þ c _qðtÞ þ kqðtÞ ¼ �f €uðtÞ; qð0Þ ¼ 0; _qð0Þ ¼ 0, (4)

for all tX0, where c is a positive real number known as the damping coefficient, and

m :¼ a1ðaÞM þ a2ðaÞrwhl; k :¼
a3ðaÞEwh3

3l3
; f :¼ a4ðaÞM þ a5ðaÞrwhl, (5)

with

a1ðaÞ :¼ ½aðaÞ � bðaÞ�2; a2ðaÞ :¼
a2ðaÞ
5
�

2aðaÞbðaÞ
6

þ
b2
ðaÞ
7

, (6a)

a3ðaÞ :¼ a2ðaÞ � 3aðaÞbðaÞ þ 3b2
ðaÞ, (6b)

a4ðaÞ :¼ aðaÞ � bðaÞ; a5ðaÞ :¼
aðaÞ
3
�

bðaÞ
4

. (6c)

Using the value of a and the corresponding lðaÞ in Ref. [12, p. 188, Table 6.7(a)], aðaÞ and bðaÞ in Eq. (3b) can
be computed for all aX0. Having these quantities computed, it can be verified numerically that 0oaiðaÞo1
for all aX0 and i ¼ 1; 2; . . . ; 5. The damping ratio corresponding to both system (4) and the beam–mass
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system is defined as

x :¼
c

2ðmkÞ1=2
. (7)

By applying the Laplace transform to Eq. (1), it follows that

yðx; sÞ ¼ fðxÞqðsÞ, (8)

for all x 2 ½0; l�, where yðx; sÞ and qðsÞ are the Laplace transforms of yðx; �Þ and qð�Þ, respectively. A transfer
function, which relates the displacement of the tip of the beam to the applied acceleration, is defined as

gtipðsÞ :¼
yðl; sÞ

€uðsÞ
, (9)

where €uðsÞ is the Laplace transforms of €uð�Þ. Using Eqs. (8), (2), (6c), and (4) in Eq. (9), it is concluded that

gtipðsÞ ¼
fðlÞqðsÞ
€uðsÞ

¼ �
a4f

ms2 þ csþ k
. (10)

The H1-norm of the transfer function gtipðsÞ is defined as

kgtipk1 :¼ max
o2R
jgtipðjoÞj, (11)

where j ¼
ffiffiffiffiffiffiffi
�1
p

. The norm kgtipk1 corresponds to the global maximum of the Bode magnitude plot of the
transfer function gtipðsÞ. The magnitude jgtipðjoÞj attains its maximum at the resonant frequency denoted by
or.

When 0ox51, it is shown in Ref. [10] that

or ¼
a3ðaÞEwh3

3½a1ðaÞM þ a2ðaÞrwhl�l3

� �1=2

, (12a)

kgtipk1 ¼
3a4ðaÞ½a4ðaÞM þ a5ðaÞrwhl�l3

2xa3ðaÞEwh3
, (12b)

for all aX0, where the constant coefficients a1ðaÞ; a2ðaÞ; . . . ; a5ðaÞ are given in Eq. (6).
The resonant frequency or and the norm kgtipk1 are used in the design of mechanical band-pass filters.

3. Limits of performance of the band-pass filter

In this section, the ensemble of beam–mass systems shown in Fig. 2 is considered. The following questions
are then raised: (i) What is the best possible performance of the device in Fig. 2 when it functions as a band-
pass filter? (ii) How can a device with such a performance be designed? In answering these questions, the limits
of performance of the device are determined. Knowledge of such limits leads to a systematic procedure for
determining dimensions of the beams and masses of the proof masses that make the device in Fig. 2 into a
high-performance band-pass filter.

3.1. Limits of performance

In Ref. [10], in order to have the device in Fig. 2 function as a band-pass filter, dimensions of the beams and
masses of the proof masses are chosen such that: (i) resonant frequencies or of the beam–mass systems of the
device are different from each other; (ii) norms kgtipk1 corresponding to all beam–mass systems assume a
same constant value, say g�40. Condition (ii) is now replaced by

kgtipk1 ¼ gðorÞ, (13)

where or 7! gðorÞ is a positive and bounded function defined on the domain DðgÞ � Rþnf0g. The domain DðgÞ,
which is the frequency band of the filter to be designed, is chosen by the designer. The function or 7! gðorÞ,
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which is the locus of the peaks of the Bode magnitude plots of the transfer functions gtipðsÞ, is chosen from a
class of functions. This class of functions will be characterized in this section.

Clearly, the performance of the device in Fig. 2 depends on the function or 7! gðorÞ. The question is: What
is the class of functions or 7! gðorÞ for which the device in Fig. 2 is physically realizable? This class, to be
characterized in the following, achieves two useful results: (i) it reveals the limits of performance of the device
in Fig. 2 when it functions as a band-pass filter; (ii) it facilitates the design of a variety of physically realizable
and high-performance band-pass filters.

Following the steps in Ref. [10], in Eq. (12b), the norm kgtipk1 is set equal to gðorÞ. The result is

gðorÞ ¼
3a4ðaÞ½a4ðaÞM þ a5ðaÞrwhl�l3

2xa3ðaÞEwh3
, (14)

for all or 2 DðgÞ. Using Eq. (3a) in Eq. (14), it follows that

l4 ¼
2a3ðaÞExgðorÞ

3a4ðaÞ½aa4ðaÞ þ a5ðaÞ�r

� �
h2, (15)

for all or 2 DðgÞ. Substituting Eqs. (3a) and (15) into Eq. (12a), it is concluded that

gðorÞ ¼ HðaÞ
1

xo2
r

� �
, (16)

for all or 2 DðgÞ, where

HðaÞ :¼
a4ðaÞ½aa4ðaÞ þ a5ðaÞ�
2½aa1ðaÞ þ a2ðaÞ�

, (17)

for all aX0. The scalar-valued function a 7!HðaÞ is evaluated by using the values of a and the corresponding
lðaÞ in Ref. [12, p. 188, Table 6.7(a)] and Eqs. (3b) and (6); results are plotted in Fig. 4. It is evident from this
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Fig. 4. Graph of the function a 7!HðaÞ in Eq. (17).
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figure that a 7!HðaÞ is a monotonically decreasing function of a. Therefore, from Eq. (16), it follows that

0:5

xo2
r

¼
a2
4ð1Þ

2a1ð1Þ

1

xo2
r

� �
ogðorÞp

a4ð0Þa5ð0Þ

2a2ð0Þ

1

xo2
r

� �
¼

0:767

xo2
r

, (18)

for all or 2 DðgÞ. From Eq. (6), it is noted that a2
4ðaÞ=a1ðaÞ ¼ 1 for all aX0. This fact establishes the inequality

on the left-hand side of inequality (18).
The class of functions o 7! gðorÞ is thus characterized by inequality (18). This class consists of functions the

graphs of which lie between those of the following scalar-valued functions:

glðorÞ :¼
0:5

xo2
r

; guðorÞ :¼
0:767

xo2
r

, (19)

for all or 2 DðgÞ. Graphs of the functions in Eq. (19) for x ¼ 0:01 are depicted in Fig. 5. By inequality (18),
no part of the graph of or 7! gðorÞ can lie above that of or 7! guðorÞ, because such a situation implies that ao0
(equivalently, the proof mass Mo0). Neither can a part of the graph of or 7! gðorÞ lie on or below that of
or 7! glðorÞ, because such a situation implies that a (equivalently, M) is infinitely large.

In Ref. [10], the function gðorÞ ¼ g�40 for all or 2 DðgÞ ¼ ðomin;omax�; see Fig. 6(a). By inequality (18),
however, any function or 7! gðorÞ the graph of which lies between those of or 7! glðorÞ and or 7! guðorÞ can be
chosen. For instance, see the graphs in Figs. 6(b) and 6(c).

It is clear that the functions or 7! glðorÞ and or 7! guðorÞ determine the limits of performance of the device
in Fig. 2 when it functions as a band-pass filter. Within the confines of these functions, or 7! gðorÞ should be
chosen appropriately in order to make the device in Fig. 2 into a high-performance band-pass filter.
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Fig. 5. Graphs of the functions or 7! gl ðorÞ and or 7! guðorÞ in Eq. (19) for x ¼ 0:01 shown, respectively, by dashed and solid lines. On

or 7! guðorÞ, the proof mass M ¼ 0, and on or 7! gl ðorÞ, the proof mass M ¼ 1.
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Fig. 6. Different choices of the function or 7! gðorÞ shown by thick solid lines: (a) the function assumes the constant value g�40; (b) the

function first increases and then decreases while its graph lies on that of or 7! guðorÞ; (c) the function decreases while its graph lies on that

of or 7! guðorÞ. Graphs of all three functions or 7! gðorÞ lie between those of the limiting functions or 7! gl ðorÞ and or 7! guðorÞ shown,

respectively, by dashed and solid lines.
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3.2. A systematic design procedure

In the following, a systematic procedure is given to determine dimensions of the beams and masses of the
proof masses of the device in Fig. 2.

Procedure 3.1. Take the following steps to obtain l, w, and h of the beams and M of the proof masses that
make the device in Fig. 2 function as a band-pass filter.
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Step 1: Knowing the damping ratio 0ox51, determine the functions or 7! glðorÞ and or 7! guðorÞ from
Eq. (19). Choose a frequency interval as the frequency band of the desired filter and denote it by DðgÞ. Choose
an appropriate function or 7! gðorÞ over DðgÞ, such that its graph lies between those of or 7! glðorÞ and
or 7! guðorÞ.

Step 2: Write Eq. (16) as

HðaÞ ¼ xo2
rgðorÞ, (20)

for all or 2 DðgÞ. For several or 2 DðgÞ compute HðaÞ in Eq. (20) and use Fig. 4 to determine the
corresponding a.

Choose a same thickness h for all beams, and use the resonant frequencies or and the corresponding a to
compute lengths l via Eq. (15), which is written as

l ¼
2a3ðaÞ

3a4ðaÞ½aa4ðaÞ þ a5ðaÞ�

� �1=4
ExgðorÞ

r

� �1=4

h1=2. (21)

Step 3: Choose a same width w for all beams. Use the chosen w together with h and l from Step 2 to compute
masses of the proof masses M from Eq. (3a).

Remark. It is recommended to choose the function or 7! gðorÞ such that its graph is situated away from that
of or 7! glðorÞ. Such a choice guarantees that a (equivalently, M) is not unnecessarily large. It is noted that if
a42, then the beam–mass system has a proof mass much heavier than the beam. Such a beam–mass system is
not desirable.
Table 1

Dimensions of beams and masses of proof masses in Example 4.1

Beam a Frequency

or rad=s ðHzÞ

l ðcmÞ w ðmmÞ h ðmmÞ M ðgÞ

1 2.00 299.18 (47.62) 3.90 4 0.5 1.64

2 1.00 301.50 (47.98) 4.51 4 0.5 0.95

3 0.50 304.89 (48.52) 5.11 4 0.5 0.54

4 0.25 308.92 (49.17) 5.64 4 0.5 0.30

5 0.15 311.76 (49.62) 5.95 4 0.5 0.19

6 0.10 313.68 (49.92) 6.15 4 0.5 0.13

7 0.05 316.09 (50.31) 6.39 4 0.5 0.07

8 0.00 319.13 (50.79) 6.70 4 0.5 0.00

9 0.00 325.00 (51.73) 6.64 4 0.5 0.00

10 0.00 335.00 (53.32) 6.54 4 0.5 0.00

11 0.00 345.00 (54.91) 6.44 4 0.5 0.00

12 0.00 355.00 (56.50) 6.35 4 0.5 0.00

13 0.00 365.00 (58.09) 6.26 4 0.5 0.00

14 0.00 375.00 (59.68) 6.18 4 0.5 0.00

15 0.00 385.00 (61.27) 6.10 4 0.5 0.00

16 0.00 395.00 (62.87) 6.02 4 0.5 0.00

17 0.00 405.00 (64.46) 5.94 4 0.5 0.00

18 0.00 415.00 (66.05) 5.87 4 0.5 0.00

19 0.00 425.00 (67.64) 5.80 4 0.5 0.00

20 0.00 435.00 (69.23) 5.74 4 0.5 0.00

21 0.00 445.00 (70.82) 5.67 4 0.5 0.00

22 0.00 455.00 (72.42) 5.61 4 0.5 0.00

23 0.00 465.00 (74.01) 5.55 4 0.5 0.00

24 0.00 475.00 (75.60) 5.49 4 0.5 0.00

25 0.00 485.00 (77.19) 5.43 4 0.5 0.00

26 0.00 495.00 (78.78) 5.38 4 0.5 0.00

27 0.00 505.00 (80.37) 5.32 4 0.5 0.00

28 0.00 515.00 (81.96) 5.27 4 0.5 0.00
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Fig. 7. A realization of the band-pass filter in Example 4.1. Some beams have proofs masses at their tips.
Fig. 8. The Bode magnitude plots of the transfer functions corresponding to the beam–mass systems in Example 4.1.
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4. Examples

In this section, two examples are given to illustrate the design of band-pass filters via Procedure 3.1.
Suppose that the device in Fig. 2 is to be made out of silver with the following material properties:

r ¼ 10500 kg=m3; E ¼ 7:8� 1010 N=m2; x ¼ 0:01. (22)

Knowing the damping ratio, the functions or 7! glðorÞ and or 7! guðorÞ in Eq. (19) are determined.

Example 4.1. To follow Step 1 of Procedure 3.1, the frequency band of the desired filter is chosen as

DðgÞ ¼ ½299:18; 515� rad=s ¼ ½47:62; 81:96�Hz. (23)

Over DðgÞ, the function o 7! gðorÞ is chosen as

gðorÞ ¼

8� 10�6or � 18� 10�4; or 2 ½299:18; 319:13� rad=s;

76:70

o2
r

; or 2 ½319:13; 515� rad=s:

8><
>: (24)

It can be easily verified that the graph of or 7! gðorÞ lies between those of or 7! glðorÞ and or 7! guðorÞ. The
graph of or 7! gðorÞ resembles that shown in Fig. 6(b).

By Step 2 of Procedure 3.1, for several or 2 DðgÞ, the function HðaÞ in Eq. (20) is computed. Then, for each
or, the corresponding a is determined from Fig. 4. Results are listed in Table 1.
Table 2

Dimensions of beams and masses of proof masses in Example 4.2

Beam Frequency or rad=s ðHzÞ l ðcmÞ w ðmmÞ h ðmmÞ M ðgÞ

1 300.00 (47.75) 6.91 4 0.5 0.00

2 306.10 (48.72) 6.84 4 0.5 0.00

3 312.69 (49.77) 6.76 4 0.5 0.00

4 319.62 (50.87) 6.69 4 0.5 0.00

5 326.83 (52.02) 6.62 4 0.5 0.00

6 334.25 (53.20) 6.54 4 0.5 0.00

7 341.86 (54.41) 6.47 4 0.5 0.00

8 349.64 (55.65) 6.40 4 0.5 0.00

9 357.57 (56.91) 6.33 4 0.5 0.00

10 365.63 (58.19) 6.26 4 0.5 0.00

11 373.81 (59.49) 6.19 4 0.5 0.00

12 382.10 (60.81) 6.12 4 0.5 0.00

13 390.50 (62.15) 6.05 4 0.5 0.00

14 399.00 (63.50) 5.99 4 0.5 0.00

15 407.58 (64.87) 5.92 4 0.5 0.00

16 416.26 (66.25) 5.86 4 0.5 0.00

17 425.01 (67.64) 5.80 4 0.5 0.00

18 433.85 (69.05) 5.74 4 0.5 0.00

19 442.75 (70.47) 5.68 4 0.5 0.00

20 451.73 (71.90) 5.63 4 0.5 0.00

21 460.78 (73.33) 5.57 4 0.5 0.00

22 469.89 (74.78) 5.52 4 0.5 0.00

23 479.06 (76.24) 5.47 4 0.5 0.00

24 488.29 (77.71) 5.41 4 0.5 0.00

25 497.58 (79.19) 5.36 4 0.5 0.00

26 506.93 (80.68) 5.31 4 0.5 0.00

27 516.33 (82.18) 5.26 4 0.5 0.00

28 525.78 (83.68) 5.22 4 0.5 0.00
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Fig. 9. A realization of the band-pass filter in Example 4.2. No beam has a proof mass at its tip.
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The same thickness h ¼ 0:0005m is chosen for all beams. Then, using the resonant frequencies or and the
corresponding a, lengths of the beams are computed via Eq. (21). Results are listed in Table 1 as h and l.

The same width w ¼ 0:004m is chosen for all beams. By Step 3 of Procedure 3.1, masses of the proof masses
are computed from Eq. (3a); they are tabulated as M in Table 1.

The designed band-pass filter has 28 beam–mass systems. The filter can be fabricated as that shown in
Fig. 7. The Bode magnitude plots of the transfer functions gtipðsÞ corresponding to the beam–mass systems
are shown in Fig. 8.
Example 4.2. Consider a setup the same as that in Example 4.1, except that

gðorÞ ¼
76:70

o2
r

; or 2 ½300; 525:78� rad=s ¼ ½47:75; 83:68�Hz. (25)

Graph of the function or 7! gðorÞ lies over that of or 7! guðorÞ given in Eq. (19). The graph of or 7! gðorÞ

resembles that shown in Fig. 6(c). With this choice, no beam will have a proof mass at its tip.
By applying Procedure 3.1, dimensions of the beams and masses of the proof masses are obtained; results
are tabulated in Table 2.

The designed band-pass filter has 28 beam–mass systems. The filter can be fabricated as that shown in
Fig. 9. The Bode magnitude plots of the transfer functions gtipðsÞ corresponding to the beam–mass systems
are shown in Fig. 10.
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Fig. 10. The Bode magnitude plots of the transfer functions corresponding to the beam–mass systems in Example 4.2.

S.M. Shahruz / Journal of Sound and Vibration 293 (2006) 449–461460
5. Conclusions

In this note, the limits of performance of mechanical band-pass filters to be used in energy scavenging were
obtained. The filter consists of an ensemble of cantilever beams where at the tip of each beam a proof mass is
mounted. It was shown that the frequency response of the filter lies between two limiting functions or 7! glðorÞ

and or 7! guðorÞ in Eq. (19). Knowledge of such limiting functions led to a systematic procedure for
determining dimensions of the beams and masses of the proof masses of band-pass filters with best possible
performances.

A conclusion of this note, corroborated by Examples 4.1 and 4.2, is that it is advantageous to use the upper
limiting function, or 7! guðorÞ, to design band-pass filters. A filter designed using this function has a larger
frequency band and there is no need for proof masses at the tips of its cantilever beams; it is thus easily
fabricated.
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