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Abstract

After a brief literature review on friction-induced vibrations and rolling contact, a model of curve squeal generation is

presented. Both tangential and normal wheel–rail contact forces as well as axial and radial wheel dynamics are taken into

account. For initial conditions close to the quasi-static equilibrium, the squeal occurrence is predicted through the stability

analysis of wheel modes (linear analysis). In unstable cases, the squeal level and spectrum are determined through the

numerical study of limit cycles in the time-domain (nonlinear analysis). The model is used to study the effect of the

friction–velocity relationship and the coupling between tangential and normal dynamics on the stability of the system,

especially for large lateral offsets of the wheel–rail contact point. A parameter study is also performed. Results on critical

angles of attack, critical wheel damping factors, excited wheel modes and vibration levels are presented. Finally, the results

are compared with laboratory and field measurements and the validity of the model is discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is the last of three companion papers dealing with the curve squeal of rail bound vehicles.
Whereas the first two papers have an experimental orientation [1,2] this one focuses on modelling. Since the
publication of Rudd’s paper in 1976 [3], a lot of curve squeal models have been proposed by researchers [4–17].
However, all of them described the same fundamental mechanism. The angle of attack imposed on the wheels
by the bogie dynamics in the curve—the wheel slides laterally across the rail in addition to rolling—is
associated with a high lateral ‘‘creep-friction’’ force. This force makes the wheel dynamics unstable, leading to
self-excited vibrations and radiated noise. The main differences between the models lie in details in the
modelling of wheel/rail mechanical impedances (analytical [4,5,7,10,13–16], FEM [9,11,12,17], with some
vertical dynamics added [5,12,17]), contact forces (see Section 2) and wheel sound radiation [9,11,12]. Some
authors also studied wheel/rail roughness or wheel rotation effects [10,13,14]. Since the problem is nonlinear,
another difference in the models is the method used to predict the long-term dynamic behaviour of the system
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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(energy considerations [3], numerical integration [9,11,12,15,16], averaging method [4,5,7,10,13,14]). Some
other possible mechanisms have been proposed, like the rubbing of the wheel flanges against the rail or the
differential slip between inner and outer wheels on an axle, but they are often dismissed by authors on the
basis of Rudd’s considerations [3]. Companion papers [1,2] show that they do not represent the main source of
noise in a curve.

Despite all these models, the influence of kinetic, mechanical and contact parameters on the occurrence and
spectrum of squeal noise is not yet clear. A thorough theoretical parameter study is needed and results have to
be compared with experimental observations. This is the main purpose of this paper. It must also be
emphasized that the central problem is to predict the vibratory behaviour of the system for a given set of
kinetic parameters (rolling speed and angle of attack). Bogie dynamics in the curve and wheel sound radiation
can be viewed as secondary problems. In addition, a key parameter in the noise generation is the dynamic
modelling of the lateral ‘‘creep-friction’’ force. Indeed, it seems that only a velocity-weakening friction
coefficient is able to generate self-excited vibrations, as described by the stick–slip theory. However, other
mechanisms of friction-induced vibrations have been reported in the literature and cannot be excluded a
priori. So a brief review on friction-induced vibrations and rolling contact has been performed and is
presented first.

2. Background

2.1. Friction-induced vibrations

The modelling of dynamic instabilities of mechanical systems with dry friction is a general subject that is
widely dealt with in literature (see reviews [18–20]). models with only tangential dynamics (with respect to the
contact zone) and models with tangential and normal dynamics may be distinguished. With the former
models, only a velocity-weakening of the friction coefficient may lead to instabilities. This weakening can be
viewed as a negative damping introduced in the system and has been observed experimentally by many
authors. The early works showed that the static friction force could be higher than the kinetic friction force.
So, on the basis of the classical Coulomb friction law, two friction coefficients (static and kinetic) may be
defined. This distinction is mathematically sufficient to obtain self-excited vibrations in some dynamic systems.
Resulting limit cycles are an alternation of sliding and sticking phases, called stick–slip. In addition, the kinetic
coefficient may be supposed variable with the relative sliding velocity. In the case of wheel/rail contact, such a
variation has been studied by Kraft [21] and has been included in some curve squeal models [9,11,17]. Another
distinction level may arise between the quasi-static friction coefficient—for a constant sliding velocity—and
the dynamic friction coefficient—when the system is self-excited. A common observation is that the dynamic
friction coefficient depends on other parameters than the relative velocity.

For several authors, these distinctions are due to the fact that only tangential dynamics is taken into account
in the models. The variation of the friction force would be the consequence of the variation of the normal
force, due to normal vibrations of the system [18]. Thus, it has been shown how the coupling of tangential and
normal dynamics is sufficient to produce self-excited vibrations with a constant friction coefficient (sprag–slip,
mode coupling). This theory has been successfully applied in some squeal problems, especially in the case of
braking noises [19,20].

Actually, these two kinds of destabilization may be combined and both have to be explored in each
particular situation. In the case of curve squeal noise, most of the existing models take only the tangential
(lateral) dynamics into account. However, a recent model reveals a significant effect of the normal (vertical)
system dynamics via the lateral position of the contact point on the wheel [17] but this effect needs to be
detailed.

2.2. Wheel/rail rolling contact

Tangential rolling contact is characterized by rolling friction which differs from classical dry friction by an
important phenomena: for small sliding velocities, the tangential force (creep force) increases linearly with the
relative sliding velocity or creepage (which is the ratio of the relative sliding velocity to the rolling velocity)
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because of the deformation of the interface during rolling. In addition, three tangent degrees of freedom,
lateral, longitudinal and spin, should be rigorously taken into account at the wheel–rail interface. Each of
them can be broken down into a quasi-static part imposed by the bogie dynamics and an unknown dynamic
part caused by wheel vibrations.

Several rolling contact models have been developed (see reviews [22,23]), rigorous or simplified, linear or
nonlinear, steady state or non-steady state. For curve squeal, a nonlinear model is needed because the sliding
velocities are significant. moreover, a non-steady-state model would be desirable since frequencies at which
squeal occurs correspond to wavelengths generally smaller than the contact zone. Unfortunately, today, the
only nonlinear and non-steady-state existing model (e.g. CONTACT software, see Ref. [22]) provides
computational performances which are too lengthy to be used in such an application [23]. Several authors,
especially in the problem of squeal noise, carried out the inclusion of a velocity-weakening friction coefficient
in rolling contact models. Analytical formulae are frequently used [11,17] (e.g. the heuristic association of the
Vermulen-Johnson model with the Kraft expression of the friction coefficient) but some authors modified
numerical contact models, notably the FASTSIM software [12].

3. Description of the model

3.1. Statement of the problem

A loaded wheel with constant rolling speed Vx and angle of attack a is considered (see Fig. 1). The resulting
sliding velocity is noted V y ’ aV x. Dynamic vertical and lateral wheel displacements at the wheel–rail contact
point are noted, respectively, uz and uy in a Cartesian reference system moving with the wheel. vy ¼ quy=qt

denotes the dynamic lateral contact velocity and xy is the so-called dynamic lateral creepage defined by

xy ¼
V y � vy

V x

’ a�
vy

V x

. (1)

Wheel rotation and wheel/rail surface irregularities are neglected. The rail is assumed to be rigid, apart from
the contact zone.

3.2. Wheel dynamics

The dynamic behaviour of the wheel is assumed to be linear and lightly damped so that a real modal basis
can be used. This basis is presumed to be known in the frequency range of interest. A mode i is characterized
fy
y

Vx

x

y

α

z

fz

wheel

contact zone
rail

wheel
rail

Fig. 1. Coordinate system, kinetic variables and applied forces.
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by its natural circular frequency oi, its vertical and lateral modal amplitudes at the contact point Fzi and Fyi

(assumed to be normalized with respect to mass) and its structural damping factor Zi. Two kinds of mode may
be distinguished: the radial modes Rn and the axial modes mLn, where n is the number of nodal diameters and
m is the number of nodal circles. At the contact point, wheel vertical and lateral displacements can be written as

uz ¼ Uzw, (2)

uy ¼ Uyw, (3)

where Uz and Uy are the vectors of vertical and lateral modal amplitudes at the contact point and w denotes the
unknown generalized coordinates vector.

3.3. Contact forces

A nonlinear Hertzian dynamic vertical force f zðuzÞ is assumed, given by

f z ¼ N
ds � uz

ds

� �3=2

, (4)

where ds denotes the static wheel/rail penetration caused by the vertical wheel load N (see Appendix A). Spin
and longitudinal creep forces are neglected. A dynamic lateral ‘‘creep-friction’’ force f yðf z; xyÞ is assumed by
using a nonlinear exponential creep model (see Refs. [22,24]) combined with a dynamic friction coefficient m
decreasing linearly with the relative contact velocity:

f y ¼ mf z 1� e�x̄y

� �
sgnðxyÞ, (5)

x̄y ¼
1

mf z

Ga1b1C22f 2=3
z jxyj, (6)

m ¼ ms þ gjV y � vyj ¼ ms þ gV xjxyj, (7)

where G denotes the mean shear modulus of the materials in contact, a1 and b1 the normalized semi-axis
lengths of the contact ellipse and C22 the Kalker coefficient (see Appendix A). A key parameter is the slope of
the friction coefficient with the relative contact velocity gp0. The case g ¼ 0 corresponds to a constant friction
coefficient. Figs. 2 and 3 show the variation of f y with xy and vy for a given vertical force f z. Two zones can be
distinguished, separated by a critical creepage ac, corresponding to a critical wheel vibratory velocity
vyc ¼ Vxða� acÞ:
�
 for small creepages, f y increases linearly with xy (linear creep theory),

�
 for large creepages, f y is saturated (dry friction theory) but decreases linearly with xy because of the velocity-
weakening friction coefficient.

At the quasi-static equilibrium, the vertical displacement uz and the lateral velocity vy are zero. The vertical
contact force f z is then equal to the static wheel load N and the lateral creepage xy is equal to the angle of
attack a. The corresponding quasi-static ‘‘creep-friction’’ force is denoted Ty such that

Ty ¼ f yjf z¼N ; xy¼a. (8)

It must be emphasized that with this model, the quasi-static and dynamic variations TyðaÞ and f yðxyÞ are the same.

3.4. Wheel excitation

Modal expansion of the non-stationary part of the wheel dynamics leads to the following system of equations:

q2w
qt2
þ 2NX

qw
qt
þX2w ¼ UT

z ðf z �NÞ þUT
y ðf y � TyÞ, (9)
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Fig. 2. ‘‘Creep-friction’’ force f y as a function of the dynamic lateral creepage xy.
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Fig. 3. ‘‘Creep-friction’’ force f y as a function of the lateral wheel velocity vy.
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where X denotes the diagonal matrix of natural frequencies oi and N the diagonal matrix of viscous modal
damping factors xi ¼ Zi=2. Together with the expression of contact forces and contact coordinates (1)–(8), Eq. (9)
represents a system of second-order nonlinear differential equations with an equilibrium point w ¼ qw=qt ¼ 0. If
initial conditions are different from this point, two cases may be distinguished:
�
 the stable (non-squealing) case if the solution converges to the equilibrium,

�
 the unstable (squealing) case if the solution converges to a periodic, quasi-periodic or chaotic limit cycle.

Time-domain solutions are obtained by numerical integration of the system.

3.5. Stability analysis

For initial conditions sufficiently close to the equilibrium, a linear stability analysis can be performed.
Linearizing the contact forces around quasi-static values N and Ty, system (9) becomes:

q2w
qt2
þ 2NXþUT

y cyyUy

� � qw
qt
þ X2

þUT
z kzzUz þUT

y kyzUz

� �
w ¼ 0, (10)
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where kzz, cyy and kyz are, respectively, the vertical Hertzian stiffness, the lateral viscous damping and the
vertical/lateral cross-stiffness at the contact point given by

kzz ¼ �
qf z

quz

����
uz¼0

, (11)

cyy ¼ �
qf y

qvy

����
uz¼0; vy¼0

, (12)

kyz ¼ �
qf y

quz

����
uz¼0; vy¼0

. (13)

Thus, two factors of instability coexist:
�
 a negative lateral contact damping cyy ’ gN when a4ac and go0 due to the velocity-weakening friction
coefficient (negative damping instability)

�
 a stiffness matrix asymmetry induced by cross-stiffness kyz (mode coupling instability).

The stability may be deduced from a complex eigenvalue analysis of system (10). For a complex mode i with
complex eigenvalue li, RðliÞ represents its growth rate. The mode is then unstable if and only if RðliÞ is
positive. Modal growth rates can be expressed in dB/s by using the indicator Di ¼ 10RðliÞ= ln 10.

3.6. Approximate stability criterion

Neglecting mode coupling (non-diagonal terms), leads to an approximate expression of growth rates:

RðliÞ ’ �
1
2
ðZioi þ F2

yicyyÞ ’
1
2
ðjgjNF2

yi � ZioiÞ for a4ac. (14)

This allows one to define an approximate critical damping factor:

Zci ¼
jgjNF2

yi

oi

(15)

under which the mode is unstable. According to this criterion and for a lightly damped wheel, axial modes
with no nodal circle (0Ln) and n41 are generally all unstable for a4ac, even for small g values, since their
lateral modal amplitudes are large and their damping factors are small (see Section 4.1). The approximate
critical damping factors are inversely proportional to the natural frequencies of the modes so that the mode
with the largest growth factor is generally one of the low or medium-order modes (1ono5). However, this
stability criterion (similar to the criterion given by Heckl [16]) does not take into account any lateral/vertical
coupling.

4. Numerical results

4.1. General points

Both stability analysis and time-domain integration have been performed for a monobloc metro wheel
(diameter 0.85m, mass 332 kg, straight web, web thickness 0.022m). Radial and axial modes in the range
0–6000Hz have been determined from a finite element model of the wheel. Modal amplitudes Uz have been
calculated as a function of an optional offset uyþ of the lateral contact point position on the wheel. For
uyþ ¼ 0, the distance between the point of contact and the internal face of the tyre is 0.07m. All modal
damping factors have been set to 0.01% except those of the low-order modes (n ¼ 0; 1) for which a damping
factor of 1% has been chosen to simulate the axle damping effect. Table 1 summarizes the values of kinetic
and contact parameters used in the parameter study. The central column is the reference configuration.
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A first parameter study based on the approximate stability criterion has been performed (see Tables 2–4).
The range of the critical angle of attack is found to vary from 9 to 16mrad with a significant effect of all
parameters and a value of 13.2mrad in the reference configuration. The approximate critical damping factors
of 0Ln modes are always greater than 0.01% even for small values of gN. So 0Ln modes with n41 are always
unstable after the critical angle of attack and negative damping instabilities may occur. In addition,
approximate modal growth rates are rather similar for these modes with a small advantage to 0L2, 0L3 and
0L4 modes, according to g.
4.2. Validity of the approximate stability criterion

In order to evaluate the validity domain of the approximate stability criterion, the modal growth rates of
0Ln modes have been calculated by using different approximations and for different lateral offsets of the
Table 1

Range of kinetic and contact parameters used in the parameter study

Parameter Unit Minimum value Reference value Maximum value

a mrad 15 20 25

Vx km/h 10 20 40

uyþ m �0.02 0 +0.02

N kN 25 45 62.5

ms — 0.3 0.4 0.5

jgj ¼ �g s/m 0.05 0.1 0.5

Table 2

Variation of the critical angle of attack with the parameters

Configuration ac (mrad)

Reference 13.2

Vx min. 14.9

Vx max. 11.5

N min. 11.3

N max. 14.5

ms min. 9.9

ms max. 16.6

jgj min. 14.9

jgj max. 9.2

Table 3

Variation of the approximate critical damping factors of 0Ln modes with the parameters

Mode f i ¼ oi=2p (Hz) Zci (%)

jgjN min. Reference jgjN max.

0L0 326 0.31 1.12 7.80

0L1 239 0.92 3.31 22.96

0L2 447 0.53 1.91 13.24

0L3 1154 0.21 0.76 5.28

0L4 2058 0.12 0.43 2.98

0L5 3066 0.08 0.29 1.98

0L6 4130 0.06 0.21 1.44

0L7 5222 0.04 0.16 1.10
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Table 5

Growth rates of 0Ln modes (a) (b) with mode coupling but no vertical dynamics (kzz ¼ kyz ¼ 0), (c) with mode coupling and vertical

dynamics

Config. Approx. Di (dB/s)

0L0 0L1 0L2 0L3 0L4 0L5 0L6 0L7

Ref. (a) 3.0 69.9 109.9 112.2 111.6 109.1 105.2 99.7

Ref. (b) 3.0 70.0 109.9 112.2 112.3 109.2 105.2 100.0

Ref. (c) 2.9 71.3 109.7 112.6 114.9 110.2 107.2 105.3

uyþ min. (c) 0.9 96.0 95.1 111.3 117.5 108.8 105.9 102.2

uyþ max. (c) 3.1 41.9 124.8 112.1 100.6 112.8 107.0 108.4

Mode in italics has largest growth rate.

Table 4

Variation of the approximate modal growth rates of 0Ln modes with the parameters

Config. Di (dB/s)

0L0 0L1 0L2 0L3 0L4 0L5 0L6 0L7

Ref. 3.0 69.9 109.9 112.2 111.6 109.2 105.2 99.7

a min. �17.5 25.6 62.2 63.0 62.1 60.2 57.3 53.5

a max. 5.2 74.7 115.1 117.5 116.9 114.4 110.3 104.7

Vx min. �0.0 63.4 102.9 104.9 104.3 101.9 98.1 92.9

Vx max. 4.5 73.1 113.4 115.7 115.1 112.7 108.6 103.0

N min. �17.0 26.8 63.4 64.3 63.4 61.5 58.5 54.7

N max. 17.3 100.7 143.1 146.3 145.9 143.2 138.4 131.8

ms min. 5.4 75.0 115.4 117.8 117.2 114.8 110.6 105.0

ms max. �9.3 43.4 81.3 82.7 82.0 79.8 76.5 72.1

jgj min. �30.1 �3.2 31.0 30.9 29.9 28.3 26.1 23.5

jgj max. 204.5 504.6 578.7 594.6 596.6 589.8 575.0 552.8

Mode in italics has largest growth rate.
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contact point (see Table 5 and Fig. 4). From these results, it can be concluded that the mode coupling effect is
significant only if the vertical dynamics is present. In addition, this effect is important only for large lateral
offsets, which can be explained by the induced vertical/lateral coupling. However, it is important to note that a
lateral offset is not found to stabilize or destabilize a mode: it only changes the mode having the largest growth
rate. This assumption is corroborated by the fact that, in the g ¼ 0 case (constant friction coefficient), no mode
coupling instability occurs even for large lateral offsets (see Fig. 5). In Appendix B, some elements are
presented which may explain why these results are different from those given in Ref. [17]. As a conclusion, the
approximate stability criterion can be used to determine if a mode is stable or unstable but not to evaluate the
relative degrees of instability.
4.3. Times histories

Time-domain solutions are now discussed for the reference configuration and without vertical dynamics
(f z ¼ N). The initial conditions are set so that the initial displacements are zero, the initial lateral velocity
represents 10% of the sliding velocity V y and the contributions of 0Ln modes are all the same. Figs. 6, 7 and 8,
respectively, show the time histories of the lateral wheel velocity vy, the instantaneous ‘‘creep-friction’’
coefficient f y=N and the modal contributions to the short time average level of the lateral velocity vy. Three
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Fig. 4. Variation of the growth rates of 0Ln modes with the lateral offset uyþ for reference configuration.
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phases may be distinguished:
(1)
 the wheel contact point slides and the contact damping is negative; the lateral velocity increases with modal
contributions given by the modal growth rates until it reaches the critical velocity vyc ’ 0:038m=s,
(2)
 the wheel contact point begins to creep and the contact damping is positive in some phases of the
oscillation which slows down the growth of the lateral velocity; the unstable modes are in competition until
the mode 0L3 emerges and becomes dominant (mode lock-in),
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Fig. 7. Time history of the instantaneous ‘‘creep-friction’’ coefficient f y=N for reference configuration.
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(3)
 the lateral velocity stabilizes between the critical velocity vyc and the sliding velocity V y ’ 0:11m=s; the
solution converges to a periodic creep–slip limit cycle.
With similar modal initial contributions, the dominant mode is generally the one with the largest growth rate
but it may also be a mode with an inferior order which has sufficiently large growth rate (like 0L3 in the
current example). Anyway, it can be shown that the dominant mode is strongly influenced by the initial
conditions (see Section 4.5 for instance), which are actually unknown because they depend on other
parameters (e.g. surface irregularities or angle variation in the curve).



ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6

40

60

80

100

120

time [s]

ve
lo

ci
ty

 le
ve

l [
dB

 r
e.

 5
.1

0-8
 m

/s
]

Fig. 8. Time history of the short time average level of the lateral wheel velocity vy (solid line), contribution of the 0L3 mode (solid line with

circles), contributions of other 0Ln modes (dashed lines) for reference configuration.

O. Chiello et al. / Journal of Sound and Vibration 293 (2006) 710–727720
4.4. Properties of the limit cycles

Fig. 9 shows the combined variations of vy and f y=N in the limit cycle obtained after 1.5 s. The creep and
slip stages can be easily identified. The fundamental frequency of the cycle is very close to the natural
frequency of the dominant mode 0L3 (1154Hz). As shown in Fig. 10, some harmonics (more than 35 dB below
the peak) remain because of the system nonlinearity.

An interesting observation is that the average ‘‘creep-friction’’ force in the limit cycle is slightly lower ð�1%Þ
than the quasi-static ‘‘creep-friction’’ force Ty. This implies that the self-excited vibrations decrease the
average friction coefficient a little further.
4.5. Case of harmonically-related modes

Figs. 11 and 12 show the case where the mode 0L4 is favoured by an important initial contribution. In this
case, both modes 0L4 and 0L6 can coexist in the limit cycle because they are harmonically related. Indeed,
their respective natural frequencies are 2058 and 4130Hz. This has already been observed by Heckl [16,15] and
Nakai et al. [5].
5. Correlation with experimental results

Results of the parameter study have been compared with the experimental results reported in companion
papers [1,2]. In order to facilitate this comparison, qualitative theoretical effects of parameters have been
summarized in Table 6.

First, the measured spectra are very similar to theoretical predictions in terms of squealing modes (0L2, 0L3
and 0L4), vibratory amplitudes and harmonics. In particular, the sliding velocity V y ’ aV x seems to be a
good estimation of the wheel contact velocity during squeal, which is a characteristic of the creep–slip limit
cycles given by the model. As already mentioned, the prediction of the order n of the squealing 0Ln mode is
delicate, due to the uncertainty of initial conditions. However, some theoretical tendencies are confirmed by
experience (for instance higher orders in the case of higher rolling speeds).
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The correlations in terms of the critical angles of attack and critical damping factors, which are the key
parameters in squeal occurrence, are encouraging, on the condition that a correct value for the friction
coefficient slope g is chosen. With g ¼ �0:1 s=m (the chosen value in the previous reference configuration), a
critical damping factor around 2% for the 0L2 mode can be obtained in a configuration simulating the 1

4
scale

rig described in Ref. [2]. This agrees well with the 1–3% range of critical damping factors founded
experimentally. Unfortunately, contrary to most publications dealing with curve squeal, the decrease of the
average ‘‘creep-friction’’ force at high angles of attack has not been observed experimentally. Consequently, it
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Fig. 12. Case of harmonically related modes—power spectrum of the lateral wheel velocity vy after stabilization.
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has not been possible to identify the value of the slope g. This is the main limitation of this validation.
A hypothesis is that the instantaneous friction coefficient decreases with contact velocity whereas the average
friction coefficient remains constant with the angle of attack. This hypothesis could be confirmed by
measuring the instantaneous ‘‘creep-friction’’ force and by using a more realistic modelling (e.g. a non-steady-
state model) of this force.
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Table 6

Qualitative theoretical effects of the parameters on squeal (general tendencies)

Parameter Occurrence Properties

Critical angle of Critical damping Order n of the squealing Noise level

attack ac factors Zci mode 0Ln

a þ þ þþ

Vx � þ þ þþ

uyþ þ/� þþ/��

N þ þþ þþ �

ms þþ � � �

jgj ¼ �g �� þþ þþ þ
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6. Conclusion

A model of curve squeal generation has been presented. Compared with existing models, the
main originalities are the inclusion of vertical dynamics and the possible determination of both modal growth
rates (squeal occurrence) and limit cycles (squeal level and spectrum). The correlation with experimental results
is rather satisfactory, especially in terms of vibratory levels. Despite an observed coupling of lateral and vertical
dynamics, in particular for large offsets of the lateral contact position on the wheel, numerical results show that
only a velocity-weakening friction coefficient is able to destabilize the system and induce wheel vibrations.
However, the measurement of the corresponding slope is difficult and a fine prediction of squeal occurrence
remains delicate without supplementary research on the transient nature of the frictional rolling contact.
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Appendix A. Calculation of the contact parameters

Assuming a Hertzian contact (see Ref. [25]), the static wheel/rail penetration caused by a static vertical load
N, is given by

ds ¼ r
3

2
N

1� n2

E

� �2

ðAþ BÞ

 !1=3

, (A.1)

where r is a coefficient that is a function of the angle y such that:

cos y ¼
jB� Aj

Bþ A
(A.2)

and

A ¼
1

2

1

Rxxw
þ

1

Rxxr

� �
, (A.3)

B ¼
1

2

1

Ryyw
þ

1

Ryyr

� �
. (A.4)

In these equations, Rxxw, Ryyw, Rxxr and Ryyr denote, respectively, the longitudinal and transverse wheel and
rail radii of curvature at the contact point and E, n and G ¼ E=2ð1� n2Þ denote, respectively, the mean Young
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modulus, the Poisson ratio and the shear modulus of the materials in contact. In addition, the product a1b1 of
the normalized semi-axis of the contact ellipse can be written as

a1b1 ¼ mn
3

2

1� n2

E
ðAþ BÞ

� �2=3

, (A.5)

where m and n are also functions of the angle y. Finally, the Kalker coefficient C22 corresponding to the
lateral creepage depends on the ratio g ¼ b1=a1 ¼ n=m and on the Poisson ratio. Coefficients r, m, n

and g are calculated using a polynomial interpolation of the values given by Hertz (see Ref. [25])
whereas C22 is calculated using an interpolation of the values given by Kalker for Poisson ratios of 0, 0.25
and 0.5 (see Ref. [22]).
Appendix B. Effect of the lateral contact position on wheel modes stability: formulation in the frequency domain

B.1. Nyquist criterion and stability

By assuming a harmonic dependance for all dynamic variables X such that X ¼ RðX̂ ðoÞ expðjotÞÞ, the
linearized equations of the system become:

ð�o2Iþ 2joNXþX2
Þq̂ ¼ UT

y
^f y þUT

z f̂ z, (B.1)

ûz ¼ Uzq̂, (B.2)

v̂y ¼ joUyq̂, (B.3)

f̂ z ¼ �kzzûz, (B.4)

f̂ y ¼
kyz

kzz

f̂ z � cyyv̂y. (B.5)

These equations lead to a loop gain for the lateral contact force f̂ y:

f̂ y ¼ H1f̂ y þH2f̂ y ¼ Hf̂ y, (B.6)

with

H1 ¼
kyz

kzz

f̂ z

f̂ y

¼
kyz

kzz

�Hyz

Hzz þ ðjo=kzzÞ

� �
, (B.7)

H2 ¼ �cyy

v̂y

f̂ y

¼ cyy

H2
yz

Hzz þ ðjo=kzzÞ
�Hyy

 !
, (B.8)

Hyy Hyz

Hyz Hzz

" #
¼ jo

Uy

Uz

" #
ð�o2Iþ 2joNXþX2

Þ
�1

Uy

Uz

" #T
, (B.9)

where Hyy, Hzz and Hyz are the lateral, vertical and cross-mobility of the wheel at the contact point.
As in Ref. [17], the instability of the system can be determined by the Nyquist criterion, which states that the

system is unstable for frequencies where the Nyquist contour H passes the real axis at the right-hand side of 1
(RðHÞ41 and IðHÞ ¼ 0). It can be shown that instabilities may occur near the frequencies of the axial wheel
modes, especially those with no nodal circles. The case of the mode with 2 nodal diameters (0L2) is studied
here for the reference configuration. Its natural circular frequency is noted o02.
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B.2. Loop gain at the natural frequency of the mode

The variations of the real parts of the transfer functions Hðo02Þ, H1ðo02Þ and H2ðo02Þ with the lateral
offset uyþ are given in Fig. 13. These results are rather similar than those given in Ref. [17]. In particular,
RðH1Þ changes polarity. As a result, RðHÞo1 for some lateral offsets, which might be interpreted as a
stabilization.
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Fig. 13. Variation of the real parts of the transfer functions Hðo02Þ (solid line), H1ðo02Þ (dashed line) and H2ðo02Þ (dotted line) with the

lateral offset uyþ for reference configuration.

447 447.5 448 448.5 449
-100

-50

0

50

100

150

200

250

300

350

Frequency [Hz]

Im
ag

in
ar

y 
pa

rt
 o

f 
th

e 
lo

op
 g

ai
n 

[-
]

ω’02

ω02
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lateral offset uyþ for reference configuration.
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B.3. Zoom on the loop gain around the natural frequency of the mode

However, from Figs. 14 and 15, it can be noted that:
�
 IðHÞ does not change polarity exactly at the natural frequency o02,

�
 RðH1Þ rapidly changes polarity around this frequency.



ARTICLE IN PRESS
O. Chiello et al. / Journal of Sound and Vibration 293 (2006) 710–727 727
Hence, in order to properly determine the stability of the mode, it is important to estimate the real part of the
transfer functions at the frequency o002 where IðHÞ ¼ 0.
In the case where g ¼ 0 (constant friction coefficient), it is also interesting to note that cyy ’ 0 in the
saturated regimen. Hence, H2 ¼ 0 and IðHÞ ¼ IðH1Þ. Now, IðH1Þ does not change polarity around o02 (see
Fig. 14). Consequently, instability cannot occur with a constant friction coefficient, which corroborates the
results given in Section 4.2.

B.4. Loop gain at the frequency where IðHÞ ¼ 0

The variation of the real parts of the transfer functions Hðo002Þ, H1ðo002Þ and H2ðo002Þ with the lateral offset
uyþ are given in Fig. 16 (note that o002 also depends on the lateral offset uyþ). This time, the results are very
different from those given in Ref. [17]. In particular, RðH1Þ does not change polarity. Consequently, RðHÞ41
for all lateral offsets and the system is always unstable, which agrees well with the results of Section 4.2.
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