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Abstract

This correspondence gives insight into properties of Wigner–Ville time–frequency power spectral analysis and also

suggests better time–frequency power spectral tools to study cracks in rotors. Simulation results show that Choi–Williams

and hyperbolic distributions can be effectively used for crack detection in rotors.

r 2005 Elsevier Ltd. All rights reserved.
1. Motivation

This work is initiated by the work of Zou and Chen [1] in which Wigner–Ville (WV) time–frequency
distribution was successfully used for crack detection in rotors. The aims of this correspondence are three-fold:
(1) providing insight into WV time–frequency power spectrum and its major fundamental drawbacks; (2)
suggesting more effective time–frequency distributions, such as Choi–Williams (CW) and hyperbolic (Hy), for
crack detection in rotors; and (3) highlighting a close relationship between kernels and symmetrical wavelets.

The paper is organised as follows. Section 2 gives background on time–frequency distributions and popular
kernels which have been reported in the literature. Section 3 identifies important drawbacks of WV
time–frequency distribution. Section 4 briefly introduces new symmetrical Hy and CW wavelets, and stating
the relationship between time–frequency kernels and wavelets. Section 5.1 graphically illustrates the drawback
of WV time–frequency distribution by using CW and Hy distributions. Section 5.2 shows that these
time–frequency distributions can be effectively used for crack detection. Section 6 concludes the main findings
of the paper and also outlines further work.
2. Background on time–frequency power spectrum

Time–frequency signal processing has progressed to a stable and mature field with many works and
contributions reported in Refs. [2–7]. The most well-known distribution in time–frequency power spectral
analysis is WV distribution whose properties and applications have been extensively studied [2–4,6].
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Time–frequency power spectra (time–frequency distributions) can be generalised by Cohen’s [6] class which is
given by the following formula:
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and Hy kernel [10] with FHyðy; tÞ ¼ sechðbytÞ, have been proposed which possess better properties than WV
kernel. A comprehensive review of available kernels can be found in Ref. [6].

Wavelet signal processing has also found many applications and has been used in conjunction with
time–frequency signal processing to provide a benchmark for performance comparisons. Moreover, it has been
found that there exists a link between time–frequency kernels and symmetrical wavelet functions as reported by
Le and co-workers [10,11]. Time–frequency and wavelet power spectral analyses have been successfully used to
study chaos, music and speech in Refs. [12–15]. Even though WV distribution is very useful and effective
because it is the most simplest and energy-concentrated form of time–frequency distribution, it still suffers from
a number of drawbacks. First, WV distribution may give misleading information about the input signal because
WV time–frequency power spectrum is non-zero over the period in which the signal is zero (silent period). This
fact has been reported in Ref. [16]. Second, other time–frequency distributions, such as CW or Hy, have been
shown to be more noise robust and effective than WV distribution.

3. Properties of WV time–frequency power spectrum

Recently, Zou and Chen [1] used WV time–frequency distribution and continuous wavelet transform to
study cracks in rotors with promising results. The usefulness of these techniques was also measured by
studying their sensitivity with rotor stiffness, and effects of unbalance angles. The work by Zou and Chen has
set up a foundation for other works on using time–frequency signal processing to study cracks in rotors.
Because of the nature of cracks, rotors with cracks tend to possess non-stationary waveforms which require
time–frequency analyses to process.

Theoretically, WV distribution is the most energy-concentrated distribution in Cohen’s class because its
kernel function is unity whose Fourier transform or weighting function W ðt� uÞ is an impulse, i.e. there is no
energy smearing on the frequency plane of WV time–frequency spectrum, which can be written as
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or in discrete form
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for each pair of t and o.
From Eqs. (2) and (3), it is clear that WV distribution is dependent on past values of the input signal which

is evidenced by the pivoting of the lag parameter t=2 around the time t which causes the distribution attaining
non-zero values over a zero period in the input signal xðtÞ. The normal range of t=2 can be defined as half of
the duration of the input signal. However, the effective range of t=2 is dependent on the defined period of xðtÞ
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as t varies, which will be demonstrated by examples. It should also be noted that on time–frequency plane of
time–frequency distributions, there are cross-terms, due to cross-coupling of multi-component signals, and
auto-terms, auto-coupling of multi-component signals themselves, of which the former need to be eliminated
to avoid misleading information about the signals. However, it is almost impossible to remove cross-terms
because there does not exist a perfect weighting function which can suppress all cross-terms and, at the same
time, support all auto-terms.

The key to work out over which time period(s) WV distribution of a signal with a silent period is zero or
non-zero is two-fold: first, defining the pivot point with the time origin at the beginning of the silent period;
second, folding the left- and right-hand portions of the signal about the pivot point to identify any overlapped
part(s). If the overlapped part(s) are non-zero, then WV distribution at that point is non-zero and vice versa.
Consider an example given in Fig. 1 in which a finite-duration signal has a silent period ac.

Imagine that the time origin is at point a in Fig. 1, at which the effective swing of t=2 is from a1 to b with a

the pivot or middle point. At this instance, WV distribution is zero which truly reflects the nature of xðtÞ which
is zero. As t approaches b, the effective swing of t=2 becomes a1 to a1b, and it is clear that when t is at b, xðtÞ

over the periods of a1a and ca1b is not zero, causing R1;tðtÞ to be non-zero, yielding a non-zero WV
distribution. The actual display of WV distribution is plotted in Fig. 2.

Consider a second example given in Fig. 3 with a longer silent period in the signal than in Example 1.
Finite endSignal
Silent period of signal

Signal

a1 a1b d

a = b = c = a1

ta b c

Finite end

Fig. 1. Example 1—a finite input signal xðtÞ with a silent period ac.

Finite endSignal
Silent period of signal

Non-silent period shown by
WV distribution

Finite end

Signal

a1 a1b d

a = b = c = a1

ta b c

Fig. 2. A non-silent period of WV distribution over the silent period in the input signal. WV distribution is zero over the ab period which

truly yields correct information about the signal.

Finite endSignalSignal
Silent period of signal

Pivot point cp of �/2

Finite end

a1 c d ta b cp

Fig. 3. Example 2—a finite input signal with a longer silent period and a pivot point cP.
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Similar to Example 1, as t reaches point b, WV distribution becomes non-zero as there is a non-zero
overlapped component of the signal at points a1 and c in Fig. 3. At the pivot point cP of xðtÞ, WV distribution
is still non-zero (because acP is longer than cPc) until t is a distance of a1a from cP to the right then it becomes
zero again as now the overlapped component of xðt� t=2Þ and xðtþ t=2Þ is zero. The actual display of WV
distribution is plotted in Fig. 4. If xðtÞ is infinite, then WV distribution will become non-zero for the entire
period from b to c as there is always a non-zero overlapped component in the input signal.

From the above two examples, it can be said that if there are non-zero overlapped signal components over a
silent period in the signal, then its WV distribution will be non-zero over the particular silent period,
Finite endSignal

Pivot point cp of �/2

Silent period of signal
Signal

Finite end
Non-silent period shown by

WV distribution

a1 ca2 d

a1a = cpa2

a1ap = cpd

ta b cp

Fig. 4. A non-silent period of WV distribution of the input signal shown in Fig. 3. WV distribution is zero over the ab and a2c periods.

c
a1 tdcPb

a1 t

d

cPb

Infinite end

Finite end

Signal

Signal

Silent period of signal

Silent period of signal

Signal

Signal

Infinite end

Finite end

Non-silent period shown by
WV distribution

Example 3

Example 4

Non-silent period shown by
WV distribution

a1b = ed

a1b = cd

e

Pivot point cp of �/2

Pivot point cp of �/2

Fig. 5. Different input signals with silent periods and their corresponding WV time–frequency power spectra.
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independent of the position of the time t, which yields misleading information about the signal. It should also
be noted that WV distribution of a signal may be zero over part of a silent period in the signal as seen in Fig. 4.
In addition, it is always true that WV time–frequency power spectra of infinite signals are non-zero over a
finite silent period in the signal. Thus, to make WV time–frequency distribution more effective, infinite
signals should be segmented into a number of segments, which are then processed individually. This is
particularly suitable for non-stationary waveforms collected from cracked rotors. If the input signal does
not consist of silent period(s) but noise, WV time–frequency distribution still suffers from its noise-spreading
drawback which will be explained later in this section. The following examples further illustrate the behaviour
of WV time–frequency power spectrum in different scenarios in which the input signal has a silent period
(Fig. 5).

For CW and Hy distributions, cross-terms can be effectively eliminated by multiplying them with the
weighting function W ðt� uÞ of which small weighting factors are allocated to cross-terms and much larger
weighting factors are reserved for auto-terms. For WV kernel, since it is a unity kernel, its weighting function
is an impulse which magnifies independently with identical weighting factors to every cross-term and auto-
term in its time–frequency plane, yielding artefact (cross-terms) as seen in the above examples and also later in
Section 5 of this paper. Thus, to make WV time–frequency distribution effective, it is crucial that ‘‘silent
periods’’ or any salient features in the input signal must be known beforehand which makes WV distribution
less practical than CW and Hy distributions for unknown signals.

Similar to the ‘‘silent period’’ examples shown above, if noise is now present in the input signal, then it will
be spread out to other time and frequency bins on the time–frequency plane of WV distribution which
makes it sensitive to noise, and therefore not noise robust [16] as illustrated by the following examples
given in Figs. 6 and 7. A more detailed study on noise in time–frequency power spectra can be found in
Refs. [7,10].
ca1 tdb

ca1 tdb

a2

a1a2 = a2b

c2

ccP = cPc2 a1cP = cPd

Finite end

Finite end

Pivot point cp of �/2

Pivot point cp of �/2

Signal

Finite end

Finite end

Noisy signal from b to c

Noise in WV distribution
from a2 to c2

Fig. 6. A finite signal contaminated with noise and its WV distribution which also spreads the noise to other time locations. The noisy

period in WV distribution is worked out using the same principle applied to the previous four examples.
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Signal

ba1
d

d
t

c

ba1 c

Infinite end

Infinite end

Noisy signal from b to c

Pivot point cp of �/2

Pivot point cp of �/2

Infinite end

Infinite end

Noise is present in the WV distribution for  the entire signal duration because
of the non-zero overlapped (infinite signal duration) components and the

symmetrical nature of signal

Fig. 7. An infinite signal contaminated with noise and its WV time–frequency spectrum which spreads the noise over the entire signal

length.
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4. Relationship between time–frequency kernels and symmetrical wavelets

A relationship between time–frequency kernels and symmetrical wavelets was reported by Le et al. [17],
in which symmetrical wavelet can be generated from their time–frequency kernels counterpart by taking
the kernels’ second-order derivatives. One typical example is the Mexican-hat wavelet which is the second-
order derivative of the Gaussian kernel. The Hy wavelet, second-order derivative of Hy kernel, was also
proposed and used to study music and speech in Ref. [12]. According to the second-order derivative rule which
has been successfully applied to CW and Hy kernels, a WV wavelet does not exist since its kernel is unity.
Mathematically, CW and Hy wavelets are given in the time domain as

cHyðtÞ ¼ �b
2
½sechðbtÞ�f1� 2½sechðbtÞ�2g, (4)

cCWðtÞ ¼ ð2=sÞexpð�t2=sÞð�1þ 2t2=sÞ, (5)

which are normalised and plotted in Fig. 8.
In the frequency domain, the Fourier transform of the wavelets are given as

ĉHyðoÞ ¼
po2

b
sechðpo=2bÞ, (6)

ĉCWðoÞ ¼
ffiffiffiffiffiffi
ps
p

o2 expðpo2=4Þ, (7)

which are, respectively, plotted in Figs. 9 and 10.
The existence of Hy and CW wavelets are validated by their mathematical expressions given by Eqs. (4)–(7).

The CW wavelet is also known as Mexican-hat wavelet or Laplacian of Gaussian which has been widely
accepted and used in many fields of science [18]. The relationship between time–frequency kernels and
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Fig. 8. Time-domain plots of the Hy and CW wavelets, for b ¼ 1 and s ¼ 2.

Fig. 9. Magnitude of the 2-D frequency response of the Hy wavelet, for b ¼ 1.
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wavelets diversifies time–frequency spectral analyses and continuous wavelet power spectral analyses, i.e. new
time–frequency distributions can be found from new and existing wavelets and vice versa. With a variety of
time–frequency distributions, cracks in rotors can be more effectively studied. More work on using wavelet
power spectral analyses is currently in progress and will be reported in future publications.

5. WV, CW and Hy time–frequency power spectral analyses for feature extraction

This section aims to graphically illustrate the effectiveness of CW and Hy distributions over WV
distribution, thus makes them suitable candidates for crack detection in rotors. Section 5.1 graphically
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Fig. 10. 2-D frequency response magnitude of the CW wavelet, for s ¼ 2.
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Fig. 11. A simulated speech signal with a silent period from the 32nd to 64th sample.
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illustrates that WV distribution could not detect a silent period which is common in speech signals. Section 5.2
shows that Hy and CW distributions are more effective in terms of suppressing cross-terms and detecting main
harmonics in a cracked-rotor waveform.

5.1. Detection of a silent period in a speech signal

Consider the following simulated speech signal given in Fig. 11. The signal consists of two harmonics which
are linked by a silent period. WV, CW and Hy time–frequency power spectra are plotted in Figs. 12–14,
respectively.

As can be seen in Fig. 12, it is clear that WV time–frequency power spectrum is non-zero over the time
period between the 32nd and 64th sample which provides misleading information about the signal. Over the
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Fig. 12. WV time–frequency power spectrum of the speech signal given in Fig. 11.
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Fig. 13. CW time–frequency power spectrum of the speech signal given in Fig. 11.
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same time period, CW and Hy time–frequency power spectra effectively detect the silent period in the input
signal, and the latter provides a better result. The main reason why CW and Hy kernels can outperform WV
kernel is because their kernels are not unity which provides better cross-term suppression and noise robustness
[10,19]. From this point of view, these time–frequency distributions can be employed to study cracks in rotors
more effectively than using WV distribution. Even though the work by Zou and Chen [1] has formed a solid
foundation of introducing time–frequency power spectral analyses to detect cracks in rotors, it would be more
complete if other kernels in Cohen’s class, such as CW and Hy, be utilised so that more salient features in the
input signal from cracked and uncracked rotors can be effectively identified.
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5.2. Detection of cracks in rotors

The dynamic equation of a cracked rotor is given as [1]

m 0

0 m
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c 0
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" #
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Fig. 14. Hyperbolic time–frequency power spectrum of the speech signal given in Fig. 11.

Fig. 15. A time-domain waveform of a cracked rotor under arbitrary initial conditions.
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where m is the disc mass, c the damping coefficient; kx, ky, kxy and kyx stiffness coefficients; and F x and F y

excitation forces. By solving for xðtÞ, one obtains an equation of motion of the cracked rotor with respect to t

as shown in Fig. 15 under arbitrary conditions of F ¼ 1N, m ¼ 1 kg, g�10m=s2, c ¼ 0:01 and k ¼ 0:1N=m.
Figs. 16, 17 and 18, respectively, plot the Hy, CW and WV time–frequency distributions of the cracked-

rotor signal shown in Fig. 15. From Figs. 16 and 17, it is clear that the location of the signal’s main harmonic
is located over the low frequency range of fo50Hz. From Fig. 18, WV distribution can locate the main har-
monic of the waveform but it cannot identify the signal’s fine sub-harmonic as compared to Figs. 16 and 17.
Fig. 16. Hy time–frequency power spectrum of the cracked-rotor signal shown in Fig. 15.

Fig. 17. CW time–frequency power spectrum of the cracked-rotor signal shown in Fig. 15.
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Fig. 18. WV time–frequency power spectrum of a cracked-rotor signal shown in Fig. 15.
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In addition, since cross-terms are not completely suppressed by WV kernel, over the approximate frequency
range of 50pfp200Hz, they are still present and are much larger than Hy and CW cross-terms shown in
Figs. 16 and 17. It is, thus, evident that the Hy and CW time–frequency distributions can be considered as
effective tools for crack detection in rotors. It should also be noted that the Hy time–frequency distribution is
cleaner than CW distribution as less cross-terms are present over the frequency range of 50pfp200Hz.
Further detailed work on crack detection in rotors under different conditions is currently in progress and will
be reported in separate publications.
6. Conclusions

This correspondence has shown that WV time–frequency power spectrum (distribution) could provide
misleading information about signals with silent periods due to the presence of cross-terms. If the input signal
consists of noise, its WV time–frequency power spectrum also spreads the noise to other time and frequency
locations. Even though WV distribution is useful because of its simplicity, great care should be taken when
implementing it.

CW and Hy time–frequency power spectral analyses have been successfully used for crack detection in
rotors because of their ability to more effectively suppress cross-terms, support auto-terms and possessing
better noise robustness than WV distribution. Detailed work on using the Hy and CW wavelet power spectral
analyses for crack detection in motors is currently in progress. More detailed work on using Hy and CW
time–frequency power spectral analyses under different initial conditions is also in progress.
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