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Abstract

The adaptive generalized predictive control (GPC), which combines the process of system identification using recursive

least-squares (RLS) algorithm and the process of generalized predictive feedback control design, has been presented and

successfully implemented on testbeds. In this paper, the adaptive GPC algorithm is extended when the disturbance

measurement signal is available for feedforward control. First, the adaptive feedback and feedforward GPC algorithm is

presented when the disturbance is stochastic or random. Second, the adaptive algorithm is further extended when the

disturbance is deterministic or periodic. In the second case, measured disturbance signals are used to estimate future

disturbance values, which are used in the control design. The proposed adaptive GPC design algorithm with/without the

future disturbance estimation is implemented in real time and demonstrated for the application of acoustic noise control,

structural vibration control, and optical jitter control.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Generalized predictive control (GPC) with fixed gains has been of popular use and its application can be
found in a wide variety of engineering disciplines. The basic theory and algorithm of GPC is presented along
with some interpretations by Clarke and his co-workers [1,2]. The continuous generalized predictive control
(CGPC) algorithm implements the discrete-time GPC in a continuous-time setting [3]. The stable continuous
generalized predictive control (SCGPC) algorithm guarantees closed-loop stability [4]. The continuous version
of GPC algorithm solves problems with discrete-time methods such as numerical sensitivity, sample rate
selection, and non-minimum phase zeros [5–7].

Recent developments based on GPC concepts are related to adaptive control. There are many different
ways to achieve an adaptive control process. In the early literature on adaptive GPC algorithms, the direct
adaptive GPC algorithm was referred to as an adaptive algorithm [8,9]. The direct algorithm estimates
the controller parameters directly from measured and known data sets. The indirect algorithm, however,
estimates the controller parameters from the process (model) parameters that are estimated from the data set.
An indirect algorithm is characterized by two complementary processes: model identification and control
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Ac normalized coefficient matrix for past
output

Bc normalized coefficient matrix for past
input

Bd normalized coefficient matrix for past
disturbance

df future disturbance vector

dp past disturbance vector

F coefficient matrix for past output
G coefficient matrix for future output
H coefficient matrix for past input
hp output prediction step
~hp disturbance prediction step

J coefficient matrix for future input
M coefficient matrix for past disturbance
m number of system outputs
N coefficient matrix for future disturbance
n number of system inputs

nd number of disturbance measurements
p model/controller order
~p disturbance estimation model order
Tc normalized coefficient matrix for future

output
Td normalized coefficient matrix for future

disturbance
uf future input vector

up past input vector

yf future output vector

yp past output vector

ai output parameter, i ¼ 0; . . . ; p

bi input parameter, i ¼ 0; . . . ; p

gi disturbance parameter, i ¼ 0; . . . ; p
~gi disturbance estimation model parameter,

i ¼ 1; . . . ; ~p
y system parameter matrix
yd disturbance estimation model parameter

vector
l input weighting factor
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design. Model identification is the experimental determination of the dynamic behavior of processes.
Control design is the design process of controllers based on the identified model and control/performance
objectives.

Adaptive control can be viewed as an automation of plant modeling and controller design in which the plant
model and controller are updated during each sampling period. Many proposed adaptive GPC algorithms
are, however, limited to theoretical development, resulting in difficulty and complexity for real-time
application [10–13]. The adaptive GPC, which combines the process of system identification using recursive
least-squares (RLS) algorithm and the process of generalized predictive feedback control design, has been
presented and successfully implemented on testbeds [14,15]. In this paper, the adaptive algorithm is extended
to the case when the disturbance measurement signal is available for feedforward control. Furthermore,
the adaptive feedback and feedforward GPC algorithm is extended to the case when disturbance is
deterministic or periodic. In such a case, the measured disturbance signals are used to estimate the future
disturbance values, which are used in the control design. The proposed feedback and feedforward GPC
algorithm is implemented in real time and applied to an optical jitter testbed, a structural system, and an
acoustic system.
2. Recursive least-squares (RLS) model estimation

The principle of least squares is that the unknown parameters of a mathematical model should be chosen in
such a way that the sum of the squares of the differences between the actually observed and the computed
values, multiplied by numbers that measure the degree of precision, is a minimum [16]. It is applied to a
mathematical model written in the form

yðtÞ ¼ yjTðtÞ þ eðtÞ, (1)

where y is the observed variable, y is the parameter of the model to be determined, and e is the prediction
error. The variable, j, is called the regression variable [16]. The index, t, denotes discrete time. In an
experimental application of the least-squares method, the observed variable, yðtÞ, and the regression variable,
jðtÞ, are obtained from an experimental process.
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The problem of the system identification is to minimize the prediction error, eðtÞ [16–20]. The recursive
parameter estimation algorithm using the least-squares method is obtained by

yðtÞ ¼ yðt� 1Þ þ fyðtÞ � yðt� 1ÞjTðtÞgLðtÞ, (2)

where the correcting factor, LðtÞ, is

LðtÞ ¼
jðtÞPðt� 1Þ

rþ jðtÞPðt� 1ÞjTðtÞ
(3)

and

PðtÞ ¼
1

r
Pðt� 1Þ½I� jTðtÞLðtÞ�. (4)

The parameter 0orp1 is the forgetting factor or discounting factor [16,20,21]. In real-time application, it is
convenient to start the recursion with zero initial condition for yð0Þ and P0 ¼ aI, where a40 and the matrix I

is an identity matrix.
One property of the RLS algorithm is that it allows to omit some data during operation. In the discrete-time

application, for instance, if the data sampling rate is too fast to perform all computations in a data sampling
period, the recursion can be applied in a slower sampling rate. This is because the recursion does not rely on
the relation between two successive regression variables, jðtÞ. By doing this, however, a longer time is needed
before a good model is obtained.
2.1. System model estimation

When disturbance measurements are available in a system, a system model can be described as

yðtÞ ¼
Xp

i¼1

�aiyðt� iÞ þ
Xp

i¼1

biuðt� iÞ þ
Xp

i¼1

gi dðt� iÞ, (5)

where yðtÞ is the measured system output, uðtÞ is the system input, and dðtÞ is the disturbance measurement
[17,18,22]. In order to estimate the model parameters, ai, bi, and gi, ði ¼ 1; . . . ; pÞ, using the RLS algorithm,
Eq. (5) is rewritten as

yðtÞ ¼
Xp

i¼1

�aiyðt� iÞ þ
Xp

i¼1

Zivðt� iÞ, (6)

where

Zi ¼ bi gi

� �
; vðtÞ ¼

uðtÞ

dðtÞ

" #
. (7)

The input parameter, bi, and the disturbance parameter, gi, are grouped together to consider the disturbance
measurements as an extra input of an estimated model.

Eq. (6) clearly corresponds to Eq. (1) with

y ¼ ½a1 � � � ap Z1 � � � Zp� (8)

and

jðtÞ ¼ �yTðt� 1Þ � � � � yTðt� pÞ vTðt� 1Þ � � � vTðt� pÞ
� �T

. (9)

By rewriting a model given in Eq. (5) into the form given in Eq. (6), the model parameters can be recursively
estimated using the RLS algorithm given in Eq. (2).
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3. Generalized predictive control

With a set of model parameters given in Eq. (8), a generalized predictive controller can be designed.
Predictive control, including GPC, is based upon the following steps: output prediction, control calculation,
and feedback implementation [8,10,23,24]. The first two steps are performed open-loop to minimize error
between projected output and reference point. Future system outputs are estimated using model parameters
and available past data. The control signal is then calculated to enable the predicted output to be as close as
possible to the desired future output. The loop is then closed by applying the calculated control signal to the
system.
3.1. Output prediction

A model given in Eq. (5) can be written in matrix form:

Ayp ¼ Bup þDdp, (10)

where the output parameter matrix, A ¼ ½a0; a1; . . . ; ap�, the input parameter matrix, B ¼ ½b0; b1; . . . ; bp�, and
disturbance parameter matrix, D ¼ ½g0; g1; . . . ; gp� are coefficient matrices of past output, input, and
disturbance data, respectively. Parameters with subscript zero are used for convenience. For m outputs
and n inputs system with nd disturbance measurements, a0 ¼ Im, b0 ¼ 0ðm;nÞ, and g0 ¼ 0ðm;nd Þ, where Im is an
m�m identity matrix and 0ðm;nÞ is an m� n zero matrix.

Using Eq. (10), the set of hp-step output predictions can be written as

yf ðtÞ ¼ AcypðtÞ þ Tcuf ðtÞ þ BcupðtÞ þ Tddf ðtÞ þ BddpðtÞ, (11)

where the future output vector, yf ðtÞ, and the past output history vector, ypðtÞ, are written as

yf ðtÞ ¼

yðtÞ

..

.

yðtþ hpÞ

2
664

3
775; ypðtÞ ¼

yðt� pÞ

..

.

yðt� 1Þ

2
664

3
775 (12)

and the input past history vector, upðtÞ, the future input vector, uf ðtÞ, the past disturbance history vector, dpðtÞ,
and the future disturbance vector, df ðtÞ, can be obtained similarly. Each normalized coefficient matrix is
summarized in Appendix A.
3.2. Control input

The future input is a sequence of control signals. The generalized predictive controller applies only the first
one and a new sequence of control signals is calculated when a new measurement is obtained [12,24,25]. The
control input at time t is defined by the first n rows of the future input, i.e.,

uðtÞ ¼ the first n rows of f�½TT
c Tc þ lI��1TT

c gðBcupðtÞ þ AcypðtÞ � yrðtÞ þ AddpðtÞ þ Tddf ðtÞÞ, ð13Þ

where l is the input weighting factor or control penalty, which is a positive scalar [1,2,24,26]. The last two
terms in Eq. (13) are the feedforward terms. The term with dpðtÞ is the past disturbance term and the term with
df ðtÞ is the future disturbance term. The past disturbance term can be obtained easily. On the other hand, when
disturbance is considered to be random, the future disturbance is hard to estimate. In such a case the future
disturbance term is dropped, i.e.,

uðtÞ ¼ the first n rows of f�½TT
c Tc þ lI��1TT

c gðBcupðtÞ þ AcypðtÞ þ AddpðtÞÞ. ð14Þ

But, when the disturbance is deterministic such as a periodic signal, the future disturbance can be estimated
and fills the future disturbance term.
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4. Disturbance estimation

When the disturbance is deterministic or periodic, a model that characterizes the measured disturbance
signal can be designed. In this research, a model is estimated using the RLS algorithm described in Section 2.
A disturbance estimation model is written in the following finite difference equation form:

dðtÞ ¼
X~p
i¼1

~gidðt� iÞ, (15)

where ~gi ði ¼ 1; . . . ; ~pÞ is the estimated disturbance model parameter and ~p is the order of the disturbance
model. The disturbance model parameter ~gi must be distinguished from the system model parameter, gi, in
Eq. (5).

The parameter vector, yd , and the regression vector, jdðtÞ, are written as

yd ¼ ~g1 ~g2 � � � ~g ~p
� �

, (16)

jdðtÞ ¼ dT
ðt� 1Þ dT

ðt� 2Þ � � � dT
ðt� ~pÞ

� �T
. (17)

It is noted that the order of a disturbance model, ~p, is independent of the order of a system model, p. The
subscript d is used for the disturbance model estimation process.

Once the disturbance model parameters given in Eq. (16) are estimated, the future disturbance vector,
written as

df ðtÞ ¼ dT
ðtÞ dT

ðtþ 1Þ � � � dT
ðtþ hpÞ

� �T
, (18)

can be calculated by

dðtþ jÞ ¼ ~g1dðtþ j � 1Þ þ ~g2dðtþ j � 2Þ þ � � � þ ~g ~pdðtþ j � ~pÞ, (19)

where the index j goes from 0 to the prediction horizon, hp.
Eq. (18) assumes that the disturbance prediction step, ~hp, is equal to the system output prediction step, hp.

The disturbance prediction step, ~hp, however, can be assigned such that ~hpphp. In such a case, the normalized
coefficient matrix, Td in Eq. (13), can be obtained by reducing the size of the coefficient matrix N in Appendix
A to be Nð1 : mðhp þ pÞ; 1 : ndð

~hp þ pÞÞ.

5. Adaptive control

The block diagram shown in Fig. 1 illustrates the proposed adaptive feedback and feedforward GPC
algorithm with future disturbance estimation. The overall algorithm consists of two processes: adaptive
feedback/feedforward GPC design and future disturbance estimation.

In the process of the adaptive GPC design, the fundamental steps of system identification, GPC design, and
stability test are combined into a single process to yield a controller that can adapt; RLS system identification
determining system models, GPC design building controllers using the most up-to-date system information,
and the stability test of a closed-loop system determining suitable controllers for application.

In addition to the fundamental adaptive controller design steps, a time-varying input weighting factor
algorithm is added in order to design aggressive controllers [27]. The input weighting factor is updated based
on the stability of a closed-loop system model. When a stable closed-loop model is obtained, the smaller value
of input weighting factor is assigned in a new controller design process. Since the input weighting factor is
updated after the stability test, application of controllers resulting in unstable closed-loop models must be
avoided. If a controller causing an unstable closed-loop model is detected by the stability test, the previous
controller resulting in a stable closed-loop model is implemented instead. Moreover, a large initial value of the
input weighting factor allows it to avoid a large magnitude of the initial control input, which may cause an
overload in the experimental hardware.

In the process of future disturbance estimation, a mathematical representation of disturbance signal is
obtained using the RLS algorithm and a set of future disturbances is computed based on the disturbance
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System

RLS system identification

GPC design

Stability test

Feedback implementation

Time-varying input
weighting factor

algorithm

Disturbance model 
estimation

Future disturbance 
estimation

disturbance

output
input

Disturbance 
model parameters

System model parameters

Control 
parameters

Stability flag

Input weighting factor

Stabilizing controller

Estimated future
disturbance

Feedback and feedforward GPC algorithm

Multi-sampling-rate algorithm

Disturbance
estimation algorithm

Fig. 1. Adaptive feedback and feedforward GPC design with future disturbance estimation algorithm.
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model parameters and measured disturbance data. The future disturbance estimation process is useful when
the disturbance is periodic or deterministic.

In order to design higher-order controllers and/or higher-order disturbance models, a multi-sampling rate is
applied in the real-time implementation of the overall algorithm. First, each RLS algorithm in the adaptive
GPC design process and the disturbance estimation process can be applied in a slower sampling rate than the
data sampling rate, ts, because, as mentioned in Section 2, the recursion in the RLS algorithm does not rely on
the relation between two successive data histories. Second, assuming that model parameters do not change
significantly, a slower sampling rate than the rate for the RLS algorithm can be applied for the controller
design. The controller is fixed until a new controller is computed and updated. The control input and the
future disturbance is computed with the measured and stored data in the same sampling rate as the data
sampling rate. Graphical implementation for multi-sampling-rate algorithm is illustrated in Fig. 1.
6. Experimental results

The proposed adaptive algorithm is applied to three different testbeds to demonstrate the performance in
the application of acoustic noise control [28], structural vibration control [27], and jitter control [14,25].

The discrete-time algorithm is implemented for real-time application using MATLAB/Simulink and the
interface between the MATLAB/Simulink model and I/O board (National Instrument PCI-6024E data
acquisition board) is performed using xPC Target and Real-time Workshop (RTW). It is an environment in
which a desktop computer serving as a host PC generates executable code using RTW and a C/C++ compiler,
and xPC Target downloads the executable code to a second PC acting as a target PC, which runs an
application model in real time. In the experimental demonstration, a computer with an AMD 1.4GHz
processor and 512MB memory is used for a target PC.
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6.1. Acoustic system: acoustic enclosure

The proposed control algorithm is applied to the acoustic enclosure shown in Fig. 2. The enclosure is
configured with two acoustic loudspeakers placed at each end. One of the loudspeakers is used for the control
source and the other loudspeaker is used for the primary disturbance. The microphone placed above the
control loudspeaker diaphragm is used as the feedback error sensor and the microphone above the disturbance
speaker is used as the disturbance measurement sensor. Both microphones are fixed at the center of the square
cross-section to minimize the acoustic reflection by the wall. The control objective is to minimize the sound
pressure level around the error microphone sensor.
Control source

Primary disturbance

Control error microphone

sound waves 0.1

Disturbance measurement
microphone

Adaptive Algorithm

3.4

0.23

Amplifier Amplifier

microphone signals
(a)

(b)

Fig. 2. Acoustic enclosure: (a) schematic diagram; (b) picture of testbed.
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Fig. 3. Frequency response function (FRF) magnitude plot of the error microphone signal for closed–closed acoustic enclosure: open-loop

response (dotted line) and closed-loop response (solid line).
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First, the adaptive control algorithm without the future disturbance estimation algorithm is implemented in
real time while the band-limited (500Hz) random signal is applied to the disturbance loudspeaker. The control
algorithm is executed while both endcaps are covered, which yields a closed–closed acoustic enclosure. The
disturbance and error sensor signals are measured and stored using a Siglab spectrum analyzer. While the
control algorithm for the closed–closed acoustic enclosure is running, the endcap on the control loudspeaker
side is opened manually to yield an open–closed acoustic enclosure configuration. The endcap is removed
slowly ð�2 sÞ to prevent the overload that may happen to the experimental hardware.

Fig. 3 shows the open- and closed-loop frequency response function (FRF) between the stored disturbance
signal and the measured sensor signal for the closed–closed acoustic enclosure configuration. Fig. 4 shows the
FRF for the open–closed acoustic enclosure configuration. The integrated response is attenuated by 10.8 dB at
frequencies between 50 and 250Hz for the closed–closed acoustic enclosure configuration and 8.2 dB for the
open–closed configuration. No increase is observed in response outside of the bandwidth (4250Hz, data
acquisition at 500Hz).

Second, the adaptive control algorithm with the future disturbance estimation algorithm is implemented
with the following periodic disturbance signal,

dðtÞ ¼ sinðO1tÞ þ sinðO2tÞ þ 0:1wðtÞ, (20)

where O1 ¼ 30Hz, O2 ¼ 40Hz, and wðtÞ is uniformly distributed and bounded random signal, jwðtÞjo1.
System models and disturbance models are estimated at the same sampling rate as data acquisition, 200Hz.
The controller is updated at 1

3
the speed of the estimation process, i.e., 66.7Hz. The order of the system model,

p in Eq. (6), is chosen to be 16 and the order of the disturbance model, ~p in Eq. (15), is to be 24. The
disturbance prediction horizon, ~hp in Eq. (18), is to be 6, while the output prediction horizon, hp in Eq. (11), is
to be 24. The longer prediction horizon and the higher model order improve the performance but they are
limited by the target PC in the experiments [27].

Fig. 5 shows the auto-spectrum estimation of the error sensor signal. In order to observe the contribution of
the future disturbance estimation algorithm, the closed-loop response, solid line in Fig. 5, is compared with the
open-loop response (dotted line) and the closed-loop response without the future disturbance estimation
algorithm (dashed line). When the disturbance estimation algorithm is applied with the control algorithm, the
better disturbance rejection is achieved at 30 and 40Hz. The acoustic pressure reduction is summarized in
Table 1. The sound pressure level is attenuated by 68% at 30Hz and by 95% at 40Hz with the future
disturbance estimation algorithm, while 12% reduction at 30Hz and 52% reduction at 40Hz is obtained
without the future disturbance estimation algorithm.
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Table 1

Sound pressure reduction on the sound enclosure by the adaptive algorithm

Frequency (Hz) Open-loop (lbf) Adaptive algorithm without

future disturbance estimation

(lbf)

Adaptive algorithm with future

disturbance estimation (lbf)

30 0.25 0.22 0.08

40 0.25 0.12 0.008
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Fig. 5. Auto-spectrum estimation of acoustic error sensor signal: open-loop response (dotted line), closed-loop response without future

disturbance estimation (dashed line), and closed-loop response with future disturbance estimation (solid line).
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Fig. 6 shows the FRF between the stored disturbance signal and the measured error sensor signal. Both
closed-loop responses with/without future disturbance estimation algorithm achieved similar level reductions
at around 10Hz, which signal is presumed to be the acoustic reflection by the wall.

6.2. Structural vibration control: cantilevered beam

The application of the proposed control algorithm is used for structural vibration control. The cantilevered
beam, shown in Fig. 7, is configured with two piezoelectric devices and two accelerometer sensors mounted on
the beam. One of the piezoelectric patches is used to disturb the beam and the other patch is used as a control
source. One of the accelerometer sensors is used as an error sensor and the other is used for the disturbance
measurement.

In order to demonstrate the adaptive control algorithm with future disturbance estimation, the following
disturbance signal is applied:

dðtÞ ¼ sinðo1tÞ þ 0:1wðtÞ, (21)

where o1 is the first (measured) natural frequency of the beam, o1 ¼ 32:5Hz, and wðtÞ is uniformly distributed
and bounded random signal, jwðtÞjo1. System models and disturbance models are estimated at the same
sampling rate of data acquisition, 200Hz. Controllers are updated at 1=3 the speed of the data acquisition, i.e.,
66:7Hz. The order of system models and disturbance models are chosen to be 16 and 24, respectively.
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Fig. 8 shows the auto-spectrum estimation of the error sensor signals. When the future disturbance
estimation algorithm is combined with the adaptive control algorithm, the magnitude at frequency o1 is
reduced from 27:7� 10�9 m=s2 to 1:4� 10�9 m=s2, while magnitude of 3:7� 10�9 m=s2 at o1 is measured
without future disturbance estimation algorithm. Although more reduction at o1 is achieved with the
disturbance estimation algorithm, an increase is observed at higher frequencies, �90Hz, because the future
disturbance estimation algorithm identifies the disturbance model and estimates the future disturbance based
on the periodicity of the disturbance signal.
6.3. Jitter control: optical jitter testbed

The proposed adaptive algorithm is performed on the optical jitter testbed shown in Fig. 9. The control
objective is to minimize the acoustically induced jitter using a fast steering mirror (FSM). The test bed is built
in an anechoic chamber at Duke University. The purpose of an anechoic chamber is to minimize the jitter
effect by extraneous, ambient, acoustic disturbance. Two optical benches are used. The laser source and the
position sensing detector (PSD) are mounted on one optical bench and a flat turning mirror and a FSM are
mounted on the other optical bench to maximize the beam length. A laser shines a beam on the turning flat
mirror, reflects off of the FSM, and shines on the PSD, which provides a measure of the acoustically induced
jitter. Jitter is induced acoustically by acoustic loudspeakers, part (F) in Fig. 9, arranged around the flat
turning mirror and the FSM. Acoustic microphone sensors are used for acoustic disturbance measurements.
Microphones are placed near the flat turning mirror and the FSM.

The data sampling rate in jitter control experiments is set to be 600Hz because jitter effect occurs below
300Hz [29]. A low-pass filter, set the cutoff frequency to 250Hz, and a high-pass filter, set at 10Hz, is used for
the PSD signal. A high-pass filter is used to remove the DC offset in the PSD signal to prevent the static
position of the laser. In the application of the adaptive GPC algorithm, model parameters are updated at the
same sampling rate as the data sampling rate and controllers are updated at a four times slower sampling rate
than the data acquisition, i.e., 150Hz. The order of a model and controller is set to be 16.
(A)

(B)
(C)

(D)(E)

(E)

(E)

(H)

(H)

(I) (J)

(a)

High Pass 
Filter

Low Pass
Filter

Controller
xPC Target PC

xPC Host PC

(A) (B)

(C)
(D)

(E)

(E)

(F)
(G)

(H)
(H)

(I) (J)

(F)

(F)

(K)

(E)

d(t)

y(t) u(t)

(b)

(A)

(D)

(B)

(C)

(I)

(K)

(c) (d)

Fig. 9. Experimental system setup of an optical jitter suppression testbed: (a) schematic diagram of jitter testbed; (b) top view of schematic

diagram; (c) picture of laser source and PSD; (d) picture of turning mirror and FSM. Experimental parts: (A) HeNe laser, (B) turning flat

mirror, (C) fast steering mirror, (D) position sensing detector, (E) mounting rods, (F) disturbance speakers, (G) anechoic chamber, (H)

optics benches, (I) enclosure, (J) laser beam (K) microphone.
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Experiments are performed with several different environments: (1) a single loudspeaker for disturbance
source and a single microphone for disturbance measurement; (2) three loudspeakers and a microphone; (3) a
loudspeaker and two microphones; and (4) three speakers and two microphones. For a single disturbance
source, a loudspeaker placed behind the optical bench is used (see Fig. 9). When three acoustic loudspeakers
are used, each loudspeaker is driven by an band-limited random disturbance, uncorrelated with other
speakers. For a single disturbance measurement, a microphone sensor is placed near the FSM. The second
microphone sensor is placed near the turning flat mirror.

In the application of the adaptive control algorithm, the future disturbance estimation process is not applied
because the random disturbance signal is hard to estimate. Fig. 10 shows the power spectral density of the
PSD signal. The dashed lines show the uncontrolled jitter level and the solid lines show the jitter level when the
control algorithm is applied. The reduction in the root-mean square (RMS) microradian level for each
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Fig. 10. Auto-spectrum estimation for open-loop (dashed line) and closed-loop (solid line) systems: (a) case 1: a disturbance speaker and a

microphone sensor; (b) case 2: three disturbance speakers and a microphone sensor; (c) case 3: a disturbance speaker and two microphone

sensors; (d) case 4: three disturbance speakers and two microphone sensors.

Table 2

RMS level reduction on the optical jitter testbed by the adaptive algorithm

Case No. of speaker No. of microphone RMS level reduction (%)

1 1 1 42

2 3 1 43

3 1 2 46

4 3 2 42
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configuration is summarized in Table 2. In all cases, the proposed adaptive control algorithm achieved more
than 40% reduction from the uncontrolled jitter level.

7. Discussion

The adaptive control algorithm outlined herein extends the RGPC algorithm, which combines the processes
of system identification and feedback controller design in a single process [27], for the case when the
disturbance measurement is available for the feedforward control. This algorithm is intended for real-time
applications and the experimental demonstrations discussed previously demonstrate its application and
feasibility.

Before implementation, various control system parameters must be specified; the choice of these parameters
depends upon the system to be controlled, its dynamics, and time varying characteristics. One of parameter is
the sampling rate. As described earlier, each process of system model identification, disturbance model
identification, and controller design can be processed at rate slower than the data acquisition sampling rate.
A slower rate, however, can result in a longer convergence time [18,20]. Hence, a sampling rate for the system
identification process must be chosen to be faster than temporal variations of system dynamics and
disturbances. In experimental trials with the acoustic enclosure in a time-varying configuration (see Section
6.1), unstable responses (in particular, an overload in the experimental hardware) were observed when
the endcap of the enclosure was removed too fast, faster than the typical convergence rate of the
algorithm. Typically, the RLS algorithm converges in about 2p iterations, where p is the number of model
parameters [20].

Other parameters to be specified are the number of system and disturbance model parameters, p and ~p,
respectively, and the output and disturbance prediction horizons, hp and ~hp, respectively. In general, larger
models (more parameters) enable more accurate models, and longer prediction horizons improve the control
performance; however, this results in greater computational cost at each sampling period [18,30], leading to
longer convergence rates and increased difficulty in tracking system changes with time.

As a rule of thumb, the number of system model parameters can be chosen to be 3–4 times of the number of
distinct peaks observed in the FRF of the system being investigated. Each peak corresponds to a second-order
response, and this choice provides for double the number of second-order poles and effective model prediction
in practice [20,31]. In the experiments using the acoustic enclosure, four distinct peaks were observed below
250Hz (500Hz sampling rate) (see Figs. 3 and 4); accordingly, the system model size was chosen to be p ¼ 16.

Although a longer prediction horizon improves the control performance, it results in increased
computational cost. A suitable choice for the prediction horizon is about twice the number of system model
parameters [27]. For increasing prediction horizon, this choice results in a smaller effect on the control signal.
In our experiments, the output prediction horizon was chosen to be as large as possible provided a
computational overload in the DSP system has not occurred.

The disturbance is estimated from the past disturbance measurements and is expressed in a finite impulse
response (FIR) filter (see Eq. (15)). In this case, more parameters enable a more accurate model, but this may
be limited by the processing capabilities of the DSP system. For the cases of a deterministic or periodic
disturbance, we can define the disturbance prediction horizon. For a periodic disturbance, disturbance
rejection was achieved with a disturbance prediction horizon shorter than the necessary output prediction
horizon.

Given these specifications, the proposed control algorithm designs a controller using the most up-to-date
system model and input weighting factor based on model predicted closed-loop stability. This is in contrast to
other adaptive predictive control algorithms that use only a current system model and do not adjust the input
weight factor to compensate for allowable changes in controller design [4,9,32]. Changes in the input weighting
factor can result in better closed-loop performance than would result from changes in other parameters such
as the prediction horizon. Furthermore, changes in the input weighting factor minimally affects the
computational cost in digital signal processing.

From the viewpoint of adaptive controller design, this algorithm can be applied when there are variations in
process dynamics and in the disturbance. It constructs model estimates from real-time data and the controller
is updated in the presence of a changing operating environment.
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Appendix A. Normalized coefficient matrix

From Eq. (10), the following matrix equation is obtained by constructing the hp-step predictor at time t and
partitioning into past and future parts:
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Eq. (11) is obtained by solving Eq. (A.1) for the future outputs and normalizing the coefficients by multiplying
the inverse of the coefficient matrix of the future output. The normalized coefficient matrices are summarized
in Table 3.
Table 3

The normalized coefficient matrix in Eq. (11)

Matrix Size

Tc ¼ G�1J mðhp þ pÞ � nðhp þ pÞ

Bc ¼ G�1H mðhp þ pÞ � np

Ac ¼ �G
�1F mðhp þ pÞ �mp

Td ¼ G�1N mðhp þ pÞ � nd ðhp þ pÞ

Bd ¼ G�1M mðhp þ pÞ � nd p
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