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Abstract

A modified iteration procedure is applied to nonlinear oscillations with fractional powers. With the procedure, the
excellent approximate frequencies and the corresponding periodic solutions can be easily obtained.
© 2005 Elsevier Ltd. All rights reserved.

Consider a nonlinear oscillator modeled by the equation:
X+g(x)=0, x(0)=A4>0, x(0)=0, (1)
where g(x) is a nonlinear function of x and has the property:

g(—=x) = —g(x).

If g(x) does not have for small x a dominant term proportional to x, then Eq. (1) is said to be a “‘truly
nonlinear oscillator” (TNO) [1]. One example of such equations is

X+ sgn(x)|xP =0, x(0)=4, x(0)=0, 2)

where p<1 and sgn(x) is the sign function, equal to +1 if x>0, 0 if x = 0, and —1 if x<0. Recently, Lim and
Wu [2] proposed a modified iteration procedure for Eq. (1). Mickens [1] generalized this procedure for the
following equation:

X+g(x)=¢f(x,x), x(0)=4, x(0)=0, 3)
where

f(—X, —X) = _f(xa X)

But they did not give the details as how to carry out the iteration scheme to deal with Eq. (2). The main
purpose of this communication is to use an iteration procedure to determine analytical approximations to the
periodic solutions of Eq. (2).
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To begin, let the natural frequency of Eq. (1) be w, which is unknown to be further determined. Then Eq. (1)
can be rewritten as [1-5]

¥+ 0’x = 0’x — g(x)=G(x), x(0)=4, x(0)=0. 4)
The linearized equation of Eq. (1) is
¥+w*x=0, x(0)=4, x(0)=0. (5)

Comparing Eq. (1) with Eq. (5), we see that even though g(x) is not “small”, the function G(x) = w>x — g(x) is
“small”. Therefore, the left-hand side of Eq. (4) is linear and the term G(x) on the right-hand side is a ““small”
function. This is the reason that we prefer Eq. (4) to Eq. (1).

The iteration scheme is [3]

X‘k-ﬁ-] + wzxk+1 = G(xk), xk(o) = A7 xk(o) = 0) k = 0) 1727 R (6)
where the input or starting function is
xo(t) = Acos = Acoswt. (7

Usually x; can easily be obtained from Eq. (6). Timoshenko et al. [6] have applied this technique to the
Duffing equation, but they only gave the first iteration result. When k> 1, we have

G(xi) = G[xk—1 + (xk — Xk—)] & G(xp—1) + Gu(Xp—1) (X — Xg—1), ®)
where
dGg
G.(x) = o ©)

Therefore, Eq. (6) can be rewritten as [1,2]
S+ 0 X1 = Gxk-1) 4 Ge(xk-1) (0 — Xk-1),
x(0)=4, Xx(0)=0, k=0,1,2,..., (10)
where x_(?) = xo(?) [1,2]. Instead of Eq. (8) we may also have
G(xx) = Glxo + (xx — X0)] & G(xo) + Gx(X0)(Xk — xo)- (11)

Now Eq. (6) can be written as
Frr1 + 0 xi1 = G(xo0) 4+ Gulx0)(xk — X0),
x(0)=4, x(0)=0, k=0,1,2,.... (12)
In what follows, we will use formula (12) to solve Eq. (2). In this case, formula (12) becomes

K1 + 0 x40 = 07X — sgn(xo)|xol” — p sgn(xo)|xol” (xx — X0)/o,

xx(0)=4, x(0)=0, k=0,1,2,..., (13)
where use has been made of the relation
d

o [sen()IxP] = psgn(olxl/x. (14

The derivation of this relation is given in Appendix A.
First, let [7]

sgn(xo)|xol” = A”sgn[(A4 cos 0)]| cos O
= A”(ayp cos 0 + az, cos 30 + as, cos 50 + - - ), (15)
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where
ap, = i/on/z(cos 0Y cos0dO = ﬁ(p4—€(11)1—f(’(;)//22)) Ty (16a)
asp, = %/On/z(cos 0)’ cos30d0 = (PP_—_:);IP, (16b)
as, = i/on/z(cos 0) cos 50 d6 = %. (16¢)

Here I'(p) is the Gamma function [8]. The computations of (ai,,a3,,asp) are given in detail in Appendix B.
Obviously, Egs. (16) are identical to the results in Ref. [5] when p = % Substituting Eq. (7) into Eq. (13) and
taking into account Eq. (15), we have

X1+ o’x) = (0’4 — aipA’) cos 0 — a3, A" cos 30 — as,A” cos 50,

x1(0) =4, x1(0)=0. (17)
The requirement of no secular terms in x;(¢) implies that
oy = N

The corresponding approximate periodic solution x;(¢) becomes
x1(2) = A cos wt + bs(cos wt — cos 3wt) + bs(cos wt — cos Swt), (19)

where w is given by Eq. (18) and

ap A’ apAd  (1—-p)A

by = — =— = , 20z
3 802 8a1,  8(p+3) (202)
as,A” as, A (1 —p)p—3)4
bs = — = - = . 20b
i 2403 24a;,  24(p+3)(p +5) (200)
If Kk =1, Eq. (13) becomes
2 + wPxy = wx1 — sgn(xo)|xol” — psgn(xo)lxol”(x1 — x0)/Xo,
x(0) =4, x(0)=0. 2D
Obviously,
p X1 =X _ » [b3(cos 0 — cos30)  bs(cos O — cos 50)
P sgn(xo)|xol PpA™ sgn(xo)|xol o0 + o0
= 2pA~" sgn(xo)|xo|’[b3(1 — cos 20) + bs(cos 20 — cos 40)], (22)
where use has been made of the relations
(cos 0 — cos 30)/ cos O = 2(1 — cos 20), (23a)
(cos 0 — cos 50)/ cos O = 2(cos 20 — cos 40). (23b)
Substituting Eq. (15) into Eq. (22) and simplifying the resulting expression results in
2 3 2
pxl—x():B(p +4p+11) B(p® 4+ 35p~ + 291p 4 321)
psgn(xg)|xol - PR cosf + 24 +9) 0s 30
B(3p?> — 4 45
+ Gp Op + 45) cos 50 + higher order harmonics, (24)

24



H. Hu / Journal of Sound and Vibration 294 (2006) 608-614 611

where

B= P(l _p)alpAp

= ) (25)
(P+3’@+5)
Substituting Egs. (15), (19) and (24) into Eq. (21) and making some arithmetical manipulations gives
X 4 0’xy = c¢jcos O + ¢ cos 30 + c5cos 50, x2(0) = A, X2(0) =0, (26)
where
CIJZA a AP
= (5P + 46p +93) - —— L (13p* + 87p* + 251p + 225), 27a
1 6(p+3)(p+5)(p 14 ) (p+3)2(p+5)2( p p p ) (27a)
/ p—1 2 apA” 4 3 2 ]
= o A+—F———=@ "+ 11p° — 21p7 —999p — 1800) |, 27b
’ 8(p+3)[ T A P ) (27b)
/ p—1 2 aipA” . 4 2
=— = —  |(p- A+ — 64 4 216)|. 2
C5 24(p+3)(p+5){(p 3w +p+3(3p 64p° + 45p + 216) (27¢)

The requirement of no secular terms in x,(¢) implies that the coefficient of the cos ot is zero. Letting ¢; = 0 and
solving for the frequency yields

1/2

oo _{ 6(13p> + 87p* + 251p + 225)ay,
C O T 030+ 5)(5p? + 46p +93)41 7

1/2
_ 24(13p% + 87p* + 251p +225)'(1 + p/2) / 28)
VAP + D@+ 3)(p + 5)(5p2 + 46p + 93 (p/2) + A7
The corresponding approximate periodic solution x(?) is
x2(f) = A cos wt + c3(cos wt — cos 3wt) + c¢s(cos wt — cos Swt), (29)
where
cy p—1h4 | (5p* + 46p + 93)(p* + 11p> — 21p> — 999p — 1800) (30)
C = ——F = .
T 8wl 64(p+3) 18(p + 5)(13p3 + 87p2 + 251p + 225)
Table 1
Comparison of the approximate frequency w, with the exact frequency w,
p . 4172 [9] AP/ Eq. (28) Error (%)
3/4 1.024957 1.024974 0.0017
2/3 1.033652 1.033680 0.0027
3/5 1.040749 1.040784 0.0034
12 1.051637 1.051678 0.0039
3/7 1.059596 1.059631 0.0033
1/3 1.070451 1.070453 0.0002
1/5 1.086126 1.086000 —0.0116
1/6 1.090133 1.089953 —0.0166
1/8 1.095194 1.094926 —0.0245
1/9 1.096894 1.096592 —0.0275
1/10 1.098258 1.097927 —0.0302

0 1.110721 1.110030 —0.0622
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Fig. 1. Comparison of the approximate solutions with the numerical solutions to Eq. (32) for: (a) 4 = 1; (b) 4 = 100; (c) 4 = 10, 000.

_ G _ (p=DA p—3+(5p2+46p+93)(3p3—64p2+45p+216) a1
> T 2402 576(p+3) [p+ 5 6(13p® + 87p* + 215p + 225) '

Eq. (18) is identical to Eq. (12) in Ref. [7]. The comparison of the approximate frequency w; given by Eq.
(28) with the exact frequency w, of Gottlieb [9] is presented in Table 1. Table 1 shows that w, can give very
excellent approximate frequencies. Comparing Table 1 in this paper with Table 1 in Ref. [7], we can see that w,
is more accurate than w,, in Ref. [7].

Now we compare the approximate periodic solutions with the numerical solutions. Without loss of
generality, let p = 1. In this case aj, = 1.15960 [5] and Eq. (2) becomes [5,10,11]

F+x3=0, x(0)=4, x(0)=0. (32)

The numerical solution xnum(f) of Eq. (32) obtained by using Runge-Kutta (R-K) method, and the
corresponding approximate solutions x;(f) and x,(f) computed by Eq. (19) and Eq. (29) (p =1/3),
respectively, are plotted on Fig. 1 for 4 =1, 100, and 10,000. It can be seen from Fig. 1 that even for
A = 10,000, x,(¢) and x,(¢) are nearly identical to the numerical solution.

In summary, a modified iteration method, which is described by Eq. (12), has been applied to the nonlinear
oscillator modeled by Eq. (2). The approximate frequency w; given in Eq. (18) is identical to the result in Ref.
[7]. The w, obtained by the second iteration gives very accurate results. The approximate periodic solutions
x1(¢) and x;(¢) are in good agreement with the numerical solutions to Eq. (32). Although formula (12) is
identical to formula (10) for the first and second iterations, formula (12) is more convenient than formula (10)
if the third iteration is required. This is because computing the expression p|x;[P~! = psgn(xy)|x;/x; in
formula (10) is not an easy task.

This work was supported in part by Scientific Research Fund of Hunan Provincial Education Department
(No. 04C245).



H. Hu / Journal of Sound and Vibration 294 (2006) 608-614
Appendix A. The derivation of relation (14)

Let

) sgn(x)x? (x=0),
y(x) = sgn(x)|x|’ = {Sgn(x)(_xy? (x<0).

Obviously,

dy [ psen(x)! (x=0),
dx {psgn(x><—x>P—‘ (x<0),
= plsgn()P )P~ = plx)P~".

If x#0, Eq. (A.2) can also be rewritten as

j—i = psgn(x)sgn(x)x|xP~! /x = psgn(x)|x[”/x.

Appendix B. The computations of (a1, as,, as,)

Using the relation [12]
i ik Val((n/2) +1)
cos"xdx = sinf"xdyx=X—+—"" "2 (> _|
| | wwp+n D
and the relation [§]
I'p+1)=plp),
we have

2@+ H@/2+D
Val(p/D+3)  Vap +DI(p/)+)

4 /2
ai, :E/o (cos 0y cos 0d0 =
Similarly,

4 /2 4 n/2
az, = 7/ (cos B cos36d0 = E/ (cos 0)’ (4 cos’0 — 3 cos 0) db
0 0

T
2F(([7/2) + 2) . 4(17 + 2)6111, _ . (p B l)alp
T HTEY5) I R i S R
/2 n/2
as, = %/0 (cos B cos 560d0 = %/0 (cos 0)(16 cos’0 — 20 cos* 0 + 5cos 0) dO
8 2r((p/2)+3) 20 x 2I((p/2) +2)
Val((p/2) +9) Val((p/2) +3)
16(p +2)(p + a1,  20(p + 2)ap P (»— D@ —=3)ay,
P+3)p+5) p+3 YT+ +5)

+ Salp
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