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Abstract

The effect of a nonlinear energy sink (NES) with relatively small mass on the dynamics of a coupled system under

periodic forcing in the vicinity of a main (1:1) resonance is studied theoretically and experimentally. It is demonstrated that

over a range of amplitudes of the external forcing the damped system exhibits a quasiperiodic vibration regime, rather than

the steady-state response reported in earlier publications. This regime is related to attraction of the dynamical flow to a

damped–forced nonlinear normal mode (NNM) of the system and hysteretic motion of the flow in the vicinity of this

mode. A physical experiment using an appropriate electric circuit confirms the above results. The regime of quasiperiodic

response is shown to provide more efficient vibration suppression than the best-tuned linear absorber with the same mass.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently it has been demonstrated that various systems consisting of linear substructures and
strongly nonlinear attachments demonstrate localization and irreversible transient transfer (pumping)
of energy to prescribed parts of the structure dependent on initial conditions and external forcing [1–8].
Addition of a relatively small and spatially localized attachment leads to essential changes in the
properties of the whole system. Unlike common linear and weakly nonlinear systems, systems with strongly
nonlinear elements are able to react efficiently on the amplitude characteristics of the external forcing in a wide
range of frequencies [1,6–8]. Thus, the systems under consideration give rise to a new concept of nonlinear
energy sink (NES).

Preliminary [1–3] as well as recent [5] investigations devoted to dynamics of various realizations of two-
degree-of-freedom (2dof) systems (composed of one dof related to the linear subsystem and one dof related to
the nonlinear attachment) have demonstrated that the energy transfer from a linear non-conservative structure
to attachment is due to resonance capture. This is a transient dynamical phenomenon that has been
theoretically studied since the mid-1970s [9–12]. It occurs in coupled non-conservative oscillators and leads to
transient capture of the dynamical flow on a resonance manifold of the system. It has been demonstrated [2,4]
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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that the possibility of the energy pumping/resonance capture phenomenon in non-conservative systems can be
understood and explained by studying the energy dependence of the nonlinear undamped free periodic
solutions (nonlinear normal modes (NNM)) of the corresponding conservative system which are obtained
when all damping forces are eliminated. Recent investigation [13] based on the approach of invariant
manifolds [14,15] has introduced an asymptotic procedure suitable for explicit inclusion of damping within the
framework of NNM.

The goal of the present paper is to investigate the response of the system comprising a large
primary mass and small NES to external harmonic forcing in the vicinity of the most dangerous 1:1
resonance. Steady-state responses (i.e. responses with almost constant amplitude) of the primary
oscillator with NES attached were studied previously [16] for somewhat different design of the NES
than we use. It will be demonstrated that in close vicinity of the main resonance the system with
NES can exhibit quasiperiodic rather than steady-state response, leading to qualitatively different
dynamical behavior. Analytic predictions concerning the regime of the response will be obtained from an
appropriately extended invariant manifold approach taking into account both the damping and the external
forcing terms.

The structure of the paper is as follows. In the next section the model of 2dof system with NES under
external forcing is presented and elaborated analytically and verified by means of numerical simulation. In the
third section the analytic and numeric results are verified by physical experiment with the help of specially
designed electric circuits. The fourth section is devoted to discussion of possible use of NES as vibration
absorber. The last section contains some concluding remarks.

2. Analytic investigation of the model and numeric evidences

Analytic treatment of the model generally follows the procedure developed earlier [5,13] with modifications
due to presence of the external forcing.

Let us consider the system, which consists of a linear oscillator and a small strongly nonlinear attachment
(pure cubic nonlinearity) and is forced harmonically. The system is described by the following equations:

y
::
1 þ elðy

:
1 � y

:
2Þ þ y1 þ 8eðy1 � y2Þ

3
¼ eA cosot,

ey
::
2 þ elðy

:
2 � y

:
1Þ þ 8eðy2 � y1Þ

3
¼ 0, ð1Þ

where y1 and y2 are the displacements of the linear oscillator and the attachment respectively, el is the
damping coefficient, eA is the amplitude of external force and o is its frequency. e51 is a small parameter
which establishes the order of magnitude for coupling, damping, mass of the nonlinear attachment and the
amplitude of the external forcing; coefficients l and A are chosen to be of order unity. The rigidity of the
nonlinear spring is chosen to be equal to 8e and the linear frequency of the linear oscillator is chosen as unity.
Neither of these restrictions affects the generality of the treatment below, since they may be changed
independently by proper rescaling of the variables.

The mass of the attachment is considered to be small compared to the mass of the main oscillator. This
condition has obvious motivation from the viewpoint of possible applications: the NES is designed to have a
small mass compared to the main system and does not require alternative grounding.

Change of variables

v ¼ y1 þ ey2; w ¼ y1 � y2 (2)

reduces Eqs. (1) to the following form:

v
::
þ

v

1þ e
þ

ew
1þ e

¼ eA cos ot,

w
::
þ

v

1þ e
þ

ew
1þ e

þ ð1þ eÞlw
:
þ8ð1þ eÞw3 ¼ eA cos ot. ð3Þ

Then a new small parameter is introduced and the dependent variables are rescaled as follows:

w ¼ e1=3; V ¼ w�1v; W ¼ w. (4)
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With account of (4) Eqs. (3) are reduced to the following form (only terms up to order of O(w2) are kept):

V
::
þV þ w2W ¼ w2A cos ot,

W
::
þwV þ lW

:
þ8W 3 ¼ 0. ð5Þ

As stated above, the goal of present investigation is the exploration of nonlinear normal modes of Eqs. (1) in
the vicinity of 1:1 resonance. It means that both variables, V and W, are supposed to have frequencies close to
unity. Besides, the dynamics of the system is analyzed in the vicinity of the most dangerous resonance and
therefore the frequency of the external excitation also should be close to unity:

o ¼ 1þ w3s, (6)

where parameter s describes the detuning of the external force frequency.
Therefore, it may be adopted that both variables are expressed as

V ¼ cosðtþ m1ðwtÞÞf 1ðwtÞ þOðwÞ,

W ¼ cosðtþ m2ðwtÞÞf 2ðwtÞ þOðwÞ, ð7Þ

where mi, i ¼ 1, 2 takes into account phase shift and slow phase drift and f i, i ¼ 1, 2—slow amplitude
modulation. Only phase trajectories with initial conditions inside the domain of attraction of 1:1 resonance
manifold are considered. Eqs. (5) may be reshaped to the following form:

V
::
þV þ w2W ¼ w2A cosðð1þ w3sÞtÞ,

W
::
þW þ wðd½lW

:
þ8W 3 �W � þ V Þ ¼ 0, ð8Þ

where d ¼ w�1. If the estimation presented in Eqs. (7) is valid, then one obtains

W
::
¼ � cosðð1þOðwÞÞtþ j2Þf 2ðwtÞ þOðwÞ ¼ �W þOðwÞ.

It means that in order to balance power 1 of small parameter w in the second equation of Eqs. (8), one must
adopt

d½lW
:
þ8W 3 �W ��Oð1Þ

and therefore expression in square brackets should be of order w. It is rather natural, as it describes slow
modulation and damping of the vibrations with frequency close to unity.

Complex variables are introduced according to following relationship:

j1 expðitÞ ¼ V
:
þiV ,

j2 expðitÞ ¼W
:
þiW .

With account of this change of variables, Eqs. (8) are rewritten as

j
:
1 �

iw2

2
ðj2 � j�2 expð�2itÞÞ ¼ w2

A

2
ðexpðiw3stÞ expðitÞ þ expð�iw3stÞ expð�itÞÞj

:
2

þ w d
i

2
ðj2 � j�2 expð�2itÞÞ þ

l
2
ðj2 þ j�2 expð�2itÞÞ

��

þ i expð�itÞðj2 expðitÞ � j�2 expð�itÞÞ
3
� �

i

2
ðj1 � j�1 expð�2itÞÞ

�

¼ 0, ð9Þ

where the asterisk denotes complex conjugation.
Multiple scales analysis is performed according to the following expansions:

jk ¼ jk0 þ wjk1 þ w2jk2 þ . . . ; k ¼ 1; 2

tl ¼ wl t;
d

dt
¼

q
qt0
þ w

q
qt1
þ w2

q
qt2
þ . . . . ð10Þ



ARTICLE IN PRESS
O.V. Gendelman et al. / Journal of Sound and Vibration 294 (2006) 651–662654
Combination of Eqs. (9) and (10) yields in zero approximation:

qjk0

qt0
¼ 0) jk0 ¼ jk0ðt1; t2; . . .Þ; k ¼ 1; 2. (11)

Account of terms having the order of O(w) leads to the following equations:

qj10

qt1
þ

qj11

qt0
¼ 0,

qj20

qt1
þ

qj21

qt0
þ d

i

2
ðj20 � j�20 expð�2it0ÞÞ

�
þ

l
2
ðj20 þ j�20 expð�2it0ÞÞ

þi expð�it0Þðj20 expðit0Þ � j�20 expð�it0ÞÞ
3

�
�

i

2
ðj10 � j�10 expð�2it0ÞÞ ¼ 0. ð12Þ

Secular terms with respect to time scale t0 should be eliminated from Eqs. (12). This condition is satisfied if
the following relationships hold (solution for zero order Eq. (11) is also taken into account):

j10 ¼ j10ðt2; . . .Þ; j11 ¼ j11ðt1; t2; . . .Þ,

qj20

qt1
þ d

i

2
j20 þ

l
2
j20 � 3ij20 j20

�� ��2� �
�

i

2
j10 ¼ 0. ð13Þ

According to the first equation of Eqs. (13), variable j10 does not depend on t1; therefore, in the
conditions of 1:1 resonance the second equation of this system describes evolution of variable j20 with
respect to time scale t1. Behavior of solutions of Eqs. (13) as t1 !1 may be established with the
help of Bendixon criterion [17]. By splitting the last equation of Eqs. (13) to real and imaginary part,
one gets

qx

qt1
¼

d
2

y�
ld
2

x� 3dyðx2 þ y2Þ �
1

2
Imðj10Þ ¼ Pðx; yÞ,

qy

qt1
¼ �

d
2

x�
ld
2

yþ 3dxðx2 þ y2Þ þ
1

2
Reðj10Þ ¼ Qðx; yÞ,

x ¼ Reðj20Þ; y ¼ Imðj20Þ.

One obtains qP=qxþ qQ=qy ¼ �ldo0 for any values of x and y. Bendixon criterion leads to
conclusion that the solutions of the last equation of Eqs. (13) must end (or begin) at fixed points of the
equation and cannot be periodic. Consequently, variable j20 evolutes towards equilibrium value defined as
follows:

d
i

2
~j20 þ

l
2
~j20 � 3i ~j20 ~j20

�� ��2� �
�

i

2
j10 ¼ 0,

~j20ðt2; . . .Þ ¼ lim
t1!1

j20, ð14Þ

provided that the limit manifold is stable.
Further evolution of variable j1 is described by the equation of order w2:

qj10

qt2
þ

qj11

qt1
þ

qj12

qt0
�

i

2
ðj20 � j�20 expð�2it0ÞÞ ¼

A

2
ðexpðist3Þ þ expð�ist3Þ expð�2it0ÞÞ. (15)

Secular terms with respect to t0 are absent if

qj10

qt2
þ

qj11

qt1
�

i

2
j20 ¼

A

2
expðist3Þ, (16)

j10, ~j20 and right-hand side of Eq. (16) do not depend on t1. Then in the limit t1!1 the secular terms with
respect to t1 time scale will be absent if

qj11

qt1
! 0.
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Therefore, as t1!1 , Eq. (16) is reduced to the form

qj10

qt2
�

i

2
~j20 ¼

A

2
expðist3Þ. (17)

Eqs. (14) and (17) describe the dynamics of the system with respect to time scale t2 in the limit t1!1. Right-
hand side of Eq. (17) depends only on t3 time scale and therefore should be considered as constant. Eq. (14) is in fact
algebraic connection between two dependent variables, j10 and ~j20. Therefore, with respect to time scale t2 the
effective dimensionality of the state space of the system is reduced from 5 to 2. Such dynamical regime may be
interpreted as damped nonlinear normal mode with invariant manifold ( ~j10, ~j

�
10) [13]. Eqs. (13) and (16) describe

how phase trajectory of the system is attracted to this nonlinear normal mode within time scale t1. Due to damping
the invariant manifold of the NNM also evolutes with respect to time scale t2; this evolution is described by Eq. (17).

After extracting j10 from Eq. (14) and substituting to Eq. (17) one obtains

q ~j20

qt2

i

2
þ

l
2
� 6i j20

�� ��2� �
� 3i ~j2

20

q ~j�20
qt2
¼

iA

4d
expðist3Þ �

1

4d
~j20. (18)

Complex conjugation of Eq. (18) and simple manipulations allow extracting the derivative from the
equation:

q ~j20

qt2
¼

Aðexpðist3Þ þ il expðist3Þ þ 6 ~j2
20 expð�ist3Þ � 12 ~j20

�� ��2 expðist3ÞÞ þ i ~j20 � l ~j20 � 18i ~j20

�� ��2 ~j20

2dð1þ l2 � 24 ~j20

�� ��2 þ 108 ~j20

�� ��4Þ . (19)

Eq. (19) describes evolution of two-dimensional invariant manifold of forced-damped NNM which attracts
the five-dimensional phase flow of the initial system. Unlike initial Eqs. (1), this equation is singular. The
singularity appears in the limit d! (or, equivalently, e! 0) and is a consequence of projecting the five-
dimensional phase dynamics of the system on two-dimensional subspace.

In order to explore the behavior of ~j20ðt2Þ in accordance with Eq. (19), one takes t3 ¼ 0, ~j20 ¼ N expðiyÞ,
where N and y are real functions of t2. The latter change of variables reduces Eq. (19) to the following system:

qN

qt2
¼

1

2dD
ðAðcos yþ l sin y� 12N2 cos yÞ � lNÞ,

qy
qt2
¼

1

2dDN
ðAð� sin yþ l cos yþ 18N2 sin yÞ þN � 18N3Þ,

D ¼ 1þ l2 � 24N2 þ 108N4. ð20Þ

Detailed investigation of Eqs. (20) and related systems will be published elsewhere [18]. Explanation of
possible quasiperiodic response does not require complete analysis and is presented below.

First of all, for 0olo1=
ffiffiffi
3
p

Eqs. (20) exhibit singularities due to nullification of the denominator at two
values of N:

N1;2 ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3l2

p
18

. (21)

Besides, Eqs. (20) have obvious fixed point at N ¼ A; y ¼ p=2. This fixed point corresponds to steady-state
response of the system described by Eqs. (1) to the harmonic forcing. It is easy to check that for AoN1 and
A4N2 this fixed point is a stable focus. However for N1oAoN2 the fixed point is of saddle type. Therefore
the steady-state regime is unstable, thus giving rise to quasiperiodic response. For l41=

ffiffiffi
3
p

the fixed point is
always stable and thus no quasiperiodic response is expected.

In paper [13] it is demonstrated that for the system without forcing (A ¼ 0) the first equation of Eqs. (20)
does not depend on y and has the following implicit solution:

54Z2 � 24Z þ ð1þ l2Þ log Z ¼ C � lt2=d; Z ¼ Nðt2Þ
2. (22)

For 0olo1=
ffiffiffi
3
p

the above solution gives rise to three-branch structure with two stable and one unstable
branch. The quasiperiodic response regime thus may be interpreted as ‘‘jumps’’ between two stable branches.
For l41=

ffiffiffi
3
p

there is only one stable branch of and no ‘‘jumps’’ are possible.
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Fig. 1. Quasiperiodic response of system (1) for set of parameters A ¼ 0:2; e ¼ 0:05; l ¼ 0:2; o ¼ 1:01. Dotted line denotes the

displacement of the linear oscillator and the solid-line denotes displacement of the NES versus time.
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In order to verify the above conclusions, Eqs. (1) are integrated numerically by standard Runge–Kutta
method with zero initial conditions and the following set of parameters (Fig. 1):

A ¼ 0:2; e ¼ 0:05; l ¼ 0:2; s ¼ 0:2. (23)

The plot demonstrates typical quasiperiodic behavior of both responses (y1 and y2). This behavior is stable
and was revealed also for long-time simulations (up to 20 000 time units or about 200 periods). In order to
verify the suggested explanation of this phenomenon (breakdowns of motion on 1:1 resonance invariant
manifold due to singularities accompanied by successive attractions of the phase trajectory to the other stable
branch of the same manifold) the internal coordinate of the system (y1 � y2) is plotted versus time and
compared to critical values of this function which correspond to singularities of Eqs. (20) (Fig. 2).

It is easy to see that the modulation of the internal coordinate follows the critical values with reasonable
accuracy and therefore the system primarily moves in the quasiperiodic regime with successive ‘‘jumps’’ and
‘‘relaxations’’. The other argument in favor of the suggested scenario is that no quasiperiodic response has
been revealed for values of l above the range 0olo1=

ffiffiffi
3
p

.

3. Physical experiment using electric circuit

Experimental verification of analytic and numeric findings described in the previous section was performed
by means of appropriately designed electric circuit. Such experiment allows estimating the robustness of the
quasiperiodic response regime as the electric circuit inevitably contains additional damping and other factors
not accounted in the analytic and numeric models.
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Fig. 2. Plot of the NES internal deformation y1ðtÞ � y2ðtÞ versus time for set of parameters A ¼ 0:2; e ¼ 0:05; l ¼ 0:2; o ¼ 1:01.
Horizontal lines correspond to singularities of Eqs. (20), described by Eq. (21). Dotted line corresponds to N2 and solid line to N1.
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The experiment was performed with the help of installation presented in Fig. 3. Scheme of the electric circuit
used is presented in Fig. 4.

Parameters of the electric scheme used for the experiment correspond to the following values of coefficients
in Eqs. (1): e ¼ 0:065; l ¼ 0:1;A ¼ 0:192;s ¼ 0. The external periodic forcing is performed by a generator.

The results of the experiment (compared with the results of appropriate numerical simulation) are presented
in Fig. 5.

The above experimental results demonstrate that the electric circuit clearly exhibits the energy pumping
from ‘‘large’’ to ‘‘small’’ mass by mechanism of 1:1 resonance, accompanied by generation of quasiperiodic
relaxation vibrations. This process is robust to the parameter uncertainties of the electric circuit and external
generator used.
4. NES as vibration absorber

Experimental results presented in the previous section demonstrate that the quasiperiodic response regime
associated with energy transfer to NES can be realized in physical systems. This fact makes the discussion of
possible applications of this phenomenon reasonable.

One possible application is related to absorption of vibrations in mechanical systems. System (1) resembles
classical example of 1dof mechanical system under action of periodic force with vibration absorber attached
[19–21]. The only difference from many previous studies is that strong nonlinearity is suggested. As it was
demonstrated above, this system may exhibit types of motion unavailable for linear vibration absorbers.
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Fig. 3. General view of the electric circuit and oscilloscope with the results of simulation.

O.V. Gendelman et al. / Journal of Sound and Vibration 294 (2006) 651–662658
The energy of vibrations is transferred to the NES and damped out in quasiperiodic regime and thus
attenuation of vibrations of the primary mass is achieved.

In order to assess the efficiency of this method of vibration suppression the performance of the NES is
compared to that of properly tuned linear absorber having the same mass and the same damping coefficient
(the damping coefficient value corresponds to proper tuning of the linear absorber). The dynamic of the linear
absorber is described by the following system of equations:

y
::
1 þ elðy

:
1 � y

:
2Þ þ y1 þ ekðy1 � y2Þ ¼ eA cosð1þ esÞt,

ey
::
2 þ elðy

:
2 � y

:
1Þ þ ekðy2 � y1Þ ¼ 0. ð24Þ

Both systems are considered in the point of the most dangerous resonance (maximum of the response
amplitude) corresponding to slightly different values of frequency shift es. The criterion chosen for
comparison is energy of vibrations stored in the system at every moment of time. This energy is computed
from Hamiltonians of systems described by Eqs. (1) and (24) without forcing and damping terms. Parameters
of properly tuned linear absorber were computed by straightforward procedure of minimizing the response
with the help of MAPLE software.

The results of comparison are presented in Fig. 6.
From Fig. 6 it is clear that in the regime of quasiperiodic response the NES ensures better suppression of

oscillations than the best linear absorber with the same mass. The average energy stored in the vibrating
system with NES is about 50% less than in the system with the linear absorber.

The above result demonstrates that the quasiperiodic response regime may be advantageous from the
viewpoint of vibration absorption. Possible reason of this effect is that the nonlinear attachment in the
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Fig. 4. Electric scheme of the experimental circuit.
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quasiperiodic response regimes vibrates with relatively large amplitude and in multiple-frequency regime. Both
these factors facilitate the damping of energy and give rise to better absorption capability.

It should be mentioned that the parameters used for the above simulation are different from those listed in set
(23). The reason is that the quasiperiodic regime is more profound for set (23) (the modulation of fast frequency is
very deep) and the advantage of the system with the NES with respect to the vibration suppression (as compared
to the best-tuned linear absorber) is more obvious for parameters used in current section. This discrepancy raises
a question concerning optimization of the system performance, which will be the object of further research.

The system under consideration exhibits this sort of response only for certain amplitude range of the
external forcing. Outside this amplitude range the response will be approximately steady state, similarly to one
described in Ref. [16], provided that no more complicated resonances will exhibit themselves. Our simulations
demonstrate that no significant energetic advantage in the suppression of the oscillations is achieved in steady-
state regime, although some broadening of the suppression frequency range may be demonstrated. The goal
for further research in this field is to achieve broader range of quasiperiodic response of the NES via design of
more suitable potential functions.

5. Concluding remarks and discussion

Quasiperiodic response of a strongly nonlinear energy sink with small mass attached to a harmonically
forced oscillator has been revealed for the first time. The response regime is related to hysteretic motion of the
phase trajectory of the system, in the vicinity of the invariant manifold of a damped-forced nonlinear normal
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Fig. 5. Comparison between experimental (plot A) and numeric (plot B) results. Thick line represents the displacement of the primary

linear oscillator and the thin line represents the displacement of the attachment. The electric scheme is calibrated in a way that quasi

‘‘shift’’ of about 20 s is created due to insufficient synchronization between external generator and the oscilloscope.

O.V. Gendelman et al. / Journal of Sound and Vibration 294 (2006) 651–662660



ARTICLE IN PRESS

Fig. 6. Comparison of energy stored in the system for nonlinear (solid line and properly tuned linear (dotted line)) vibration absorbers.

Parameters used are A ¼ 0:3, e ¼ 0:1, l ¼ 0:3, o ¼ 0:95 (nonlinear absorber), o ¼ 0:85 (linear absorber), k ¼ 0:9. The values of detuning
were chosen in order to provide the highest amplitude of the response in each case.

O.V. Gendelman et al. / Journal of Sound and Vibration 294 (2006) 651–662 661
mode. The real possibility of a quasiperiodic response regime was verified using an appropriately designed
electric circuit. This response regime has been shown to have possible advantages from the viewpoint of
suppressing the vibrations of the primary mass, for a certain range of amplitudes of the external forcing.

The above result leaves many questions open. In fact, vibration suppression in the regime of quasiperiodic
response has been recorded for a weakly nonlinear vibration absorber [21] but no comparison of efficiency has
been performed. The criterion used above for such comparison (energy stored in the system) is different from
the commonly accepted criterion of vibration suppression+reduction of amplitude of the primary oscillator
within a certain frequency band of the external forcing. The relation between these two criteria remains to be
established. The other issues for further research are exact boundaries for the quasiperiodic response,
optimization of the absorber performance and robustness of this method for vibration suppression.

Acknowledgments
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