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Abstract

The discrete time Fourier transform (DTFT) has for long been used for non-parametric measurement of frequency

response functions (FRF). However, beyond the appreciable simplicity and computational efficiency of the method, its use

has been severely criticised when applied to stationary random signals because of the inherent spectral leakage it induces—

e.g. in the so-called H1, H2, H3, Hv, etc. estimators. This problem is one major reason which has motivated recent research

on alternative identification methods, always at the price of increased complexity. This paper aims at demonstrating that,

contrary to the common belief, solutions do exist for designing low-bias, or even unbiased, i.e. leakage free, FRF

estimators based on the DTFT of stationary random signals. One such solution was proposed 25 years ago by Rabiner and

has surprisingly remained unknown by mechanical engineers concerned with system identification. We first give a brief

review of the principles which underlie Rabiner’s method. We next present original analytical results, which exactly specify

under which conditions Rabiner’s estimator is unbiased, and we also provide the expression of its variance. These results

then lead to a number of practical guidelines. The actual validity of the method is finally illustrated on some examples, and

compared with other more classical estimators.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Getting accurate frequency response function (FRF) measurements from experimental data is a persistent
topic of research due to its prime importance in many physical fields. A vast literature currently exists on the
subject, which tackles the problem either in the time-domain or in the frequency-domain, and either from a
parametric or a non-parametric approach. This paper is concerned with the frequency-domain non-parametric
approach which has gained considerable popularity among engineers because of its simplicity, its availability
on most commercial data analysers, and its direct interpretation in physical terms. A thorough discussion of
this approach can be found in classical references such as Refs. [1–4]. More recently, the non-parametric
frequency-domain approach has regained new interest as a pre-processing step before more sophisticated
parametric techniques are used. For a modern treatment of this topic, see Ref. [5].

In brief, the problem at hand is the following: given some input measurement fx½n�gN�1n¼0 and output
measurement fy½n�gN�1n¼0 to a linear and time-invariant system, find the best possible measurement of the system
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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impulse response (IR) h½n�, or equivalently in the frequency-domain, of the FRF Hðf Þ ¼Ffh½n�g ¼
Ts

P
n2Zh½n�e�j2pfnTS , with Ts denoting the sampling period and F the discrete time Fourier transform

(DTFT). The problem usually faces extra complexity as the input and output measurements are corrupted by
extraneous noise and undesirable disturbances. Depending on the nature of the input excitation to the system,
several estimators of Hðf Þ have been developed which are optimal according to some statistical criteria. The
classical approach as described in Refs. [3,4] is to consider a stationary random excitation and then to derive
the optimal FRF as the function which minimises the mean square of the error y½n� � Ts

P
k h½k�x½n� k� for

some assumed length L of the IR. This yields the well-known H1ðf Þ ¼ Syxðf Þ=S2xðf Þ and H2ðf Þ ¼

S2yðf Þ=Syxðf Þ estimators when only output noise or only input noise is present, respectively, with Syxðf Þ the
cross-spectrum between signals y and x, and S2yðf Þ and S2xðf Þ the auto-spectra of signals y and x. When both
input and output noises are present, dedicated estimators also exist such as H3ðf Þ (instrumental variable),
Hvðf Þ (maximum-likelihood), Haðf Þ (periodically correlated input) [6], which all involve more elaborate
functions of Syxðf Þ, S2yðf Þ, and S2xðf Þ. In this respect, the non-parametric frequency-domain estimation of
FRF’s boils down to a spectral analysis issue, i.e. the issue of estimating the spectral density Svuðf Þ for any two
signals v and u from finite-length measurement fv½n�gN�1n¼0 and fu½n�gN�1n¼0 . This is a classical but ill-posed problem
which has received considerable attention in the past [2,3,7]. It is in particular a standard result that any (non-
parametric) estimate of Svuðf Þ suffers from a difficult trade-off between systematic errors (bias) and stochastic
errors (variance). As will be recalled in the next section, the systematic errors result from the use of the DTFT
on finite-length data which produces significant ‘‘boundary effects’’ known as leakage, but also from voluntary
(and necessary!) smoothing of the spectral estimates in order to reduce the stochastic errors. As a consequence,
this problematic compromise finds its exact replica with FRF’s measurements. One solution to alleviate the
aforementioned difficulty is to force the use of specific excitation signals which can produce unbiased spectral
estimates. This is the case for random bursts since the DTFT of transient signals does not suffer from leakage
[1], and also for periodic signals as long as the DTFT is evaluated on an integer number of periods. This latter
solution has recently gained a lot of interest [5]. However, neither random bursts nor periodic signals may be
systematically available in practice and there are many instances when one has no other solution than
adopting the classical assumption of stationary random excitations.

Contrary to the common belief, (nearly) unbiased spectral estimates, and hence FRF measurements, can be
devised even with finite-length measurements of stationary random signals. Surprisingly, this fact has rarely
been recognised despite the existing literature on the subject [8,9]. It seems to have remained completely
unknown from the engineering community concerned with vibrations and modal analysis, where yet it would
be of obvious importance. It is the object of this paper to partially fill in this gap. The idea we are reporting
herein is originally due to Rabiner and dates back to the late 1970s [8,10]. More than simply digging out old
material, we give to Rabiner’s method a simpler and more comprehensive formulation which provides original
interpretations and potential directions for future research. We also demonstrate that Rabiner’s method is
computationally efficient and we address its statistical performance. The paper is organised as follows. In
Section 2, we first introduce Rabiner’s method from an empirical point of view as a correction to the classical
Welch’s method. In Section 3, we then prove rigorously under which conditions it yields an unbiased estimator
and we derive a closed-form expression for its variance. Finally, we provide in Section 4 some practical
guidelines so as to optimise the parameters involved in Rabiner’s method, and in Section 5 we illustrate its use
on actual data.
2. The principle of Rabiner’s method

2.1. Bias induced by classical spectral estimates

There are two customary spectral estimators used in practice. The first one, historically the most ancient, is
known as ‘‘Blackman and Tuckey’’ (B&T) or ‘‘lag-window’’ spectral estimator and is defined as the DTFT1 of
1For the sake of simplicity, we will use the normalised frequency f =Ts ! f from here onwards, unless specifically stated otherwise.

Practically, this amounts to setting Ts ¼ 1.
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the weighted empirical cross-correlation bRvu½k� between signals v and u, viz [3]:

bSðBÞvu ðf Þ ¼
XN�1

k¼�Nþ1

g½k� � bRvu½k�e
�j2pfk, (1)

where

bRvu½k� ¼
1

N � jkj

XminðN�1;N�1�kÞ

n¼maxð0;�kÞ

v½nþ k�u½n��; jkjoN (2)

and fg½k�gN�1k¼�Nþ1 is a suitably chosen lag-window (g½k�X0, g½�k� ¼ g½k�, g½0� ¼ 1). The expression of B&T’s
estimator follows closely from the theoretical definition of the cross-spectral density as given by the Wiener-
Khintchine theorem [3], but unfortunately it is not computationally efficient when N is large. The second
customary spectral estimator is due to Welch [11] and is commonly referred to in the literature as the
‘‘weighted overlapped segment averaging’’ (WOSA) method. The Welch’s estimator is defined as

bSðW Þvu ðf Þ ¼
R2wð0Þ

�1

I
�
XI�1
i¼0

V
ðiÞ
Nw
ðf ÞU

ðiÞ
Nw
ðf Þ�, (3)

where

V
ðiÞ
Nw
ðf Þ ¼Ffwi½n�:v½n�g ¼

XiDþNw�1

n¼iD

wi½n�:v½n�e
�j2pfn (4)

is the so-called ‘‘short-time DTFT’’ of v½n�, and similarly for U
ðiÞ
Nw
ðf Þ. In Eq. (4), wi½n� ¼ w½n� iD� is the shifted

version of a Nw-long data-window fw½n�gNw�1
n¼0 that selects a segment of the measured signals fv½n�gN�1n¼0

anchored on time iD. The increment D is set between 1 and Nw so as to allow possible overlap between
adjacent segments. For N-long signals, there are I ¼ bðN �NwÞ=Dc þ 1 (where bxc stands for the greatest
integer smaller than or equal to x) segments of data averaged together in Eq. (3) such as to decrease the
variance of Welch’s estimator by approximately a factor I. Note finally that Welch’s estimator must be
normalised by the energy R2wð0Þ ¼

P
n w½n�2 of the data-window so that it has the correct calibration.

Welch’s estimator has a number of advantages over B&T’s estimator and therefore has become a standard
in modern data analysers and signal processing toolboxes. As a matter of fact, the corresponding algorithm:
�

2

B&
can be efficiently implemented by means of several short FFT’s of fixed size,

�
 does not require excessive memory allocation and therefore can handle very long signals,

�
 can be implemented in a recursive real-time architecture which virtually does not impose any limit to the

number of averages I,

�
 is robust against outlying and non-stationary data since contaminated segment can easily be disregarded

from the summation.
The B&T’s and Welch’s estimators both have their bias2 expressed as [7]:

b bSvuðf Þ
n o

¼
def

E bSvuðf Þ
n o

� Svuðf Þ ’
1
2
� B2 � S00vuðf Þ, (5)

where S00vuðf Þ is the second derivative of the theoretical spectral density Svuðf Þ and B2 ¼
Rþ1=2
�1=2 f 2Fðf Þdf is a

measure of the frequency resolution or ‘‘spectral bandwidth’’. For instance, Fðf Þ ¼Ffg½k�g in B&T’s method,
whereas Fðf Þ ¼ jFfw½n�gj2 in Welch’s method. Therefore, using B&T’s or Welch’s spectral estimators in the
For expression (5) to hold, it is implicitly assumed that the IR length is shorter than the time concentration of the lag-window g in

T’s estimator, and than the window length Nw in Welch’s estimator.
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estimation of a FRF yields the normalised bias (H1 formulation):

b bH1ðf Þ
n o

Hðf Þ
’

b bSyxðf Þ
n o
Syxðf Þ

�
b bS2xðf Þ
n o
S2xðf Þ

. (6)

Although this expression involves the difference of two terms, it will generally not be zero. For example let
us consider the case where the excitation x has a relatively flat spectrum; then the following approximation
holds:

bf bH1ðf Þg

Hðf Þ
’ 1

2
� B2 �H 00ðf Þ, (7)

which clearly evidences that large relative bias is produced in the vicinity of the resonances of the FRF.
The only option to reduce the bias in expression (6) is to decrease the bandwidth B. In Welch’s method,
this is achieved by enlarging the window length Nw and thus diminishing the number of averages
I ¼ bðN �NwÞ=Dc þ 1. As well known this strategy results in a higher variability of the spectral estimatesbSvuðf Þ and consequently of bHðf Þ. The original idea of Rabiner’s method is to achieve a significant bias
reduction in Welch’s method without changing the window length Nw and thus without reducing the number
of averages I.

2.2. A strategy to reduce the bias in Welch’s method

Welch’s spectral estimator implicitly assumes that the measured signals can be decomposed into a series of
independent short-time segments, such that subsequent spectral analysis can be performed individually on each
of these segments and the results averaged all together. This is illustrated in Fig. 1 in the case of a rectangular
data-window with zero overlap (D ¼ Nw). That this strategy yields unbiased results makes sense in the case of
white noise and is theoretically verified from Eq. (6) in which S00vu ¼ 0. The extension to coloured signals,
however, does not hold true because in this case adjacent segments are not mutually independent and therefore
cannot be analysed separately. Instead, a proper exploitation of the former idea must actually rely on two
precautions:
(1)
 the correlation between adjacent segments must be taken into account in the spectral analysis,

(2)
 the summation of the spectral estimates obtained on adjacent and possibly overlapping segments (DpNw)

must be equivalent (in the mean square sense) to the spectral estimate of the whole signal.
v[n]

wi[n].v[n] wi+2[n].v[n]

wi+1[n].v[n] wi+3[n].v[n]

Fig. 1. Welch’s method divides the signal into (possibly overlapping) segments of equal lengths.
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wi-1[n] wi[n] wi+1[n]

w
i-

1[
n]

w
i[n

]
w

i+
1[

n]

L1+L2

Fig. 2. Correlation patterns between adjacent windowed segments. Gray and white boxes indicate correlated and uncorrelated segments,

respectively.
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Condition 1 suggests the generalised form

bSvuðf Þ ¼
y
I

XI�1
i¼0

XI�1
j¼0

V
ðiÞ
Nw
ðf ÞU

ðjÞ
Nw
ðf Þ� (8)

instead of Eq. (3) (where the scaling factor y is to be determined), whereas condition 2 places a restriction on
the choice of the data-window w½n� such that Eq. (8) is a valid estimate of Svuðf Þ. Intuitively, this must the
case if:3 X1

i¼�1

wi½n� ¼ C, (9)

where C is a constant, since then
PI

i¼1 wi½n�v½n� ¼ C � v½n� and similarly for u½n� so that Eq. (8) simply becomes

bSvuðf Þ ¼ C2 y
I
� V Nðf ÞUN ðf Þ

� (10)

where VN ðf Þ ¼Ffv½n�g ¼
PN�1

n¼0 v½n�e�j2pfn is the DTFT of the whole signal and similarly for UNðf Þ. Within a
scaling factor, this is nothing else than the classical cross-periodogram, a quantity which despite having a
significantly reduced bias (NbNw) is unfortunately an unsuitable spectral estimator because it is not
consistent (i.e. its variance does not decrease with the number N of available data) [4]. The principle of
Rabiner’s method is to preserve the small bias implied by Eq. (10) (and even to cancel it) while still decreasing
its variance at the same time; this is achieved by taking advantage that most of the terms in the summation (8)
can be disregarded because they are theoretically zero. More specifically, all products V

ðiÞ
Nw
ðf ÞU

ðjÞ
Nw
ðf Þ�; iaj,

involving the DTFT of non-overlapping windows wi½n� and wj ½n� more distant than the cross-correlation
length between v and u are zero, as illustrated in Fig. 2 (in Fig. 2 the cross-correlation length of v and u is
denoted by L1 þ L2 for reasons to become clear later). Removing these terms from the summation (8) then

preserves the expected value of bSðRÞvu ðf Þ while decreasing its stochastic variability. This produces the refined

estimator:

bSðRÞvu ðf Þ ¼
y

I � q2 � q1

XI�q2�1

i¼q1

Xq2
q¼�q1

V
ðiþqÞ
Nw
ðf ÞU

ðiÞ
Nw
ðf Þ�, (11)
3Condition (9) will be formally proved in Section 3.1.
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where 0pq1; q2oI are set as small as possible so that only statistically correlated windows wiþq½n� and wi½n� are
kept in the summation.4 Eq. (11) defines Rabiner’s spectral estimator as originally introduced in Ref. [8],
although we have arrived to it herein from a more intuitive approach. It now remains to prove rigorously our
intuition that the so-defined bSðRÞvu ðf Þ is unbiased and statistically consistent.

3. Performance analysis of Rabiner’s estimator

Rabiner’s original approach only focused on finding an unbiased estimator bH1ðf Þ ¼ bSyxðf Þ=bSxðf Þ of the
FRF Hðf Þ. This indirectly led him to proposing Eq. (11) as a spectral estimator for Syxðf Þ and S2xðf Þ, which
statistical properties he actually did not study. The unbiasedness and consistency of Eq. (11) were later
demonstrated in Ref. [12]. In this section, we provide a simpler and yet more comprehensive approach to
analysing the bias and the variance of Rabiner’s spectral estimator. Into addition, our formulation provides
enlightening graphical interpretations.

3.1. Bias analysis

Let DM ðxÞ ¼ sinðMpxÞ= sinðpxÞ be the (non-normalised) Dirichlet kernel. Then the following result holds
true (see proof in Appendix A):

Lemma 1. The expected value of Rabiner’s spectral estimator (11) is given by

E bSðRÞvu ðf Þ
n o

¼

Z þ1=2
�1=2

Svuðf � lÞFðlÞdl, (12)

with

FðlÞ ¼ y � jW ðlÞj2 � e�jplDðq2�q1Þ �Dq2þq1þ1ðlDÞ. (13)

In the above, FðlÞ plays the role of a smoothing spectral window on the true cross-spectral density Svuðf Þ. In
order to investigate the effect of FðlÞ, let us rewrite Eq. (13) in the time-lag domain:

E bSðRÞvu ðf Þ
n o

¼
XN�1

k¼�Nþ1

f½k� � Rvu½k�e
�j2pfk, (14)

where

f½k� ¼F�1fFðlÞg ¼ y � R2w½k� �Pð�q1D;q2DÞ½k�. (15)

Without surprise the inverse DTFT of FðlÞ is a time-lag window f½k� which tappers the cross-correlation
function Rvu½k� just as g½k� does in B&T’s method—see Eq. (1). A closer look at Eq. (15) reveals that the
structure of f½k� is that of a convolution of the autocorrelation R2w½k� ¼

P
n w½nþ k�w½n� with the rectangular

window Pð�q1D;q2DÞ½k� ¼
Pq2

q¼�q1
d½k � qD�. This is illustrated in Fig. 3, where it is shown that such a structure

allows the synthesis of a piecewise flat window. At this stage, it becomes clear that Rabiner’s method defines
an unbiased spectral estimate provided that f½k� ¼ 1 for any k 2 ½�L1;L2� with �L1 and L2 the lower and
upper bounds of the interval spanned by Rvu½k�, since then:

E bSðRÞvu ðf Þ
n o

¼
XN�1

k¼�Nþ1

1 � Rvu½k�e
�j2pfk ¼ Svuðf Þ. (16)
4Note that product terms V
ðiÞ
Nw
ðf ÞU

ðiÞ
Nw
ðf Þ� for i ¼ 0; . . . ; q1 � 1 and i ¼ I � q2; . . . ; I � 1 are purposely disregarded from the summation

so as to make the estimator exactly unbiased instead of nearly unbiased. To see why, consider for instance the term V
ð0Þ
Nw
ðf ÞU

ð0Þ
Nw
ðf Þ�;

removing the bias it is inducing would require using segments �1;�2; . . . ;�q1 which are not available from the data record.
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L2L1

0

0q
1

q
2

q
1

q
2

R2w[k] q q [ k]

k

k (time-lag)

[k]

Rvu[k]
k (time-lag)

1

L 2-L1

Fig. 3. Structure of the lag-window f½k� in Rabiner’s estimator, which tapers the cross-correlation function Rvu½k�. The resulting estimator

is unbiased provided that the flat summit of f½k� completely covers the support ½�L1;L2� of Rvu½k�.

0

n

0
n

w[n]

0

n

wq[n]
q=-q

wq[n+k]

q

q=-q

q

Nw-1

Nw- Nw-

-q1 Nw- k q2 + k

|k|

q2 + 1
q2 Nw-1

-q1 Nw-
-q

1

Nw-1

Fig. 4. Condition for the lag-window f½k� to have a flat submit:
Pq2

q¼�q1
wq½nþ k�must be a constant on an interval large enough so that it

completely covers the support ½0;Nw � 1� of w½n� for any �L1pkpL2.
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After some trivial manipulations on Eq. (15), the condition that f½k� ¼ 1 in ½�L1;L2� becomes:

f½k� ¼ y �
Xq2

q¼�q1

R2w½k � qD� ¼ y �
X

n

w½n�
Xq2

q¼�q1

wq½nþ k� ¼ 1 8k 2 ½�L1;L2�. (17)

As illustrated in Fig. 4, a sufficient requirement for Eq. (17) to hold true is that
Pq2

q¼�q1
wq½nþ k� is a

constant on an interval large enough so that it completely covers the support of w½n�, i.e. 8n 2 ½0;Nw � 1� and
8k 2 ½�L1;L2�, since then y �

Pq2
q¼�q1

wq½nþ k� �
P

nw½n� is the product of three constants. This requirement is
achieved by imposing that (i) adjacent data windows sum up to a constant:

X1
i¼�1

wi½n� ¼ C (18)
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and (ii) that:

qiX
Li þNw

D

� �
� 1, (19)

where dxe stands for the smallest integer greater than or equal to x.

Theorem 1. Let �L1 and L2 be the lower and upper bounds of the support set of the cross-correlation Rvu½k� (i.e.

Rvu½k� ¼ 0, 8ke½�L1;L2�) and I ¼ bðN �NwÞ=Dc þ 1 the number of available segments. Then Rabiner’s
spectral estimator

bSðRÞvu ðf Þ ¼
ð
Pq2

q¼�q1
R2w½qD�Þ

�1

I � q2 � q1

XI�q2�1

i¼q1

Xq2
q¼�q1

V
ðiþqÞ
Nw
ðf ÞU

ðiÞ
Nw
ðf Þ� (20)

is unbiased provided that (i) the data windows are chosen according to condition (18) and (ii) qiXdðLi þNwÞ=
De � 1, i ¼ 1; 2.

Remarks.
(1)
5I

anal
The scaling factor y ¼ ð
Pq2

q¼�q1
R2w½qD�Þ

�1 is actually equal to ð
P

n w½n�Þ�1 as soon as the conditions of
Theorem 1 are fulfilled.
(2)
 The so-defined estimator is a generalisation of Welch’s estimator in the sense that Eq. (20) reduces to
Eq. (3) when q1 ¼ q2 ¼ 0. However, Welch’s estimator is unbiased only with white noise as
previously mentioned. Indeed, in that case L1 ¼ L2 ¼ 0 which implies with condition (19) that qiX0,
i ¼ 1; 2.

ðRÞ

(3)
 Note that conditions (18) and (19) automatically imply that bS2u ðf Þ is an unbiased spectral estimator as

well, for the support set of R2u½k� is completely included in that of Rvu½k� ¼ ðh � R2uÞ½k�.
It is noteworthy that, as opposed to the previous references on the subject, Theorem 1 gives a simpler and
yet more comprehensive set of conditions for Rabiner’s estimator to be unbiased. In particular our
formulation (20) does not require any condition on the length Nw of the data-window and Nw is even allowed
to be smaller than the cross-correlation length L2 þ L1; in such a case, unbiasedness is simply reached by
increasing the value of qi according to Eq. (19). To our knowledge, this degree of freedom on Nw is unique in
non-parametric spectral analysis and has never been recognised before. It is a very useful property which, for
example, allows implementing Rabiner’s estimator with short fixed-length FFT’s while still providing
unbiased results; this is a drastic potential improvement of the technique currently used in commercial spectral
analysers.
3.2. Variance analysis

Using the same approach as for the bias, the following results holds for the variance5 of Rabiner’s spectral
estimator (see proof in Appendix B):

Theorem 2. The normalised variance of Rabiner’s spectral estimator is:

Var bSðRÞvu ðf Þ
n o

¼
ð
Pq2

q¼�q1
R2w½qD�Þ

�2

ðI � q2 � q1Þ
2

Z Z þ1=2
�1=2

S2vðf � l1ÞS2uðf � l2Þ � Fðl1; l2Þ � dl1 dl2 with Fðl1; l2Þ

¼ D2
q2þq1þ1

ðl1DÞ �D2
I�q2þq1

½ðl2 � l1ÞD� � jW ðl1Þj2 � jW ðl2Þj2; 0ojf jo1
2
. ð21Þ
t is implicitly assumed throughout this paper that the number I of segments is large in Welch’s estimator; therefore our variance

ysis does not account for transient effects due to windowing as described in Ref. [13].



ARTICLE IN PRESS

0

k (time-lag)

[k]2

q
2

+Nw-1-q
1

Nw+1

I = (q1+q2) Nw+2

S = (q1+q2) 2Nw-2

1

q
2

+ Nw-q
1

Nw-

Fig. 5. The variance of Rabiner’s spectral estimator is proportional to the energy Ef of the lag-window f½k� as illustrated by the shaded

area. The latter is lower and upper bounded by the areas of two rectangles of lengths LI and LS , respectively.
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This formula seems in accordance with that of Ref. [12]. It proves that Rabiner’s estimator is
consistent since its variance tends to zero as the number N of available data, and hence of averages I,
becomes large; yet it is difficult to interpret it in this form. Relying on the usual assumptions of large samples
(I large) and smooth spectral densities, the following more practical formula approximately holds true (see
proof in Appendix B):

Corollary 1. The normalised variance of Rabiner’s spectral estimator is asymptotically:

Var bSðRÞvu ðf Þ
n o

S2vðf ÞS2uðf Þ
’

Ef

DðI � q2 � q1Þ
with Ef ¼

X
k

f½k�2; 0ojf jo1
2. (22)

This asymptotic formula better evidences that the variance is proportional to the energy Ef of the lag-
window f½k�. Its interpretation is illustrated in Fig. 5. If required, the energy Ef can be computed from the
following expression:

Ef ¼ ðq2 þ q1 þ 1Þ

Pq1þq2
q¼�q1�q2

R2w � R2wð Þ½qD�

ð
Pq2

q¼�q1
R2w½qD�Þ

2
, (23)

which involves the convolution of R2w with itself (see Appendix B). Although formulae (22) and (23) now
allow straightforward numerical computation of the variance, it is still difficult to assess qualitatively how the
parameters w½n�, Nw, D and qi will affect the obtained results. Turning back to Fig. 5, one can see that Ef is
lower bounded by the area of a rectangle of unit height and of lengthLI ¼ ðq2 þ q1ÞD� 2Nw þ 2D, and upper
bounded by the area of a rectangle of unit height and of length LS ¼ ðq2 þ q1ÞDþ 2Nw � 2. Hence, a
reasonable approximation for Ef is the average of these two areas.

Corollary 2. The asymptotic normalised variance of Rabiner’s spectral estimator can be approximated by

Var bSðRÞvu ðf Þ
n o

S2vðf ÞS2uðf Þ
’
ðq2 þ q1 þ 1Þ

ðI � q2 � q1Þ
; qia0; i ¼ 1; 2; 0ojf jo1

2
. (24)

Several simulations have confirmed that the above remarkably simple approximation is quite sharp.
Furthermore it has the following important interpretations:
(1)
 the normalised variance is approximately independent of the shape of the data-window w½n�, provided that
w½n� satisfies condition 9.
(2)
 the normalised variance is a crescent function of q2 and q1, indicating that Rabiner’s spectral esti-
mator has always more variability than its Welch’s counterpart [12]; this is the price to pay for
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achieving unbiasedness. In order to minimise the variance of Rabiner’s estimator while still keeping
unbiasedness as required by Theorem 1, q2 and q1 should therefore be set such that qi ¼

dðLi þNwÞ=De � 1, i ¼ 1; 2.
Finally, using the large sample approximation I � q2 � q1

� ��1
’ I�1 ’ N=D and plugging qi ’ ðLi þNwÞ=

D� 1=2, i ¼ 1; 2 into Eq. (24) (possibly allowing qi to be non-integer for the sake of simplicity), the normalised
variance can finally be re-expressed as

Var bSðRÞvu ðf Þ
n o

S2vðf ÞS2uðf Þ
’

1

N
ðL2 þ L1 þ 2NwÞ; qia0; 0ojf jo1

2
. (25)

This final result clearly evidences that the normalised variance of Rabiner’s estimator is essentially a crescent

function of the autocorrelation length (L1 þ L2) and the window length Nw.

4. Some practical guidelines

We are now in a position to give a complete algorithm for the measurement of FRF’s by means of Rabiner’s
method. We consider here the typical case where fx½n�gN�1n¼0 is the input to a linear time-invariant system and

fy½n�gN�1n¼0 is a noisy measurement of the output; hence bH1ðf Þ ¼ bSyxðf Þ=bS2xðf Þ is the optimal estimator to be

used. This is however without loss of generality since the same procedure will apply in exactly the same way to
other estimators, e.g. H2, H3, Hv, Ha, etc.

4.1. Algorithm for FRF measurement
(1)
 Estimation of Syxðf Þ:
(a) Get a first guess of the support set ½�L1;L2� spanned by the cross-correlation Ryx½k�.
(b) Choose a data-window fw½n�gNw�1

n¼0 that satisfies
P1

i¼�1 w½n� iD� ¼ C for a given length Nw and time
increment D40.

(c) Set the values of q2 and q1 as small as possible while still keeping unbiasedness as required by Theorem
1, i.e. qi ¼ dðLi þNwÞ=De � 1, i ¼ 1; 2.

(d) Compute the discrete Fourier transform

Y
ðiÞ
Nw
ðf kÞ ¼

XiDþNw�1

n¼iD

w½n� iD� � v½n�e�j2pðkn=NFFTÞ; i ¼ 0; . . . ; I � 1 (26)

on the frequency grid f k ¼ k=NFFT, k ¼ 0; . . . ;NFFT � 1, by using the FFT algorithm evaluated on

NFFTXNw points. Repeat the computation for X
ðiÞ
Nw
ðf kÞ.

(e) Get an estimate bSðRÞyx ðf kÞ of Syxðf Þ at frequency f ¼ f k by using Eq. (11).
(2)
 Estimation of S2xðf Þ:
Repeat steps (1a)–(1e) after replacing y with x. Use all the same parameters as for Syxðf Þ.
(3)
 Estimation of Hðf Þ:

bH ðRÞ1 ðf kÞ ¼
bSðRÞyx ðf kÞ=bSðRÞ2x ðf kÞ. (27)
4.2. Setting the algorithm parameters

4.2.1. The autocorrelation length

The support set ½�L1;L2� spanned by the cross-correlation Ryx½k� is ideally obtained from physical
consideration or, if not possible otherwise, from inspection of the inverse DTFT of the raw cross-
periodogram: FFT�1fFFTfy½n�g � FFTfx½n�g�Þ where it is assumed that NbL1 þ L2. It is important that L1
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and L2 be not over-estimated such as to keep the FRF variance as low as possible. This assumes implicitly that
h½n� is a finite-length impulse response (FIR). In the case of infinite-length impulse responses (IIR), L1 and L2

should be truncated to some reasonable values after which the effective length of the IR can be regarded as
negligible.

4.2.2. The data-window

Typical data-windows that (approximately or exactly) satisfy
P1

i¼�1 w½n� iDk� ¼ C for some Dk40 are the
rectangular, Hanning and Hamming windows with Nw=D ¼ 2; 3; 4; . . . the Blackman window with Nw=D ¼
3; 4; 5; . . . the Parzen window with Nw=D ¼ 2k, k ¼ 1; 2; 3; . . . and the Bartlett (triangular) window with
Nw=D ¼ 2k, k ¼ 1; 2; 3; . . . : As demonstrated in Section 3.2, the performance of the algorithm virtually does
not depend on the window type, provided that condition (19) is fulfilled. This is true for FIR’s, but not
necessarily for IIR’s, the reason being that a IIR must be gently tapered to zero in Eq. (14) in order to be
reasonably approximated by a FIR. Indeed, for f½k� to have smooth tails that minimise boundary effects,
smooth data-windows should be used. Hence the Hanning, Blackman or Parzen windows should be favoured as
opposed to the Hamming, Bartlett, and rectangular (worst option) windows.

4.2.3. The time increment

The time increment 1pDpNw strongly affects the computational burden of the algorithm. If D is set too small,
then not only is the number I of segments to be processed enlarged, but also the number of cross-terms
ðq1 þ q2 þ 1Þ. Therefore, we recommend to set D as small as allowed by the type of data-window, that is for instance
Nw=2 (50% overlap) with Hanning and Parzen windows, and Nw=3 (67% overlap) with a Blackman window.

4.2.4. The data-window length

It is clear from the conclusions of Section 3.2 that the data-window length Nw should be set as small as
possible in order to minimise the estimation variance. As discussed in Section 3.1, there is no limit in theory to
setting Nw arbitrarily small, because Rabiner’s estimator can handle the case NwoL1 þ L2 þ 1 (window
length o impulse response length). However, the practical limit is dictated by the computational demand
which increases considerably as Nw becomes small because the number ðq1 þ q2 þ 1Þ of cross-terms in Eq. (11)
is then enlarged.

4.2.5. The FFT length

The choice of the FFT length strongly depends on whether the user wishes an estimation of the IR (time-
domain analysis) or of the FRF (frequency-domain analysis). Should the proposed algorithm be used for
estimating an IR, viz bh½n� ¼ FFT�1f bHðf kÞg, then it must be that NFFTXL1 þ L2 in order to avoid time-aliasing
in bh½n�. Should the proposed algorithm be used for estimating a FRF, e.g. to be subsequently used in
frequency-domain parametric identification, then the only requirements are (i) NFFTXNw and (ii)
NFFTX1=Df where Df is a user specified frequency resolution.

4.3. Performance of Rabiner’s FRF estimator

4.3.1. Bias

Referring back to Eq. (6), it is now straightforward to check that Rabiner’s FRF estimator bH ðRÞ1 ðf Þ is

unbiased provided that both bSðRÞyx ðf Þ and
bSðRÞ2x ðf Þ are unbiased.

4.3.2. Variance

The normalised variance of bH ðRÞ1 ðf Þ is [3,4]

Var bH ðRÞ1 ðf Þ
n o
jH1ðf Þj

2
’

Var bSðRÞyx ðf Þ
n o
jSyxðf Þj

2
þ

Var bSðRÞ2x ðf Þ
n o
S2xðf Þ

2
� 2R

Cov bSðRÞyx ðf Þ;
bSðRÞ2x ðf Þ

n o
Syxðf ÞS2xðf Þ

8<
:

9=
;

2
64

3
75. (28)
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Using the results derived in Section 3.2, it is readily checked that the above expression is minimised provided

that the same parameters are used in the estimation of bSðRÞyx ðf Þ and
bSðRÞ2x ðf Þ. Then,

Var bH ðRÞ1 ðf Þ
n o
jH1ðf Þj

2
’

Ef

D I � q2 � q1

� � � 1� g2yxðf Þ

g2yxðf Þ
; 0ojf jo1

2
(29)

with g2yxðf Þ the squared-magnitude coherence between signals y and x.

5. Examples of application and comparisons

This section illustrates the practical use of Rabiner’s method for the measurement of FRF’s. The first
example provides an illustration of the theoretical results derived in the former sections. The second example is
concerned with the measurement of the mechanical impedance of a lightly damped structure together with the
extraction of its modal parameters, such as commonly encountered in experimental modal analysis.

5.1. Example 1

This first example deals with the measurement of a running average filter of L ¼30 coefficients, i.e.

y½n� ¼
X29
k¼0

1

30
x½n� k� þ b½n�, (30)

where b½n� accounts for additive measurement noise. This is a difficult task to carried out in the frequency-
domain, because the FRF of the running average filter exhibits a series of zeros (see Fig. 7) which rapidly get
smeared out due to the excessive leakage introduced by Welch’s spectral estimator. The inverse DTFT of the
so-measured FRF then suffers from considerable distortion when compared with the expected box-shape of
the theoretical result.

The following experiments were carried out. A set of input–output signals were simulated according to
model (30), the input x being a white Gaussian noise, and the output y having a signal-to-noise ratio of 10 dB.
The signal length was N ¼ 5000 samples. These details are resumed in Table 1. Welch’s and Rabiner’s
estimators were then implemented with a 32-sample Hanning window (remember that having Nw larger than
the IR length L ¼ 30 is necessary for Welch’s algorithm only), and 50% overlap; thus D ¼ ð1� 50=100Þ
Nw ¼ 16. The FFT length was set to NFFT ¼ 512 frequency lines so as to keep a fine frequency resolution, but
smaller values could have been used just as well provided that NFFTXNw as indicated in Section 4.2.4. The
setting of parameters q1 and q2 is now purposely detailed. First, we knew that the IR of interest was (i) causal
and (ii) was excited by white noise; point (i) then implied that the cross-correlation Ryx½k� was also causal and
point and (ii) that it had the same length as the IR. Hence L1 ¼ 0 and L2 ¼ L� 1 ¼ 29 (see Fig. 3) and
straight application of Eq. (19) gave the conditions

q1X
L1 þNw

D

� �
� 1 ¼

0þ 32

16

� �
� 1 ¼ 1 (31)
Table 1

Parameter settings for example 1

Signal length N ¼ 5000 samples

Window type Hanning

Window length Nw ¼ 32

Overlap 50%

FFT length NFFT ¼ 512 lines

Additive noise type Gaussian

Input signal-to-noise ratio 1

Output signal-to-noise ratio 10 dB
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Fig. 6. Measured FRF (averaged over 50 experiments). Comparison of Rabiner’s (thin line) and Welch’s (thick line) estimates with the

true FRF (dotted line). Note that Rabiner’s estimate is perfectly superposed on the true FRF over the whole frequency range.
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Fig. 7. Measured IR (1 experiment). Comparison of Rabiner’s (thin line) and Welch’s (thick line) estimates with the true IR (dotted line).

Note that Rabiner’s estimate is perfectly superposed on the true FRF.

J. Antoni / Journal of Sound and Vibration 294 (2006) 981–1003 993
and

q2X
L2 þNw

D

� �
� 1 ¼

29þ 32

16

� �
� 1 ¼ 3 (32)

for Rabiner’s estimate to be unbiased. Eventually, the smallest possible values q1 ¼ 1 and q2 ¼ 3 were retained
so as to minimise variability as explained in Section 4.1.

The measured FRF and FIR obtained with these parameter settings are displayed in Figs. 6 and 7,
respectively. As expected, Welch’s estimate exhibits excessive leakage in the frequency-domain, which
seriously deteriorates the expected structure of the FRF. This results in a highly distorted IR in the time-
domain. On the other hand, Rabiner’s estimator was perfectly able to recover the theoretical FRF, and hence
the correct IR. As explained in Section 3.1, this is independently of the data-window length Nw. However,
the price of Rabiners’ method versus Welch’s method is a higher variance. Using either Eq. (22) or (24) of
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Section 3.2, the variance of Rabiner’s method was found to be 0.0163. This is to be compared with 0.0031 for
Welch’s method, for which only Eq. (22) can be used, that is a factor five difference.

Incidentally, the simplicity of the IR considered in the present example allows an easy illustration of the
mechanism of Rabiner’s method. Fig. 8 displays the measured IR’s for several possible values of the pair
fq1; q2g. It is seen that, as explained in Section 3.1, the auto-correlation function R2w½k� is translated q1 times to
the left and q2 times to the right by steps of D samples. The summation of these translates then produces the
lag-window f½k�, with a flat summit if q1 þ q2 is large enough. The condition to get an unbiased IR is then that
the flat part of f½k� completely covers the support of h½n�, that is the interval ½0; 29� in the present case. This is
seen to occur for q1X1 and q2X3 in Fig. 8, in accordance with results (35) and (36).

Finally, the same experiment was further repeated for different window lengths Nw. Results were also
compared with the so-called ‘‘improved FRF’’ method proposed by Schoukens et al. which, as far we known,
is the only alternative introduced so far that can cope with the present issue [9,5]. The ‘‘improved FRF’’
method is based on recognising that short-time DTFT’s lead to transient effects, see Fig. 9, which can be
compensated for in a recursive manner. In order to briefly explain the rationale of the method, let e½n� ¼

y½n�wi½n� � h � ðx½n�wi½n�Þ be the transient produced by the difference of the ith output segment with the system
response to the ith input segment, as illustrated in Fig. 9. In Welch’s method, it is erroneously assumed that
e½n� � 0 and it is actually where leakage comes from. Nevertheless, if e½n� was known, Welch’s FRF
measurement could be corrected by extracting from signal e all the information still correlated with x. This is
the idea of the ‘‘improved FRF’’ method which recursively estimates e from the current IR estimate:

e½n� ¼ y½n� � bhðrÞ � x½n�; bH ðrþ1Þ ¼ bH ðrÞ þ bSðW Þex =bSðW Þ2x : (33)

Note that this algorithm is computationally demanding as it involves an inverse DTFT and a filtering
operation at each recursion until convergence is reached. Into addition, its exact performance analysis is
difficult and so far no general analytical results have been derived in this direction.
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Fig. 9. Principle of the ‘‘improved FRF’’ method: the division of the signal into short-time segments implicitly produces transient effects

which can be compensated for given the knowledge of the IR.
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The comparisons between Welch’s, Rabiner’s and the improved FRF methods are displayed in Fig. 10(a–d)
in terms of the normalised bias, the normalised variance, and the normalised mean square error (MSE),
respectively.6 These statistics have been obtained over 200 runs and have also been frequency-averaged. It can
be verified from these figures that:
(1)
6N
Welch’s method requires excessively long windows before it can significantly reduce its induced leakage,
and hence its MSE.
ote that: normalised squared bias + normalised variance ¼ normalised MSE.
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Table 2

Parameter settings for example 2

Signal length N ¼ 100; 000 samples

Window type Hanning

Window length Nw ¼ 512

Overlap 50%

FFT length NFFT ¼ 2048 lines

Additive noise type Gaussian

Input signal-to-noise ratio 1

Output signal-to-noise ratio 10 dB

J. Antoni / Journal of Sound and Vibration 294 (2006) 981–1003996
(2)
7I

syste

whe
As expected Rabiner’s method has a very small bias. However, its variance increases markedly with Nw

and therefore its MSE becomes larger than that of the other methods when NwbL. This is consistent
with the results derived in Section 3.2: again, we recommend using short data-windows with Rabiner’s
method.
(3)
 With respect to bias the ‘‘improved FRF’’ method shows a rather similar behaviour than Rabiner’s
method for large values of Nw, yet it does not perform as well for reasonable values of Nw. The ‘‘improved
FRF’’ method actually requires Nw being significantly larger than L (say NwX4L) before reaching
satisfying results,7 an observation that is consistent with the conclusion of Ref. [9]. This plus the fact that it
requires the most computational time impose some limitations to the latter method when used with long or
infinite-length IR as will be the case in the next example.
5.2. Example 2

This second example deals with the frequency-domain measurement of a lightly damped IIR. This is a case
of actual importance since it is commonly encountered in the experimental modal analysis of mechanical
structures. In this situation, Rabiner’s estimator cannot be made exactly unbiased because the infinite-length
IR must be approximated by an equivalent finite-length IR; as explained in Section 2.2 if q1 and/or q2 were
made as large as possible, then the corresponding spectral estimate would reduce to the classical periodogram
and would not be consistent. Nevertheless, even with under-estimated q1 and q2, Rabiner’s method still
provides a drastic improvement over Welch’s method which imposes that q1 ¼ q2 ¼ 0, and also over the
‘‘improved FRF’’ method which poorly copes with IIR [9]. This is illustrated here on a synthetic mechanical
impedance with three natural frequencies at 0.1, 0.19 and 0.22 (normalised frequency) with damping ratios of
1.60%, 0.84% and 0.73%, respectively. The corresponding FRF was simulated using the model

HðzÞ ¼
1� 1:5533z�1 þ 2:4826z�2 � 1:5224z�3 þ 0:9606z�4

1� 2:7018z�1 þ 4:9726z�2 � 5:7292z�3 þ 4:8737z�4 � 2:5953z�5 þ 0:9415z�6
, (34)

with z ¼ ej2pf . A set of input–output signals was generated according to this model, the input x being a white
Gaussian noise, and the output y having a signal-to-noise ratio of 10 dB. The signal length was N ¼ 100; 000
samples. These details are resumed in Table 2. Contrary to the previous example, we are here in a situation
where we did not know a priori the IR (effective) length L. Consequently, it had to be ‘‘guessed’’ from the
empirical cross-correlation R̂yx½k� as suggested in Section 4.2.1. Fig. 11 displays this quantity measured
directly from FFT�1fFFTfy½n�g � FFTfx½n�g�g with a FFT length of 217 lines. It can be seen from this figure
that the cross-correlation is (i) causal (as expected from a physical system excited by white noise) and (ii) has
an effective length of about 500 samples (after this limit all non-zero values seem to pertain to estimation
noise). This preliminary analysis therefore suggested that L1 ¼ 0 and L2 ’ 500. Since for Welch’s estimator
the customary practice is to set NwXL1 þ L2 þ 1, we chose Nw ¼ 512. The same Nw was used with Rabiner’s
t is remarkable that the ‘‘improved FRF’’ method achieves a better MSE than Rabiner’s method for long windows (as compared to the

m time-constant), and vice versa for short windows. Work is currently in progress so as to provide practical guidelines for deciding

n one method should be preferred to the other.
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estimator, but once again smaller values could have been used—and are even recommended for the reasons
mentioned in Section 3.2. A Hanning window was used with 50% overlap so that D ¼ ð1� 50=100ÞNw ¼ 256,
and FFT’s were run with NFFT ¼ 2048 frequency lines. Straight application of Eq. (19) then gave the
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Fig. 13. Measured coherence function g2yxðf Þ (Rabiner: thin line, Welch: thick line). Note that the sharp dips at the pole locations in

Welch’s estimate are artifacts due to leakage; they are suppressed in Rabiner’s estimate. Having an accurate measurement of the coherence

function is of importance in the evaluation of the FRF variance as given by Eq. (29).

Table 3

Comparison of true and estimated natural frequencies

f 1 Std f 2 Std f 3 Std

True 0.1 0.19 0.22

Welch 0.10001 0.2 E-4 0.18999 0.2 E-4 0.21991 0.2 E-4

Rabiner 0.10000 0.2 E-4 0.19000 0.2 E-4 0.22000 0.2 E-4
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conditions

q1X
L1 þNw

D

� �
� 1 ¼

0þ 512

256

� �
� 1 ¼ 1 (35)

and

q2X
L2 þNw

D

� �
� 1 ¼

500þ 512

256

� �
� 1 ¼ 3. (36)

The measured FRF’s are displayed in Fig. 12 together with the resulting bias (absolute magnitude in dB). In
accordance with Eq. (7) of Section 3.2, the bias was found to have strong maxima in the vicinity of the poles
locations where the effect of leakage was the most severe. Note that in the case of an IIR, Rabiner’s estimator
could not completely remove the bias, however its superiority over Welch was still clearly verified. The
variance was found to be 0.0130 for Rabiner and 0.0025 for Welch, i.e. a factor five difference. Again, this
increased variability is the price to pay for a low-bias estimation. Although this is not necessarily what the
engineers aims at, there are however important applications where it is of prime importance to favour
unbiasedness. One such application is modal parameter identification as illustrated below.

Following the customary approach in modern experimental modal analysis, the measured FRF’s were
subsequently fed into a parametric frequency-domain method in order to extract the modal parameters. In
such a situation, knowledge of the estimation variance as given by Eq. (29) is of prime importance as it allows
the use of very efficient identification techniques, such as the frequency-domain maximum likelihood (FDML)
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Table 4

Comparison of true and estimated damping ratios

z1 (%) Std (%) z2 (%) Std (%) z3 (%) Std (%)

True 1.60 0.84 0.73

Welch 2.16 0.02 1.14 0.01 0.97 0.01

Rabiner 1.60 0.02 0.84 0.01 0.73 0.01
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Fig. 14. Estimated natural frequencies f 1, f 2, f 3 and damping ratios z1, z2, z3 as functions of the window size Nw. Results are averaged

over 200 experiments. The true values are indicated in each subplot. The thick and thin lines refer to Welch’s and Rabiner’s estimates,

respectively.
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algorithm [5,14] (Fig. 13). Some results of the FDML algorithm with Nw ¼ 512 are displayed in Tables 3
and 4, in terms of the averaged estimated natural frequencies and damping ratios together with their standard
deviations as obtained from 200 experiments. Similar results are displayed in Figs. 14 and 15 for different
values of the window length Nw. As expected, it is seen that Rabiner’s method produces estimates with an
excellent accuracy whatever the window length, whereas Welch’s method can only achieve a similar quality for
very long windows8 (say NwX4L). This is particularly true for the estimation of damping ratios, which are
known to be a major problem in non-parametric frequency-domain identification; they are systematically
8Incidentally, this experiment makes it clear that Welch’s method can achieve nearly as accurate results as Rabiner’s method provided

that long enough windows are used. However, doing so is not always possible. For instance if a sampling frequency 10 times as great was

used to analyse the system of example 2, a window length of about 40 960, i.e. as many lines in the frequency domain, would be necessary

with Welch’s method to get accurate damping ratios, a value that is beyond the capability of many commercial spectral analysers.
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window size Nw. The thick and thin lines refer to Welch’s and Rabiner’s estimates, respectively.
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over-estimated in Welch’s method. Very interestingly, Fig. 15 also shows that when it comes to the
identification of modal parameters, the standard deviation of Rabiner’s method is only slightly inflated as
compared to Welch’s method, and the difference even tend to disappear when increasing the window length.
This is in clear contrast with what was previously observed with the FRF variance, e.g. in Fig. 10(b). The exact
reason of this appealing behaviour remains to be investigated.9 In any case it provides one more argument in
favour of Rabiner’s method. As a conclusion to this experiment, the accuracy of Rabiner’s method plus the
fact that it is accompanied with an easy formula for the computation of its variance, e.g. as required in
maximum likelihood identification, make it a foremost candidate to be used in subsequent modal-parameters
identification algorithms.
6. Conclusion

The aim of this paper was a reviving of the so-called Rabiner’s method. Rabiner’s method is dedicated to
the frequency-domain non-parametric measurement of frequency response functions and has the major, and
rather unique, advantage of producing leakage-free estimates even though it is based on the discrete-time
Fourier transform. More than giving a mere review of the method, this paper has presented it through a simple
9One possible explanation is that the standard deviation of the estimated modal parameters is a function of both the standard deviation

and the bias of the measured FRF due to the highly nonlinear character of the parametric identification process; the reduced bias of

Rabiner’s FRF may then result in estimated modal parameters with a compensated variability.
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and comprehensive formulation which has lead to new insights and some original analytical results. In
particular, we have established the exact conditions under which Rabiner’s estimator is unbiased. An
interesting finding is that unbiasedness can be achieved whatever the length of the data-window, be it longer or
shorter than the impulse response. This provides potential improvement of the technique currently used in
commercial spectral analysers with fixed-sized short FFT’s. Another useful finding is a sharp approximation
of the estimator variance which can be readily used for a fast evaluation of the estimates accuracy. Knowledge
of the estimation variance is also of first importance when parametric identification is to be applied
subsequently on the measured frequency response responses as is customary in modern experimental modal
analysis. These results have finally led to a number of practical guidelines so as how to optimally set the
algorithm parameters. When concerned with the bias issue, the superiority of Rabiner’s estimator has been
verified on realistic examples, and in particular in the case of lightly damped (infinite-length) impulse responses
such as those commonly encountered in the vibration analysis of mechanical structures. In such situations it
provides accurate estimates of the damping ratios which cannot be achieved by other classical spectral
estimators. One disadvantage of Rabiner’s estimator is that it suffers from a higher variability than its
competitors. This may well be the reason why other researchers in the field have not accepted it. However, we
argue that this is no more a problem nowadays thanks to the huge capacity of current data acquisition system
which allows recording very long time signals, in consequence of which the variance of Rabiner’s algorithm
can easily be pulled down to very small values.

We hope this correspondence will give a new breath to a technique whose contribution, we think, had
simply been forgotten for many years, although it deserved real attention due to its high accuracy and
computational efficiency.
Appendix A. Bias

Our analysis is based on Cramér’s spectral decomposition of the two stationary random signals v and u, viz:

v½n� ¼

Z þ1=2
�1=2

ej2pfn dV ðf Þ (A.1)

and similarly for u½n�, where dV ðf Þ and dUðf Þ are spectral increments such that

EfdV ðf ÞdUðf � lÞ�g ¼ Svuðf ÞdðlÞdf dl; jljo1
2
. (A.2)

Substituting Cramér’s spectral decomposition into the definition of V
ðiþqÞ
Nw
ðf Þ and U

ðiÞ
Nw
ðf Þ then yields

V
ðiþqÞ
Nw
ðf Þ ¼

Z þ1=2
�1=2

dV ðf � lÞW iþqðlÞ, (A.3)

where W iþqðlÞ ¼Ffwiþq½n�g and similarly for U
ðiÞ
Nw
ðf Þ. In turn, Eq. (11) then becomes

bSðRÞvu ðf Þ ¼
y

I � q2 � q1

XI�q2�1

i¼q1

Xq2
q¼�q1

Z Z þ1=2
�1=2

dV ðf � l1ÞdUðf � l2Þ
�W iþqðl1ÞW iðl2Þ

�. (A.4)

Taking the expected value and making use of property (A.2) of the spectral increments gives

E bSðRÞvu ðf Þ
n o

¼
y

I � q2 � q1

XI�q2�1

i¼q1

Xq2
q¼�q1

Z þ1=2
�1=2

Svuðf � lÞW iþqðlÞW iðlÞ
� dl. (A.5)

The last step is to note that W iþqðlÞ ¼W ðlÞe�j2plðiþqÞD with W ðlÞ ¼Ffw½n�g so that, finally

XI�q2�1

i¼q1

Xq2
q¼�q1

W iþqðlÞW iðlÞ
�
¼ W ðlÞ
�� ��2 � ðI � q2 � q1Þ � e

�jplDðq2�q1Þ �Dq2þq1þ1ðlDÞ (A.6)

from which Eqs. (12) and (13) immediately follow.
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Appendix B. Variance

By making use of expression (A.3) and assuming that the measurements are approximatively Gaussian for
the sake of simplicity, it readily comes that (0ojf jo1

2
):

Var bSðRÞvu ðf Þ
n o

¼
y

I � q2 � q1

� �2

�
X

�q1pq;spq2
q1pr;moI�q2

E V
ðmþqÞ
Nw
ðf ÞV

ðrþsÞ
Nw
ðf Þ�

n o
E U

ðrÞ
Nw
ðf ÞU

ðmÞ
Nw
ðf Þ�

n o
. (B.1)

From the previous analysis of the bias, E V
ðkÞ
Nw
ðf ÞV

ðlÞ
Nw
ðf Þ�

n o
is known to depend only on the index difference

k � l. Therefore, setting j ¼ q� s and i ¼ r�m in Eq. (B.1) gives

Var bSðRÞvu ðf Þ
n o

¼
y

I � q2 � q1

� �2

�
X
m;i

E U
ðmþiÞ
Nw
ðf ÞU

ðmÞ
Nw
ðf Þ�

n oX
q;j

E V
ðmþqÞ
Nw
ðf ÞV

ðmþqþi�jÞ
Nw

ðf Þ�
n o

. (B.2)

The last sum in the above equation expands as

X
q;j

E V
ðmþqÞ
Nw
ðf ÞV

ðmþqþi�jÞ
Nw

ðf Þ�
n o

¼

Z þ1=2
�1=2

S2vðf � l1ÞjW ðl1Þj2
Xq2

q¼�q1

Xqþq1

j¼q�q2

e�j2pl1ðj�iÞD dl1, (B.3)

where
Pq2

q¼�q1

Pqþq1
j¼q�q2

e�j2pl1ðj�iÞD ¼ ej2pl1iD �D2
q2þq1þ1

ðDl1Þ which still depends on index i. The middle sum

times ej2pl1iD expands as

X
m;i

ej2pl1iD � E U
ðmþiÞ
Nw
ðf ÞU

ðmÞ
Nw
ðf Þ�

n o
¼

Z þ1=2
�1=2

S2uðf � l2ÞjW ðl2Þj2
XI�q2�1

m¼q1

XI�q2�1�m

i¼q1�m

e�j2pðl2�l1ÞiD dl2, (B.4)

where
PI�q2�1

m¼q1

PI�q2�1�m
i¼q1�m e�j2pðl2�l1ÞiD ¼ D2

I�q2�q1
ðD½l2 � l1�Þ. Putting all results together then gives Eq. (21).

Furthermore if I is assumed large, then D2
I�q2�q1

ðDxÞ ’ ðI � q2 � q1ÞdðxÞ=D in the vicinity of x ¼ 0. Hence,

Var bSðRÞvu ðf Þ
n o

’
S2vðf ÞS2uðf Þ

DðI � q2 � q1Þ

Z þ1=2
�1=2

y2 �D2
q2þq1þ1

ðlDÞ � jW ðlÞj4 dl, (B.5)

where S2vðf Þ and S2uðf Þ have been brought out from the integral because they are assumed smooth functions

of frequency. Note next that y2 �D2
q2þq1þ1

ðlDÞ � jW ðlÞj4 ¼ jFðlÞj2 as defined in Eq. (13). Therefore,Z þ1=2
�1=2

jFðlÞj2 dl ¼ y2
X

k

f½k�2 ¼ y2ðq2 þ q1 þ 1Þ
Xq1þq2

q¼�q1�q2

ðR2w � R2wÞ½qD�, (B.6)

where ðR2w � R2wÞ½qD� ¼
P

k R2w½k þ qD�R2w½k� and y ¼ ð
Pq2

q¼�q1
R2w½qD�Þ

�1. Inserting the latter results into

Eq. (B.5) then yields Eqs. (22) and (23).
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