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Abstract

In this research, an approach to vibration delocalization of nearly periodic structures using piezoelectric networks with
active coupling enhancement is presented. Piezoelectric networks are synthesized to reduce mode localization by absorbing
the vibratory mechanical energy into the electric circuits and distributing it through an additional strong electrical wave
channel. The system electromechanical coupling effect is further increased through the use of active actions via negative
capacitance circuits, which will enhance the treatment’s delocalization capability. The integrated system is analyzed
through modal analysis and transfer matrix analysis. A localization index is defined based on the Lyapunov exponent and
used to evaluate the effectiveness of the proposed treatment. Experiments are carried out to validate the theoretical
findings. The results demonstrated that, for the range of investigation, the system vibration localization level can be
effectively reduced by piezoelectric networking, and the system performance can be further improved by the active
coupling enhancement approach via negative capacitance circuits.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic structures have been widely applied in a variety of engineering applications, such as turbo-
machinery bladed-disks, satellite antennae and space trusses. These structures are designed to contain identical
substructures that form a spatial periodicity. In an ideal situation, where the substructures are indeed
identical, the vibration energy is uniformly distributed over the substructures, and mode shapes are extended
throughout the substructures without attenuation. However, in realistic situations, there are always small
differences among the substructures, hereafter referred to as mistuning, such as blade-to-blade differences in
geometry and material properties due to variation in material properties, manufacturing tolerance, and in-
service degradation, etc. These small mistuning could change the dynamic behavior of the periodic structures
(now become so-called nearly or mistuned periodic structures) drastically compared to that of the perfect
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Fig. 1. (a) Schematic of period structure and (b) periodic structure integrated with coupled piezoelectric circuit network.

structures. A phenomenon known as localization could occur under certain circumstances [1-4], especially
when the couplings among substructures are weak. In a localized mode, vibration energy is confined to a small
region of the structure, resulting in increased stresses and amplitudes locally. The occurrence of mode
localization could cause severe damage to the structure.

To date, most of the relevant research has concentrated on exploring the cause of vibration localization
[5-8] and predicting the localized response [9—13]. The dynamic properties of periodic structures have often
been studied from a wave perspective [14,15] utilizing the transfer matrix approach and the Lyapunov
exponents were frequently used to characterize localization [16-19]. While research on these fundamental
aspects of localization is extensive, few studies have been performed in developing methods to reduce or
control vibration localization in nearly periodic structures. Castanier and Pierre [20] explored the feasibility of
using intentional mistuning to decrease the localization effects in turbo-machinery rotors. Following the
principle that higher coupling among substructures will reduce localization, Gordon and Hollkamp [21]
investigated the potential of utilizing piezoelectric strain actuators to increase blade-to-blade coupling of
bladed disks, and found that the improvement was marginal. Cox and Agnes [22] attempted to reduce
vibration localization in bladed-disk assemblies by using embedded piezoelectric patches to increase
mechanical coupling ratio between blades. It was found that directly shorting the piezoelectric patches
had little effect on reducing localization [22]. An inductive element [23] was later added to the shorted
piezoelectric patches, where it was observed that this addition could enhance the system coupling, however,
the illustrative example only showed improvement in some of the localized modes. Recently, Tang and
Wang [24] proposed a new approach for vibration delocalization via piezoelectric circuitry networking. An
example of networking configuration is shown in Fig. 1. In this case, the original mono-coupled system
becomes a bi-coupled system with an additional electrical coupling. In general, an inductive piezoelectric
circuit (LC shunt) can absorb vibration energy from the substructure to which it is attached and store
that portion of energy in the electrical form. While in most cases directly increasing the mechanical coupling
between substructures is difficult to achieve due to various design limitations, one can easily introduce strong
electrical coupling, such as connecting the LC shunts with capacitors as shown in Fig. 1(b), to create a
new wave channel. With this coupled piezoelectric circuits design, the otherwise localized vibration energy
in a nearly periodic structure can now be transferred into electrical form and propagate in the integrated
system through the newly created electromechanical wave channel. Zhang and Wang [25] have further
found that vibration dissipation and suppression can be achieved by including resistive elements in such
circuits. For a mistuned periodic structure under forced excitation, it was shown that the treatment
can suppress vibration effectively and also create a more uniform distribution of response amplitudes
among substructures.

2. Problem statement, research objective and approach overview

While the recent investigations [24,25] have illustrated promising delocalization results utilizing piezoelectric
networks, the studies are still preliminary. The concept has not been thoroughly examined via a
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comprehensive parameter study, and it has not been realized and validated through actual circuitry design.
Most of all, it was recognized that the effectiveness of the treatment can be limited by the level of
electromechanical coupling of the piezoelectric patches. From observing Fig. 1, one can see that since the
electrical coupling established through the external capacitors can be easily adjusted, the performance
bottleneck of the piezoelectric network is the electromechanical coupling, i.e., how much mechanical energy
can be transferred into electrical energy. For most of the cases investigated in previous studies, the
electromechanical coupling coefficient is not high enough to ensure that all the modes be significantly
delocalized. In other words, while the degrees of localization of all the modes were reduced with the treatment,
the improvements in some modes were marginal. This coupling coefficient is determined by the piezoelectric
material property, the size and the location of patches on the host structures, and the stiffness of the host
structures. Thus it is in general difficult to change with only passive designs.

Based on the above observations, the objectives of this research are: (1) to explore the possibility of utilizing
an active coupling enhancement approach to increase the system electromechanical coupling, such that the
effectiveness of the piezoelectric network for delocalization can be better improved; (2) to analyze the
integrated system and quantitatively evaluate the delocalization effect; and (3) to implement and validate
the proposed concept experimentally. In this study, the negative capacitance circuit approach [26] is proposed
and investigated for active coupling enhancement. In this paper, the possibility of increasing the system
generalized electromechanical coupling coefficient by using negative capacitance is discussed and the
relationship between the negative capacitance and the coupling coefficient is presented. An integrated system
consisting of a mistuned periodic structure with the piezoelectric network is modeled, and based on this model,
the mode shapes of the mistuned system are investigated and the Lyapunov exponents are derived. The
correlation between the Lyapunov exponents and the spatial exponential decay of the modal amplitudes is
discussed. A localization index is then defined and used to evaluate the effect of the negative capacitance on
the system’s delocalization performance. Finally, a series of experiments are carried out to validate the
aforementioned delocalization ideas.

3. System model

To maintain simplicity, the periodic structure considered in this research is assumed to consist of V identical
cantilever beams coupled by N springs, as shown in Fig. 1(a). Lumped springs are used to emulate the
coupling effects in generic periodic structures. The network topology, integrated with the host periodic
structure, is shown in Fig. 1(b).

In this configuration, an inductive piezoelectric shunt circuit (piezoelectric patch connected in series with an
inductor) is applied to each of the substructures in order to absorb the vibration energy and transform it into
electric form. Then these individual local circuits are coupled through capacitive elements to form a global
network. This network topology creates an additional wave channel, through which the localized vibration
energy can be propagated.

Let ¢ be the first local beam mode without the piezoelectric shunt circuits. The transversal displacement of
the jth beam is approximated as

wj(x, 1) & d(x)q;(1). (1)

The equations of motion for the periodic structure integrated with piezoelectric patches can be derived using
Hamilton’s principle [24], which are

mg; + 9q; + kq; + k1 Q; + ke(q; — g;-1) + ke(q; — q,0) = [, (2)

k2Q; + kiq; =V, 3)

where m, g, k, k., k1 and k, are, respectively, mass, damping, substructure stiffness, substructure coupling
stiffness, cross coupling coefficient related to the electromechanical coupling of the piezoelectric patch, and
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inverse of the capacitance of the piezoelectric patch, given by
Iy I Iy
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Here, ¢;and f are the generalized mechanical displacement and external force of the jth beam. Q; and V; are
the charge flowing to and the voltage across the piezoelectric patch attached to the jth beam, respectively.
AH = H(x — x;) — H(x — x,), where H(x) is the Heaviside step function. x; and x, are distances from the
piezoelectric patch edges to the root of the cantilever beam, and the length of the patch is thus /, = x,—x;.
Other relevant notations used here are: p, and p, the density of beam and piezoelectric patch; 4, and A4, the
cross section area of beam and piezoelectric patch; E, and E, the elastic modulus of beam and piezoelectric
patch; I, and I, the moment of inertial of beam and piezoelectric patch; /, the length of beam; w, the width of
piezoelectric patch; F, the moment of area of piezoelectric patch; g, the beam damping constant; k, and x; the
stiffness of coupling spring and location of coupling spring; /h3; the piezoelectric constant; and f3; the
dielectric constant of piezoelectric patch.

Applying circuit network analysis to Fig. 1(b), the equation for the jth circuit branch can be derived as

Vi=-LQ;— k_akZ(ZQj — 01— Q1) - k—ak1(2q, = -1 = Gjv1)s (4)
where L is the circuitry inductance. k, = 1/C, denotes the inverse of the coupling capacitance. Substituting

Eq. (4) into Eq. (3), we can derive the equations of motion of the electromechanically integrated system as

md; +94; + kg; + ki1 Q; + k(g — g1 + k(g — g501) =1 ()

LO;+ k20, = O = Q) + - kR = 41 = G) +H0 0y + Krgy = 0. ©)
For the original periodic structure without the piezoelectric circuits, the equation of motion is

md; + 94; + kq; + ke(q; — q;-1) + kelq; — g0 = 1. ()

In the above derivation, we assume that the system is perfectly periodic. In reality, however, there will be
imperfections. Without loss of generality, in this paper we assume that the structural imperfection (mistuning)
exists in the substructural mechanical stiffness, which is the common practice in many localization studies. The
stiffness of the jth beam with mistuning is

ki =k + Ak;, ®)

where k is the nominal stiffness of the perfectly periodic structure, and Ak; is the zero-mean random mistuning
in stiffness. In the following, we consider harmonic solutions for free vibration, and neglect damping, the non-
dimensionalized equations of motion of the electromechanically integrated system become

—Q°x; + (14 Asp)x; + RX(xj — Xj—1) + Ra(x; — xj41) + 6Ey; = 0, (9a)
R

—Q |y + Ry — v — yi) + T(Zx;‘ — Xj1 = Xje1) | + 80X+ 87y, =0 (9b)

and the equation for the mistuned system without piezoelectric network becomes

—Q%x; 4+ (1 + Asp)x; + RX(x; — xj_1) + RA(x; — xj41) = 0, (10)
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where

wm = \/ k/m: w(’ = \/ kZ/La 5 = we/wma
Q=ow/on, xj=+mq, y; = \/ZQ,-,
¢ =ki/\kks, Re=/kiJk, Rio=+/kajke As;=Akj/k.

Here w and Q are the dimensional and non-dimensional harmonic frequencies; w,,, and w, are the natural
frequencies of the uncoupled substructure and circuit, respectively; ¢ is the frequency tuning ratio which
characterizes the circuitry inductance; x; and y; are the generalized mechanical and electrical displacements of
the jth substructure and circuit branch respectively; ¢ is the generalized electromechanical coupling coefficient
which reflects the energy transfer capability of the piezoelectric patch; R, is the mechanical coupling ratio
between the substructures; R, is the electrical coupling ratio related to the coupling capacitance; and As; is the
mistuning ratio which is a zero-mean random number with standard deviation g,,.

4. Active coupling enhancement

The generalized electromechanical coupling coefficient (£) plays an important role in the piezoelectric network
delocalization mechanisms, since it characterizes the amount of energy that can be transformed from mechanical
into electrical form. Although previous studies have shown promising delocalization results using the proposed
piezoelectric network, it was also recognized that the improvements in some modes were marginal due to the low
electromechanical coupling coefficient £. It should be noted that this generalized electromechanical coupling
coefficient is not the same as the intrinsic coupling factor of the material itself. For piezoelectric materials, the
electromechanical coupling factor is a non-dimensional number quantifying the energy conversion capability of
the materials, the definition of which can be found in Ref. [27]. The definition of the coupling factor (k,,) is based
on the material stiffness at open circuit (constant electric displacement) condition (¢”) and at short circuit
(constant electric field) condition (c), and can be expressed as [28]: k,,° = (¢®—c*)/cP. The material coupling
factor has different values corresponding to different conditions. For the patch application considered in this
study (i.e., in the 3—1 direction application where the uniaxial stress is perpendicular to the poling direction), the
coupling factor is about 0.35. The largest coupling factor for polycrystalline piezoelectric ceramic materials can
be on the order of 0.7, corresponding to an energy conversion factor of about 50% [28]. When devices made of
piezoelectric materials are integrated in a structure, the generalized electromechanical coupling coefficient & can
be defined at the structural level [28]. The coupling coefficient can be calculated based on the structural open

circuit natural frequency (w?) and short circuit natural frequency (wf) : & = 1/ (wP)? — (wF)? JwP. This value is
in general smaller than the intrinsic electromechanical coupling factor of the material itself. The formula of the
generalized electromechanical coupling coefficient, ¢ = k| /+/kk, used in this study, is consistent with the above
definition, which can be easily derived and verified from Egs. (2) and (3) when the open and short circuit
conditions are applied [26]. It is clear that in a dynamical system, this generalized electromechanical coupling
coefficient is a function of the cross coupling term ki, the stiffness of the host structure k, and the inverse of the
piezoelectric capacitance k,. To obtain a higher £, one can either increase k;, or decrease k and k». Since k; is
usually fixed once the material type (thus the material coupling factor), the size and the location of the
piezoelectric patch on the host structure is determined, it is difficult to be increased due to practical limitations.
On the other hand, to increase the generalized electromechanical coupling coefficient, one can also tune k and k.
Lesieutre and Davis [28] proposed a method using destabilizing mechanical pre-loads to counter the inherent
stiffness, thus to reduce the stiffness k& of the host structure, and increase the apparent coupling coefficient.
Although this method is indeed interesting, it might be difficult to implement since it usually requires pre-
conditioning or modification of the host structure. Recently, Tang and Wang [26] proposed a negative
capacitance circuit approach to partially cancel the inherent capacitance of the piezoelectric patch, which will
reduce the electrical stiffness k, and increase the coupling coefficient . Such an approach can be easily realized
utilizing an electric circuit, which is much easier to implement than changing k and k; via mechanical tailoring.
In this study, this negative capacitance approach is adopted to increase the generalized electromechanical
coupling coefficient, for the purpose of enhancing the delocalization performance of the network.
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In the formula & = k/v/kka, k> is the inverse of the piezoelectric capacitance. When a negative capacitance
is added in series to the piezoelectric element in the network, the inverse of the total capacitance in each branch
of the piezoelectric network becomes

ky =ky — ki, (11

where k, is the inverse of the negative capacitance added. With the negative capacitance, the generalized
electromechanical coupling coefficient becomes

¢ = ki/\/ kka. (12)

Since k> is less than k» (Eq. (11)), it is obvious that the generalized electromechanical coupling coefficient (&)
can be increased by the negative capacitance treatment. However, to ensure stability of the system, there is a
limit on the negative capacitance, which is governed by maintaining the positive definiteness of the system

generalized stiffness matrix
R 13
A > ,
ks (13)
which means klez >kf or £<1.

From Eq. (11), it is clear that k, must be less than k,, or in other words, the absolute value of the negative
capacitance should be larger than the piezoelectric capacitance. The relationship between the generalized
electromechanical coupling coefficient and the negative capacitance is given in Fig. 2, where the coupling
coefficient for the original system without negative capacitance is assumed to be 0.1, and the ratio of k,/k;
is referred to as the megative capacitance ratio. It can be seen that the coupling coefficient can increase
monotonically and nonlinearly as the negative capacitance ratio (k,/k») increases. The closer the negative
capacitance value is to the piezoelectric capacitance, i.e., the closer the negative capacitance ratio (k,/k») is
to 1, the larger the coupling coefficient would be. However, in practice, the circuit will be vulnerable to
instability as the ratio gets closer to 1, as indicated by Eq. (13). The negative capacitance cannot be realized

passively and one needs to use an operational amplifier to form a negative impedance converter circuit that
requires a power source. Therefore, this approach is referred to as an active coupling enhancement approach.
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Fig. 2. Effect of negative capacitance on the electromechanical coupling coefficient.
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5. Integrated system analysis

As indicated earlier, the localization phenomenon in mistuned periodic structures has been analyzed
extensively in the past. The probabilistic nature of the localization phenomenon was recognized and stochastic
methods were applied to study the spatial exponential decay rate of the vibration amplitude [3,9,16].
Lyapunov exponents of the global stochastic wave transfer matrix have been introduced to approximate the
spatial exponential decay rate of the amplitude, and have been shown to be a good measure of the localization
level [3,16-19]. The wave transfer matrix method and the numerical computation of the Lyapunov exponents
for multi-coupled periodic structures have been discussed by Pierre et al. [3]. To formulate the wave transfer
matrix expression for the bi-coupled system presented in this paper, a displacement state vector is defined for
each bay (a bay consists of two adjacent substructures). Then the transfer matrix that relates the dynamics of
two adjacent bays can be derived from the equations of motion. The dimension of the state vector is always
twice the number of inter-bay coupling coordinates m, and the dimension of the square transfer matrix is
2m x 2m, which is independent of the number of substructures N. The wave transfer matrix for the original
system without piezoelectric network can be found in Ref. [24]. Below, only the formulation for the system
with integrated piezoelectric network is presented. This integrated system is bi-coupled, thus the inter-bay
coupling is m = 2, and the dimensions of the displacement state vector and transfer matrix are 4 x 1 and 4 x 4,
respectively. The 4 x 1 displacement state vector for the jth bay, consisting of both mechanical and electrical
generalized displacements from the jth and the j+ 1th substructures, is defined as

w =[x v 50" (14)

The system equations Egs. 9(a) and (b) can be rewritten into the transfer matrix expression using the
displacement state vector:

u = leljfl, (15)
where T; is the 4 x 4 transfer matrix given by Eq. (16):
14+2R2+As;—Q? 8¢
R & -0
) ¢ (14As—0Q° 2 £
1= | ~(@eti(TFT) ~(Fe-erur)rg) o 1) (16)
1 0 0 0
0 1 0 0

Obviously, the transfer matrix is random for mistuned structures because of the random mistuning As;. For
tuned structures, As; = 0, and T, is identical for all j’s. A Lyapunov exponent is defined as

1
P(ag) = ngnooﬁ log [luy]], (17)

where uy is the initial displacement state vector and u is the displacement state vector of the Nth substructure.
It can be shown that the Lyapunov exponent can be calculated from the product of the transfer matrices [24]:

1 !
Ve = A}E}})ON log{o—k (/l;IVTj> }, (18)

where () denotes the singular value operator.

In this study, the Lyapunov exponents of the bi-coupled periodic structure integrated with piezoelectric
network are calculated using Wolf’s algorithm [29]. The number of Lyapunov exponents equals to twice the
number of coupling coordinates. For this bi-coupled system, there are four Lyapunov exponents in total. In
fact, these Lyapunov exponents appear in pairs, with same magnitude but opposite signs, +|y|. For a periodic
structure, both these positive and negative Lyapunov exponents share the same physical meaning. Therefore,
calculating the positive Lyapunov exponents is sufficient to identify the entire spectrum. In the following
discussion, Lyapunov exponents by default refer to the positive ones unless otherwise noted.
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For this study, the structural damping and circuitry resistance are neglected so that the vibration
localization effect can be clearly identified. The original periodic structure without piezoelectric network is a
mono-coupled system, so there is only one Lyapunov exponent and mode localization can be directly
evaluated by the Lyapunov exponent, as demonstrated in Refs. [3,24]. For the periodic structure with the
piezoelectric network treatment, the introduction of the strong electrical coupling enabled by the capacitors
between the local shunt circuits creates another wave channel. Therefore, the system becomes bi-coupled; and
there are two Lyapunov exponents at each frequency. Fig. 3 shows the Lyapunov exponents for the system
with parameters £ = 0.1, R, = 0.6, 6 = 1.2, R, = 0.005, and ¢, = 0.01. Here Fig. 3(a) is for the tuned case,
Fig. 3(b) is for the mistuned case and Fig. 3(c) provides a zoom-in view around Q = 1 for both the tuned and
mistuned cases. The two Lyapunov exponents are referred to as upper and lower branches in Fig. 3. For this
system, as indicated in Fig. 3(a), there are two separate passbands (referred to as passband 1 and passband 2)
for the tuned case. The natural frequencies are found to be inside the passbands. It is well known that mode
shapes of the tuned system are extended without attenuation throughout the substructures, or in other words,
having zero decay rates. This characteristic of tuned system is captured by the zero Lyapunov exponents in the
passbands. When the system has mistuning, there are no longer any passbands; and the lower Lyapunov
exponent branch becomes non-zero (see the lower dotted line in Fig. 3(c)), indicating mode localization caused
by mistuning. When localization occurs, the localized modal amplitudes will have a spatial exponential decay,

12 12
10 =
5 sl ] =
c (0]
S c
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Fig. 3. Lyapunov exponents for the system with piezoelectric network (¢ =0.1,R, =0.6,6 = 1.2, R, = 0.005,5,, = 0.01): (a) tuned
system; (b) mistuned system; and (c) zoom-in of tuned (solid lines) and mistuned (dotted lines) system around Q = 1.
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the rate of which can be approximated by the lower one of the two Lyapunov exponents in the original
separate passbands.

To support the above argument, the correlation of the modal amplitude exponential decay rates and the
lower Lyapunov exponents is studied. In the following analysis, mode shapes of the mistuned periodic
structure with piezoelectric network are obtained by solving the eigenvalue problem of the system, the
parameters of which are the same as those used for Fig. 3. For modal analysis, the mistuned periodic structure
is assumed to have N = 80 substructures. To demonstrate the exponential decay of the modal amplitudes, the
substructure which has the highest amplitude is chosen as the first substructure. Two examples are
demonstrated in Fig. 4. Amplitudes of two modes are shown, the 70th mode with natural frequency of
Q = 0.9832, which lies in the original passband 1 and the 93rd mode with natural frequency of Q = 1.0006,
which lies in the original passband 2. The amplitudes of the 70th mode in logarithm scale are plotted as a
dotted line. It is shown that the modal amplitudes decay exponentially throughout the first half of the
substructures. Actually, the exponential growth in the second half of the substructures can be seen as
exponential decay at the same rate towards the other direction, due to the cyclic nature of the periodic
structure. At its natural frequency Q = 0.9832, the upper and lower Lyapunov exponents are computed to be
6.6969 and 0.2720, respectively. The dash-dotted line is a straight line with a slope of —0.2720, which is directly
related to the lower Lyapunov exponent. It can be seen that the exponential decay rate for the 70th mode is
well captured by this straight line, which means, the lower Lyapunov exponent can characterize the
exponential decay of the modal amplitude. Another example is the 93rd mode, with natural frequency of
Q = 1.0006. At this frequency, the upper and lower Lyapunov exponents are calculated to be 5.8572 and
0.7202, respectively. The modal amplitudes in natural logarithm scale are plotted as a solid line in Fig. 4. The
dashed straight line has a slope of —0.7202, corresponding to the lower Lyapunov exponent at this frequency.
Obviously, this straight line can approximate the spatial exponential decay of the mode amplitudes very well.
Based on the correlation study, we conclude that it is the lower Lyapunov exponent that can characterize the
exponential decay of the mode localization for the mistuned system. Therefore, the lower Lyapunov exponent
can be served as a measure to quantify the level of the modal localization.

From the above argument, a mode localization index can be defined as the average of the lower Lyapunov
exponents of the mistuned system within the frequency range where the original tuned system exhibits two

Log | modal amplitude |

_35 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Substructure number

Fig. 4. Correlation of modal amplitudes exponential decay rates to the lower Lyapunov exponents. Solid line: modal amplitude of the
93rd mode (2 = 1.0006); dashed line: straight line with slope (—0.7202) corresponding to the lower Lyapunov exponent at Q = 1.0006.
Dotted line: modal amplitude of the 70th mode (2 = 0.9832); dash-dotted line: straight line with slope (—0.2720) corresponding to the
lower Lyapunov exponent at Q = 0.9832.
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Localization index

0.3 0.4

1
0.1 0.2
Electromechanical coupling coefficient &

Fig. 5. Localization index versus electromechanical coupling coefficient ¢ for the mistuned system (R, =0.5,0 = 0.5, R, = 0.005,
g, = 0.01).

separate passbands. The effect of negative capacitance on mode delocalization performance of the
piezoelectric network can now be evaluated using the defined index. In the following parametric study, the
average of the lower Lyapunov exponents is taken over 50 frequency points in each passband. As discussed
earlier, the introduction of negative capacitance into the piezoelectric network can increase the generalized
electromechanical coupling coefficient £. To examine the consequence of this coupling enhancement, a single
case is first illustrated. In this case study, the system parameters are set to be R, = 0.5, 6 = 0.5, R. = 0.005,
o, = 0.01. It is shown in Fig. 5 that the localization index decreases as the electromechanical coupling
coefficient is increased by adding the negative capacitance. Without negative capacitance (¢ = 0.1), the
localization index is more than 0.6; with negative capacitance, as the electromechanical coupling coefficient &
1s increased, the localization index can be reduced to as low as values below 0.1. This reduction in localization
index indicates that the level of localization is reduced by the introduction of the negative capacitance.

To gain more insight, a more extended parameter study on the effect of negative capacitance on the
delocalization performance of the system is carried out using the localization index. The system parameters &,
R, and ¢ are varied within realistic application ranges, which cover the operation parameter region of the
experimental study (see next section). Figs. 6 and 7 show the contour plots of the localization index versus &
and R, (or §). In Fig. 6, d is fixed at 0.5, £ and R, are varied. In Fig. 7, R, is fixed at 1.2, £ and § are varied. As
shown in both of these two figures, the localization index tends to decrease as ¢ increases. These results
indicate that as a consequence of increasing the electromechanical coupling coefficient by negative
capacitance, the delocalization performance of the piezoelectric network can be improved. Physically, this
is because by increasing the system electromechanical coupling coefficient one could increase the capability of
energy transformation, thereby more localized mechanical energy can be transferred into electrical form and
propagate throughout the network.

6. Experimental investigation
In this investigation, experiments are conducted to validate the concepts of vibration delocalization using

the piezoelectric network presented in Fig. 1(b). The effectiveness of negative capacitance on the delocalization
performance of the network is also examined.
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6.1. Experimental setup

The overall experimental setup is shown in Fig. 8. The mistuned bladed disk is vertically bolted at the hub
disk center to a fixture mounted on an isolation table. A shaker is used to provide excitation at the disk hub.
Tip displacements of the blades are measured by a laser vibrometer (OFV-303, Polytec Germany), which
converts the displacement information into a voltage related output (calibrated in pm/V or 10~°m/V). This
voltage related output is then recorded by an HP35665A analyzer. The resolution of the vibrometer could be
as high as 0.5um/V. The laser vibrometer is mounted on two perpendicular stages (X—Y stages as shown in
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Fig. 8. Overall experimental setup.

Table 1
Figure and dimensions of the bladed disk model

Dimensions (10 -2 m)

Inner (hole) diameter of the hub disk: 3.81
Outer diameter of the hub disk: 8.89
Length of blade: 10.80

Width of blade: 0.77

Thickness of blade: 0.32

Fig. 8), which, controlled by LabVIEW programs, can precisely locate the measurement point on each blade
tip. The bladed disk specimen with 18 equally spaced blades is fabricated from a single piece of aluminum
alloy plate (figure and dimension are listed in Table 1), which is mistuned due to manufacturing tolerances.
Each blade is bonded with an identical piezoelectric patch (type SA, APCI, Ltd., properties shown in Table 2)
at its root. The bonding process of the piezoelectric patches also contributes to the mistuning of the bladed
disk. Therefore, the term mistuned bladed disk in the following experimental context refers to the bladed disk
with piezoelectric patches attached to it. Each piezoelectric patch has a negative electrode wrap-up design,
which improves the bonding effectiveness and provides convenience in wiring. The patches are electrically
insulated from the aluminum blades since later on the negative capacitance circuits will be inserted between the
piezoelectric patches and the ground. The piezoelectric circuit network is synthesized and integrated with the
bladed disk as shown in Fig. 1(b). Each passive piezoelectric patch is connected in series with a synthetic
inductor to form an LC shunt circuit. Then these 18 shunt circuits are coupled through capacitors (C,) each
with a value of 2.2 nF (corresponding to non-dimensional R, = 1.2, as studied in Fig. 7).
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Table 2

Geometric parameters and material properties of piezoelectric patches

Geometry (1072m) Material property

Length: 2.54 Piezoelectric material: Type 5A
Relative dielectric constant K™: 1750

Width: 0.76 Electromechanical coupling factor k3;: 0.36
Piezoelectric charge constant: 175 x 10~'%(m/V)

Thickness: 0.10 Young’s modulus: 6.3 x 10'°(N/m?)

Capacitance (C,): 3.3nF

R1

J— op-Amp

—— N \\— op-Amp

R1

C1 R1

R1

L A op-Amp

— op-Amp

NV

R1

Fig. 9. Circuit diagram of the synthetic inductor.

The circuit diagrams of the synthetic inductor [30] and negative capacitor are shown in Figs. 9 and 10. From
Fig. 9, the equivalent inductance value can be calculated as L = R RyC; (Henry). In principle, any desired
inductance value can be achieved by adjusting one component in the circuit, i.e., the potentiometer (Ry), with
the other eight components fixed at appropriate values (R; and C)). The negative capacitance circuit is
essentially a negative-impedance converter (NIC) [31]. From Fig. 10, the equivalent negative capacitance value
can be expressed as C,, = —RyC»/R, = —C,. In order to increase the electromechanical coupling coefficient,
each negative capacitance circuit will be connected in series with each piezoelectric patch. Since the negative
capacitance circuit needs to be grounded, it is inserted between the negative electrode of each piezoelectric
patch and the ground.

6.2. Experimental results

A sample frequency response function (FRF) of the mistuned bladed disk is shown in Fig. 11. The figure
shows high modal density within the frequency range from 190 to 250 Hz, which is a characteristic feature of
mistuned periodic structures. Due to this feature, it is very difficult to obtain mode shapes using common
modal analysis methods. Therefore, alternatively, the amplitudes of blade tips when the bladed disk is under
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Fig. 11. Sample frequency response of the mistuned bladed disk without circuit network.

harmonic excitation at resonant frequencies are chosen as comparison objectives in evaluating the
delocalization effect of the piezoelectric circuit network. To excite the bladed disk at resonance, a series of
frequencies within the range of 190-250 Hz, most of which are where FRF exhibits a resonant peak, are used
for sine wave excitations.

In the preliminary test, it was found that under excitation frequency of 193.5 and 202.3 Hz, the ampli-
tude distribution shows obvious localization phenomena, illustrated by the dotted lines in Figs. 12 and 14.
In this investigation, we will thus focus our attention around these two resonant frequencies, and
compare the amplitude distribution of the mistuned bladed disk with and without piezoelectric circuit
network.



260 H. Yu et al. | Journal of Sound and Vibration 295 (2006) 246-265

30 1

25 1

20

Relative amplitude (um)

9 10 11 12 13 14 15 16 17 18
Blade number

Fig. 12. Relative amplitudes of 18 blades for mistuned bladed disk without network and with network at various circuit frequency tunings
(fo) from 193.5 to 234 Hz. Legends: dotted line: (<) without network; solid lines: () f, = 193.5Hz; (A) f, = 201 Hz; ( x ) f, = 206 Hz;
(%) f. = 212Hz; (O) f. = 222 Hz; and (+) f. = 234 Hz.

First, the mistuned bladed disk without circuit network is excited at 193.5 Hz. The tip displacements of all
the 18 blades are measured with the laser vibrometer. Then the circuit network is connected to the piezoelectric
patches on the bladed disk. The network has 18 synthetic inductors tuned to the same value. The circuit
frequency, defined as f, =1/,/LC,/2n(Hz), where C, is the piezoelectric capacitance, can be tuned to
different values by adjusting the synthetic inductance (L). Six different circuit frequency tunings are
investigated, ranging from 193.5 to 234 Hz (corresponding to the non-dimensional parameter é of range
0.88-1.06, which is covered in Fig. 7), as shown in Fig. 12. At each circuit frequency, the resonant response
amplitudes of the blade tips are measured. These amplitudes are plotted in Fig. 12 for the mistuned bladed
disk with and without circuit network. The amplitude data shown in this figure reflect the “relative amplitude”
(the relative amplitude of each blade is defined to be the difference between its absolute amplitude and the
lowest amplitude among all the 18 blades), which also applies to all other figures showing amplitude hereafter.
It should be noted that when the piezoelectric circuit network is connected to the mistuned bladed disk, the
resonant frequencies are slightly changed. In order to maintain the resonant excitation, for each particular
circuit frequency tuning (f,), the new resonance of the system is identified and the structure is excited at the
new resonant frequency. This also applies to the case when negative capacitance circuits are introduced into
the network.

The dotted data line in Fig. 12 shows that the relative vibration amplitudes are high over a small region
(only 4-5 blades) around blade number 10. Outside this region, amplitudes are relatively small. This indicates
that vibration is highly localized in the mistuned bladed disk. With the treatment, the solid lines corresponding
to various circuit tunings show a more even distribution of the amplitudes over the 18 blades. This more even
amplitude distribution indicates a reduction of the level of localization.

As a tool to quantify how the amplitude data is distributed spatially, standard deviations are plotted in
Fig. 13. However, it should be noted that the standard deviation is not used as an exact index for quantifying
localization, but only as a measurement of the scatterness of the amplitude data distribution. As Fig. 13
shows, the standard deviations for the mistuned bladed disk with treatment are much smaller than that
without treatment.

Moreover, the delocalization effect of the piezoelectric circuit network is also demonstrated when the
mistuned bladed disk is excited under the resonant frequency of (and around) 202.3 Hz. Resonant response
amplitudes for the mistuned bladed disk with and without piezoelectric network are plotted in Fig. 14.
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Fig. 13. Standard deviations of blade relative amplitudes for the system without network (first column) and with network at various
circuit frequency tunings (f;) (all other columns).
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Fig. 14. Blade relative amplitudes distribution for the system without network (dotted line) and with network (solid lines) at resonances
around 202.3 Hz. Legends: (<) without network; (O) f, = 201 Hz; (A) f, = 206 Hz; and ( x ) f, = 222 Hz.

Without network, blade amplitudes are confined only in small regions around blade number 2, 3 and 7. With
the piezoelectric circuit network (at three circuit frequency tunings: f, = 201, 206, and 222 Hz), the blade
amplitudes again become more evenly distributed over the 18 blades, which means the level of localization is
reduced.

Next, negative capacitance circuits are incorporated into the piezoelectric network, and their effects on the
delocalization performance are examined. The analytical results suggest that the electromechanical coupling
coefficient (&) of the piezoelectric patch can be increased by the negative capacitance. As a result of this
coupling enhancement, the overall delocalization effect of the piezoelectric circuit network can be further
improved. To validate this prediction, negative capacitance circuits are built and connected in series with
piezoelectric patches to the negative electrodes. The same experimental approach used in Ref. [26] is adopted
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here to measure the electromechanical coupling coefficient. The value of ¢ is calculated according to

&= \/ ((wP)* — (0F)*)/(wP)?, which is based on the resonant frequencies of the substructure under open

circuit condition (w”) and short circuit condition (%) [28]. Note that this formula is exactly the definition of
the electromechanical coupling coefficient at the structural level. The original electromechanical coupling
coefficient of the piezoelectric patch is measured to be ¢ =0.1224. With a negative capacitance of
C, = —4.7nF, the coupling coefficient is measured to be £ = 0.1930, which is a 57.7% increase. This range of
£ is covered in the analytical study shown in Fig. 7.
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Fig. 15. Blade relative amplitudes of system without network (< in dotted line); with network ([J in solid line); and with network
augmented by negative capacitance (A in solid line); (a) f, = 193.5Hz; (b) f. = 201 Hz; (¢) f. = 206 Hz; (d) f. = 212 Hz; (e) f, = 222 Hz;
(f) f. = 234 Hz; Horizontal axis: blade number; Vertical axis: relative amplitude (unit: pm).
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Eighteen negative capacitance circuits with the same value (C,, = —4.7 nF) are then built and integrated into
the piezoelectric network. The network with negative capacitance is also referred to as the augmented network.
Tip displacements of the 18 blades are re-measured for bladed disk with this augmented network. Resonant
response amplitudes are compared to previous results shown in Figs. 12 and 14 in order to evaluate the
delocalization performance improvement. First, the responses at the resonance around 193.5 Hz are examined
and amplitudes are plotted in Figs. 15(a)—(f), with each corresponding to a circuit frequency tuning (f,). It can
be seen that for all of these six circuit frequency tunings, the vibration amplitude distributions with the
augmented piezoelectric network become more uniform. This is predicted because with negative capacitance,
the network has a larger electromechanical coupling (&). Therefore, the network is capable of transforming
more mechanical energy into electrical form, which is then propagated throughout the network by the
coupling capacitors. Again, the standard deviations of the amplitudes are calculated and shown in Fig. 16 for
the mistuned bladed disk without any treatment, with network but no negative capacitance, and with the
augmented network, marked as Case 1, Case 2 and Case 3, respectively. The decreasing trend of the standard
deviations from Case 1 to Case 3 indicates that vibration amplitudes become more and more evenly
distributed. These results show that the delocalization ability of the piezoelectric network is improved by the
integrated negative capacitance circuits. Amplitudes of the mistuned bladed disk under resonant excitation
frequencies of (and around) 202.3 Hz are also compared for Cases 1, 2 and 3, as shown in Figs. 17(a) and (b),
with f, = 201 and 206 Hz, respectively. Both figures show that amplitude localization is further reduced and
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Fig. 16. Standard deviations of blade relative amplitudes for Case 1—mistuned bladed disk without network; Case 2—with network; and
Case 3—with network augmented by negative capacitance circuits. Vertical axis: standard deviation (unit: pm).



264 H. Yu et al. | Journal of Sound and Vibration 295 (2006) 246-265

12
12,
10 @
10 © R
¢ °
:" 8 " ,0\‘

N

Relative amplitude (um)
Relative amplitude (um)
[}

(a) Blade number (b) Blade number

Fig. 17. Relative amplitudes distribution for the system without network (< in dotted line), with network (O in solid line) and with
network augmented by negative capacitance (A in solid line): (a) f, = 201 Hz; and (b) f, = 206 Hz.

the distribution is more even for Case 3, as compared to that of Case 2. The results again illustrate
improvements in the delocalization performance when negative capacitance circuits are added.

7. Conclusion

This paper presents vibration delocalization study of nearly periodic structures using piezoelectric networks
with negative capacitance circuitry for active coupling enhancement. The correlation between the Lyapunov
exponents and the spatial exponential decay of the modal amplitudes is studied. A localization index is defined
for the bi-coupled nearly periodic system and applied to evaluate the effectiveness of the proposed scheme.
With this localization index, a parametric study was performed where it was found that the negative
capacitance circuit approach can greatly enhance the system’s ability for vibration delocalization. It can
effectively increase the electromechanical coupling coefficient, such that more localized mechanical energy can
be transferred into electrical form and eventually distributed through the strongly coupled electrical circuits.
This network is then implemented and integrated with a mistuned bladed disk and investigated experimentally
to validate the analytical predictions. From the experimental results, it is shown that the level of localization
can be reduced by using the piezoelectric network over a range of circuit frequency tunings. It is also
illustrated that the apparent electromechanical coupling coefficient of the system can be increased by the
negative capacitance, and the delocalization effect of the network can be further enhanced.

While this research has shown promising result for mode delocalization, it should be noted that under
forced vibration circumstances, the dynamic phenomena could be more complicated, as seen in Ref. [20]. Thus
the requirement for the piezoelectric network design under forced vibration could be different, which will be
addressed in the future.
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