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Abstract

For a flexible hub–beam system with large motion, the first-order approximation coupling (FOAC) model is developed

currently, which is verified numerically and experimentally to be valid for dynamic description of the system. In the FOAC

model, the assumption of Euler–Bernoulli beam is adopted with neglecting the effect of shear deformation of flexible beam.

So this model is only available for the case of slender beam. When the beam is short in length direction, shear deformation

is a factor that may have biggish effect on system dynamics.

In this paper, dynamic modeling of flexible hub–beam system with considering the effect of shear deformation is

investigated. Firstly, based on the assumption of Timoshenko beam and using Hamilton’s principle, a coupling dynamic

model with considering shear deformation is established, in which geometric stiffness term and axial foreshortening effect

caused by the transverse deformation of beam are considered in the modeling. Subsequently, the dynamic model is

discretized using finite element method (FEM). Finally numerical simulations are carried out to demonstrate the

effectiveness of proposed dynamic model. Simulation results indicate that, dynamics characteristics of the hub–beam

system using the Timshenko beam hypothesis and the Euler–Bernoulli beam hypothesis are almost identical when the

beam is a slender one. For this case, shear deformation has little effect on system dynamics. But when the beam is short in

length direction, shear deformation may have biggish effect on system dynamics. This effect becomes larger as the width to

length ratio increases.

r 2006 Published by Elsevier Ltd.
1. Introduction

It is well known that flexible multi-body systems with large motion have many applications in many
practical engineering, such as aeronautics, aerospace and robotics, where a flexible hub–beam system is a
typical one. A good dynamic model for flexible hub–beam system is essentially important in many engineering
applications, such as satellite antennas, helicopter blades, and robot manipulators.

For a flexible hub–beam system, the traditional modeling theory adopts small deformation assumption in
structural dynamics, which thinks that the axial and transverse deformations at any point in the beam are
uncoupled, namely linear deformation field of flexible beam is adopted. The dynamic model established based
ee front matter r 2006 Published by Elsevier Ltd.
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on this linear deformation field by using the hybrid coordinate method is the so-called hybrid coordinate
model, i.e. the zeroth-order approximation coupling (ZOAC) model [1,2]. In 1987 Kane et al. [3] investigated a
rotating flexible cantilever beam using the ZOAC model and showed that this model failed to describe the
dynamic behavior of beam when the beam is in high rotation speed. The dynamic stiffening phenomenon was
first pointed out [3]. Since then, most studies on rigid–flexible coupling dynamic systems are focused on the
investigation of dynamic stiffening and many methodologies are developed to capture the dynamic stiffening
term in the dynamic systems [4–6]. The introduction of dynamic stiffening indicates that there still exist big
limitations on the understanding of dynamics mechanism of rigid–flexible coupling systems, and on the
accuracy of the mathematical model established to describe the dynamic behavior of the systems. Meanwhile,
it also promotes extensive research on the modeling of the rigid–flexible coupling dynamic systems.

Recently, based on the theory of continuum medium mechanics and the theory of analysis dynamics, and
with the consideration of the second-order coupling term of axial displacement caused by the transverse
displacement of the flexible beam, the first-order approximation coupling (FOAC) model is developed [7–14].
The physical explanation to the dynamic stiffening is suggested in Ref. [12] by using the FOAC model. The
dynamic stiffening is essentially a structural dynamic problem in non-inertial system, which results from the
additional stiffness caused by the coupling of large rotation motion and small elastic vibration of the flexible
beam [12]. In addition, the existence of dynamic stiffening and the validity of the FOAC model are
experimentally verified in Refs. [12–14]. The FOAC model is available for low rotation speed and high
rotation speed as well. However, in the studies [7–14], the Euler–Bernoulli hypothesis is adopted for flexible
beam and the effect of shear deformation of the flexible beam is neglected in the modeling. There has result
indicating that [15], when the beam is short in length direction, shear deformation of the beam will have
biggish effect on system dynamics and should be considered in the modeling. Therefore, it is essential to study
dynamics modeling of the hub–beam system with considering the shear deformation, and make comparison
studies between the results using the Timoshenko beam hypothesis and those using the Euler–Bernoulli beam
hypothesis.

In this paper, modeling of a flexible hub–beam with considering the effect of shear deformation is studied.
Geometric stiffness terms and axial foreshortening effect caused by the transverse deformation of the beam are
considered in the modeling. The results using the Timoshenko beam hypothesis are compared with those using
the Euler–Bernoulli beam hypothesis. This paper is organized as follows. Section 2 presents the expression of
dynamic model of flexible hub–beam by Hamilton’s principle and using finite element method (FEM) for
discretization. Numerical simulations are presented in Section 3. A concluding remark is given in Section 4.

2. Motion equation

The structural model of a flexible hub–beam system is shown in Fig. 1. The hub is rigid body and its radius
is represented by R. The flexible beam is attached to the hub at the point O. The properties of the flexible beam
are represented as follows. The parameter L is the length of the beam; A is the cross section area; I is the area
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Fig. 1. Structural model of a flexible hub–beam system.
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moment of inertia of the beam cross section; r is the mass per unit volume; E is the Young’s modulus of the
beam material. It is assumed that a coiling spring is placed on the hub, as shown in Fig. 1. The system moves in
the XY plane and the effect of gravity is neglected. Two coordinate systems, an inertial frame O0–XY and a
reference frame O–xy, are used, as shown in Fig. 1. The point P0 is an arbitrary point in the beam, and Q is the
corresponding point of P0 on the centroid axis. After deformation the point P0 moves to the point P. The
vector of the point P in the O0-XY frame may be written as

~rP ¼~r0 þ~rP þ~uP (1)

where ~r0 ¼ O0O
��!

; ~rP ¼ OP0

��!
and ~uP ¼ P0P

��!
is the deformation vector. The coordinates of ~rP and ~r0 in the

O0-XY frame are represented by rP and r0, and that of~rP and ~uP in the O–xy frame by qP and uP, respectively.
The parameter H is a direction cosine matrix which is the O–xy frame with respect to the O0–XY frame, given
by

H ¼
cos y � sin y

sin y cos y

� �
, (2)

where y is the angular displacement of the hub. The coordinate of the point O in the O0–XY frame may be
written as

r0 ¼ H
R

0

� �
¼

R cos y

R sin y

� �
. (3)

The coordinate of ~rP in the O0–XY frame may be written as

rP ¼ r0 þHðqP þ uPÞ, (4)

where qP ¼ ½x; y�
Tand uP ¼ ½u; v�

T, as shown in Fig. 2. The variables x and y are the coordinates of the point P0

in the O–xy frame; u and v are the deformation quantities of the point P0 in x direction and y direction in the
O–xy frame, respectively. Since n is much larger than u, it is reasonable to assume that the deformation
quantity of P0 in y direction is equal to that of Q in y direction.

In consideration of the axial foreshortening quantity caused by the transverse deformation of beam, u may
be written as

u ¼ us � yfþ uf , (5)
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Fig. 2. Schematic diagram of deformation of flexible beam.
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where us is the axial stretching quantity of the point Q; f is the angular displacement of cross section; and uf is
the deformation associated with the foreshortening quantity, given by [7–14]

uf ¼ �
1

2

Z x

0

qn
qx

� �2

dx. (6)

Substituting Eqs. (3), (5) and (6) into Eq. (4), we have

rP ¼ H
Rþ xþ us � yf� 1

2

R x

0
qn
qx

� �2
dx

yþ n

2
4

3
5, (7)

The first-order derivative of rp may be expressed as

_rP ¼ H~I
Rþ xþ us � yfþ uf

yþ n

" #
_yþH

_us � y _fþ _uf

_n

" #
, (8)

where

~I ¼
0 �1

1 0

� �
, (9)

_uf ¼ �

Z x

0

qn
qx
�
q_n
qx

dx. (10)

The kinetic energy of the hub–beam system is written as

T ¼ TH þ TB ¼
1

2
JH
_y
2
þ

1

2

Z
V

r_rTP_rP dV , (11)

where TH and TB are the kinetic energy of the hub and the flexible beam, respectively; JH is the rotary inertia
of the hub.

Next consider the potential energy of the system. Using a nonlinear strain–displacement relationship, the
axial normal strain of the beam may be expressed as

ex ¼
qu

qx
þ

1

2

qn
qx

� �2

. (12)

Substituting Eq. (5) into Eq. (12), we have

ex ¼
qus

qx
� y

qf
qx

. (13)

The axial normal stress of the beam, sx, may be written as

sx ¼ Eex. (14)

The shear stress of cross section of the beam, t, may be written as

t ¼ kGa, (15)

where a is the shear angle; k is the shear coefficient of cross section; and G is the shear modulus, given by
G ¼ E=2ð1þ mÞ, where m is Poisson’s ratio. The parameter a may be expressed as

a ¼ f�
qn
qx

. (16)

The potential energy of the system may be written as

U ¼ UC þUf ¼
1

2
kCy

2
þ

1

2

Z
V

sxex dV �

Z
V

ta dV

� �
, (17)

where UC and Uf are the potential energy of the coiling spring and the flexible beam, respectively; kC is the
stiffness coefficient of the coiling spring. Using Eqs. (13)–(16), the potential energy of the flexible beam may be
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written as

Uf ¼
1

2

Z L

0

EA
qus

qx

� �2

dxþ
1

2

Z L

0

EI
qf
qx

� �2

dxþ
1

2

Z L

0

kGA f�
qv

qx

� �2

dx. (18)

From Eqs. (11) and (17), the variation dT and dU can be computed. Assuming that the external force vector
f acted on the beam is the distribute force. The coordinate of f in the O–xy frame is represented by
f ¼ f 1; f 2

� 	T
. So the coordinate of f in the O0–XY frame is given by Hf. The virtual work by the external force

may be written as

dW ¼

Z L

0

Hfð ÞTdrP dx. (19)

Using the Hamilton’s principle dH ¼
R t2

t1
dT � dU þ dWð Þdt ¼ 0, the dynamic equations of the system in

partial differential form may be obtained as

JH
€yþ

Z L

0

rA €y Rþ xþ us þ uf


 �2
þ n2

h i
þ Rþ xþ us þ uf


 �
€n� n €us þ €uf


 �n
þ2_y Rþ xþ us þ uf


 �
_us þ _uf


 �
þ v_v

h io
dxþ

Z L

0

rI €y 1þ f2

 �

þ €fþ 2f _f_y
h i

dx ¼ Fy, ð20Þ

Z L

0

rA �v€yþ €us þ €uf


 �
� Rþ xþ us þ uf


 �
_y
2
� 2_n_y

h i
dx�

Z L

0

EA
q2us

qx2
¼ Fu, (21)

Z L

0

rI €yþ €f� f_y
2
�n
dx�

Z L

0

EI
q2f
qx2
þ

Z L

0

kGA f�
qv

qx

� �
dx ¼ Ff, (22)

Z L

0

rA €y Rþ xþ us þ uf


 �
þ €n� n_y

2
þ 2_y _us þ _uf


 �n
þ

q
qx

qv

qx
�

Z L

x

Bðx; tÞdx
� ��

dxþ

Z L

0

kGA
qf
qx
�

q2n
qx2

� �
dx ¼ F n ð23Þ

where Fy, Fu, Ff and Fn are the generalized external forces with respect to y, us, f and n, respectively. These
four parameters and the parameter B(x, t) in Eq. (23) can be expressed as

Fy ¼ KCyþ
Z L

0

A f 2 Rþ xþ us þ uf


 �
� f 1n

� 	
dx, (24)

Fu ¼

Z L

0

Af 1 dx, (25)

Ff ¼ 0, (26)

Fv ¼

Z L

0

A f 2 þ
q
qx

qv

qx
�

Z L

x

f 1 dx
� �� �

dx, (27)

B x; tð Þ ¼ €us þ €uf � v€y� _y
2

Rþ xþ us þ uf


 �
� 2_v_y. (28)

The boundary conditions of the beam are as follows:

us 0; tð Þ ¼ 0; f 0; tð Þ ¼ 0; uf 0; tð Þ ¼ 0;

EA
qus L; tð Þ

qx
¼ 0; EI

qf L; tð Þ

qx
¼ 0; EI

q2f L; tð Þ

qx2
¼ 0:

(29)

The system dynamics given in Eqs. (20)–(23) are partial differential equations that are nonlinear and time-
varying. It is generally impossible to get the analytical solutions of these equations. The FEM is often used as
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discretization of the beam. Assume that the elastic beam is partitioned with n elements when using FEM. So
the total number of the nodes of the beam is (n+1). The finite element model of the flexible beam is shown in
Fig. 3. The length of the ith element is represented by li. The ō2x̄ ȳ system is the element coordinates system of
the ith element. The position of ō2x̄ ȳ system is determined by the coordinate xi , which is the position of the
first node of the ith element in the O–xy frame. The parameters us, f and n are expressed as the interpolation
of the two node coordinates of this element by using element shape function, given by

usðx̄; tÞ ¼ Ni;1ðx̄Þ piðtÞ, (30)

nðx̄; tÞ ¼ Ni;2ðx̄Þ piðtÞ, (31)

fðx̄; tÞ ¼ Diðx̄Þ piðtÞ, (32)

where x̄ is the axial coordinate of point P in the ō2x̄ ȳ system, as shown in Fig. 3. The variables Ni,1, Ni,2, and
Di are (1� 6) vectors which are the iso-parametric shape function vectors of the ith element, and pi is the
(6� 1) node coordinate vector, given by

Ni;1 x̄ð Þ ¼ N11 0 0 N12 0 0
� 	

, (33)

Ni;2 x̄ð Þ ¼ 0 N21 N31 0 N22 N32

� 	
, (34)

Di x̄ð Þ ¼ 0 D21 D31 0 D22 D32

� 	
, (35)

pi tð Þ ¼ w1;i w2;i fi w1;iþ1 w2;iþ1 fiþ1

h i
, (36)

respectively, where [17]

N11 ¼ 1� z; N21 ¼
1

1þ j
1þ j� jz� 3z2 þ 2z3

 �

;

N12 ¼ z; N22 ¼
li

1þ j
1þ

j
2

� �
z�

4þ j
2

z2 þ z3
� �

;

N31 ¼
1

1þ j
jzþ 3z2 � 2z3

 �

; N32 ¼
li

1þ j
�
j
2
zþ

j� 2

2
z2 þ z3

� �
;

D21 ¼ �
6

1þ jð Þli

z� z2

 �

; D22 ¼
1

1þ j
1þ j� 4þ jð Þzþ 3z2
� 	

;

D31 ¼
6

1þ jð Þli

z� z2

 �

; D32 ¼
1

1þ j
j� 2ð Þzþ 3z2


 �
;

(37)

where z ¼ x̄=li. The parameter j is the shear coefficient, given by j ¼ 12EI


kGAl2i . The variables w1;i, w2;i and

fi are the axial displacement, the transverse displacement and the cross-section rotation angle of the ith node,
respectively, i ¼ 1�ðnþ 1Þ.

The total generalized coordinate vector of the beam is represented by p(t), which is a 3(n+1)� 1 vector,
given by

pðtÞ ¼ ½w11 w21 f1 � � � w1nþ1 w2nþ1 fnþ1 �
T (38)

Thus the node coordinate vector pi of the ith element may be written as

piðtÞ ¼ BipðtÞ, (39)
x

y

O
1 2 i n 

xi li

x
y

O 
x

Fig. 3. Finite element model of flexible beam.
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where Bi is a 6� 3(n+1) Boole indicated matrix that is determined by the element serial number as

Bi ¼
03 03 � � � I3 03 � � � 03 03

03 03 � � � 03 I3 � � � 03 03

" #
6�3 nþ1ð Þ

, (40)

where 03 is a (3� 3) zero matrix and I3 is a (3� 3) identity matrix. Substituting Eq. (39) into Eqs. (30)–(32), we
have

usðx̄; tÞ ¼ N1ðx̄Þ pðtÞ, (41)

nðx̄; tÞ ¼ N2ðx̄Þ pðtÞ, (42)

fðx̄; tÞ ¼ Dðx̄Þ pðtÞ, (43)

where N1ðx̄Þ, N2ðx̄Þ and Dðx̄Þ are all 1� 3(n+1) vector which are the shape function in the O– xy frame, given
by N1ðx̄Þ ¼ Ni;1ðx̄ÞBi, N2ðx̄Þ ¼ Ni;2ðx̄ÞBi and Dðx̄Þ ¼ Diðx̄ÞBi.

Using Eqs. (5), (6), (41)–(43), we have

uP ¼
u

n

� �
¼

N1p� yDp� 1
2
pTHðx̄Þp

N2p

" #
, (44)

where Hðx̄Þ is the coupling shape function matrix which is an 3(n+1)� 3(n+1) symmetry and non-negative
define matrix, given by

H x̄ð Þ ¼ BT
i

Z x

0

qNT
i;2

qx̄
�
qNi;2

qx̄
dx̄Bi þ

Xi�1
j¼1

BT
j

Z lj

0

qNT
j;2

qx̄
�
qNj;2

qx̄
dx̄Bj

 !
. (45)

Using the FEM with n element for the beam, the dynamic equation of the hub–beam system can be
expressed as

M€q ¼ Q; (46)

where q ¼ ½y; pT�T is the generalized coordinates of the hub–beam system; and M and Q are the generalized
mass matrix and the generalized force matrix, respectively; given by

M ¼
Myy Myp

Mpy Mpp

" #
; Q ¼

Qy

Qp

" #
, (47)

where Myy is the rotary inertia of the system that is a scalar; Myp and Mpy are 1� 3(n+1) and 3(n+1)� 1
inertia vectors caused by the nonlinear coupling between the rotating motion and the elastic deformation of
the flexible beam; Mpp is an 3(n+1)� 3(n+1) generalized elastic mass matrix; Qy is a scalar and Qp is an
3(n+1)� 1 vector, both are generalized force parameters. All the parameters in Eq. (47) are given as follows

Myy ¼ JH þmR2 þ J11 þ J22 þ 2RE1 þ 2 RY1 þ Z11ð Þp

� pT RCþDð Þpþ pT W11 þW22 þWD


 �
p, ð48Þ

Mpy ¼MT
yp ¼ RYT

2 þ W21 �W12ð Þpþ ZT
12 þ Y

T

D, (49)

Mpp ¼W11 þW22 þWD, (50)

Qy ¼ � 2_y RY1 þ Z11ð Þ_p� pT RCþDð Þ_pþ pE W11 þW22 þWD


 �
_p

� 	
� KCyþ

Z
V

f 2 xþN1p� yDp� 1
2
pTHp


 �
� f 1 yþN2pð Þ

� 	
dV , ð51Þ

Qp ¼ � 2_y W21 �W12ð Þ_pþ _y
2
W11 þW22 þWD


 �
pþ _y

2
RY1 þ Z11ð Þ

� _y
2

RCþDð Þp� Kf pþ

Z
V

f 1 NT
1 � yDT �Hp


 �
þ f 2N

T
2

� 	
dV . ð52Þ
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The constant parameters in Eqs. (48)–(52) are given as follows

m ¼ rAL, (53)

E1 ¼

Z
V

rxdV ¼
rAL2

2
, (54)

J11 ¼

Z
V

rx2 dV ¼
rAL3

3
, (55)

J22 ¼

Z
V

ry2 dV ¼ rLI , (56)

Wjk ¼

Z
V

qNT
j Nk dV ¼

Xn

i¼1

BT
i

Z li

0

rANT
i;jNi;k dx̄Bi j; k ¼ 1; 2ð Þ, (57)

WD ¼

Z
V

ry2DTDdV ¼
Xn

i¼1

BT
i

Z li

0

rIDT
i Di dx̄Bi, (58)

Yk ¼

Z
V

rNk dV ¼
Xn

i¼1

Z li

0

qANi;k dx̄Bi k ¼ 1; 2ð Þ, (59)

YD ¼

Z
V

ry2DdV ¼
Xn

i¼1

Z li

0

rIDi dx̄Bi, (60)

Z1k ¼

Z
V

rxNk dV ¼
Xn

i¼1

Z li

0

rA xi þ x̄ð ÞNi;k dx̄Bi k ¼ 1; 2ð Þ, (61)

C ¼

Z
V

rHdV ¼
Xn

i¼1

Z li

0

rAHdx̄

¼
Xn

i¼1

BT
i

Z li

0

Z x̄

0

rA
qNT

i;2

qx
�
qNT

i;2

qx

 !
dxdx̄Bi,

þ
Xn

i¼1

Xi�1
j¼1

BT
i

Z li

0

Z lj

0

rA
qNT

j;2

qx
�
qNT

j;2

qx

 !
dxdx̄Bi, ð62Þ

D ¼

Z
V

rxHdV ¼
Xn

i¼1

Z li

0

rA xi þ x̄ð ÞHdx̄

¼
Xn

i¼1

BT
i

Z li

0

xi þ x̄ð Þ

Z x̄

0

rA
qNT

i;2

qx
�
qNT

i;2

qx

 !
dxdx̄Bi

þ
Xn

i¼1

Xi�1
j¼1

BT
i

Z li

0

xi þ x̄ð Þ

Z lj

0

rA
qNT

j;2

qx
�
qNT

j;2

qx

 !
dx dx̄Bi, ð63Þ

Kf ¼
Xn

i¼1

BT
i

Z li

0

EA
qNT

i;1

qx̄
�
qNi;1

qx̄
þ EI

qDT
i

qx̄
�
qDi

qx̄

"

þ mGA Di �
qNi;2

qx̄

� �T

Di �
qNi;2

qx̄

� �#
dx̄Bi. ð64Þ
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3. Numerical example

In this section, numerical simulation is carried out to demonstrate the effectiveness of the proposed dynamic
model. Two cases, with and without considering the effect of shear deformation, are considered. The case with
considering the shear deformation is namely the Timoshenko beam hypothesis. For this case the shear
coefficient j is considered in the modeling. The case without considering the shear deformation is the
Euler–Bernoulli beam hypothesis, where j ¼ 0 is taken.

The material properties of the beam and structural parameters are given in Table 1. The hollow circular
cross-section beam is adopted herein, where the length of the beam is L ¼ 2m, the inner radius R1 ¼ 0.02m
and the outer radius R2 ¼ 0.025m, as shown in Table 1. The equivalent diameter of the beam may be

computed by de ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 � R2
1

q
. Assume that the initial condition of the system is y0 ¼ 301 and _y0 ¼ 0 rad=s,

and no external force is put on the system. Under this condition, the coiling spring is elongated and the system
will behave with a free vibration. The elastic vibration of the beam will excite the large motion of the
system, and the large motion of the system will affect the elastic vibration of the beam. These two motions act
on each other. The shear coefficient of the cross-section of the beam, k, is given by [18]

k ¼
6ðR2

1 þ R2
2Þ

2
ð1þ mÞ2

7R4
1 þ 34R2

1R
2
2 þ 7R4

2 þ mð12R4
1 þ 48R2

1R2
2 þ 12R4

2Þ þ m2ð4R4
1 þ 16R2

1R2
2 þ 4R4

2Þ
. (65)

Under the initial condition, the time histories of tip response of the beam in y direction are shown in Fig. 4,
where the solid line is the result using the Euler–Bernoulli beam hypothesis and the short dashed line the
Timoshenko beam hypothesis. We can observe from Fig. 4 that the two results are overlapped. Fig. 5 is the
amplitude–frequency result of the tip response of the beam in y direction using FFT. It is observed from Fig. 5
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Fig. 4. The time history of tip response of the beam in y direction (L ¼ 2m).

Table 1

The material properties and structural parameters

Length of the beam (L) 2 m

Density of beam material (r) 3.0� 103 kg/m3

Inner radius of the beam (R1) 0.02m

Outer radius of the beam (R2) 0.025m

Young’s modulus of beam material (E) 7.27� 1010N/m2

Poisson’s ratio of beam material (m) 0.3

Rotary inertia of the hub (JH) 5 kgm2

Radius of the hub (R) 0.2m

Stiffness of the coiling spring (kC) 5000Nm/rad
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that the response of the beam is mainly dominated by the first two modes. The first two vibration frequencies
of the beam using the Timoshenko beam hypothesis are identical with those using the Euler–Bernoulli beam
hypothesis, they are 3.125 and 17.188Hz, respectively. Since the length of the beam is much larger than the
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Fig. 5. Frequency–amplitude result of tip response of the beam in y direction (L ¼ 2m).
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equivalent diameter of the beam for this case, j has small effect on system dynamics that may be neglected. So
the results using the Timoshenko beam hypothesis and the Euler–Bernoulli beam hypothesis are almost
identical.

Next consider the case that the beam is short in length direction. The material properties of the beam and
structural parameters are chosen to be the same as above except that the length of the beam is L ¼ 0.5m. The
same initial condition of the system is taken, i.e., y0 ¼ 301 and _y0 ¼ 0 rad=s. In this case, the time histories of
tip response of the beam in y direction and the amplitude–frequency results with and without considering j
are shown in Figs. 6 and 7, respectively. It is observed from Fig. 6 that there exists some difference in the two
results. From Fig. 7, we can observe that the response of the beam is dominated by the first two modes. The
first-order frequencies of the beam using the two hypothesis of flexible beam are identical, both are 5.078Hz.
But the second-order frequencies are different. It is 26.172Hz using the Timoshenko beam hypothesis and
24.609Hz using the Euler–Bernoulli beam hypothesis.

4. Concluding remark

In this paper, the coupling dynamic model of a hub–beam system with considering the shear deformation is
investigated. The geometric stiffness term and the foreshortening quantity caused by the transverse
deformation of beam are considered in the modeling. The dynamic model established using the Hamilton’s
principle is discretized using the FEM. The result using the Timoshenko beam hypothesis is compared with
that using the Euler–Bernoulli beam hypothesis. Simulation results indicate that, when the ratio of length
respect to the equivalent diameter of the beam is big, the effect of shear deformation of the beam on system
dynamics is small and may be neglected in the modeling. But when the ratio is small, the shear deformation of
the beam will have biggish effect on system dynamics and should be considered in the modeling. Whenever the
ratio is big or small, the response of the beam is mainly dominated by the first two modes of the beam.
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