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Abstract

In this paper, the wave equation of the cone spring with definite mass is presented. The effective elastic constant and the

effective mass are given by means of the energy method, and the expression of the oscillatory period is obtained. Moreover,

the analytical solutions of the wave equation are derived. It is proven that the cone spring exists an infinite number of

circular frequencies, and this kind of spring moves quasi-periodically.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The spring is widely applied in many domains, such as engineering, the manufacture of appliance, research
and teaching, and so on. The spring mass is not negligible for enhancing data accuracy. The vibration problem
of the spring of non-negligible mass is essentially the wave propagation problem in elastic medium. Therefore,
this problem has attracted considerable attention in the scientific community, and many research efforts have
been focused on this problem [1–7]. However, to the best of our knowledge, less work has been done to
investigate the cone spring problem due to its complexity. The application of the cone spring is lagging behind
owing to the absence of theoretical instruction. In this paper, the properties of the cone spring are analyzed
theoretically, and a theoretical base for the practical application is provided. We can find that when the mass
M of the suspended object is much larger than the mass m of the spring, the oscillatory period expression of
the cone spring obtained by solving wave equation and the one by using energy method are almost identical.
When Mom, the oscillatory period expression of the cone spring done is obtained by solving wave equation.

The paper is organized as follows. The wave equation of the cone spring with mass is presented in Section 2.
The effective elastic constant and the effective mass of the vibrating spring are obtained by means of the
energy method in Section 3. Moreover, the expression of the oscillation period is given in this section. In
Section 4, we solve the wave equation analytically and find infinite number of circular frequencies in the cone
spring. The circular frequency and the amplification An are given in Sections 5 and 6, respectively. The last
section is a discussion about the interesting results. At the end, a brief summary is given.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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2. Wave equation of the spring

In Fig. 1, the spring of length L has the mass m, the total turn number is N, and the radii of small and large
ends are R0 and RN, respectively.

On assuming that the radius of spring is R in the location x, then

R ¼ R0 þ kx, (1)

where

k ¼ ðRN � R0Þ=L. (2)

Let the angle of rotation from the small end to x be y, then y=2Np ¼ x=L. Thus the portion of an x length
suffers an elongation:

dy ¼
2Np

L
dx (3)

and the elongation of the unit of length is

dl ¼ Rdy. (4)

Substituting Eqs. (1)–(3) into Eq. (4), one can obtain

dl ¼ R0 þ kxð Þ
2Np

L
dx. (5)

Since the stiffness factor of the cylindrical spring [7] K ¼ Gpr4=2lR2, the stiffness factor corresponding to a
dx length in location x is Kdx

Kdx ¼
Gpr4

2R2dl
, (6)

where G is shear modulus of the spring, r is the radius of the wire, R is the radius of the spring.
Inserting Eqs. (1)–(5) into Eq. (6), one yields

Kdx ¼
Gr4L

4 R0 þ kxð Þ
3N dx

, (7)

which is the series connection of the spring with its length dx and stiffness factor Kx. From the stiffness factor
relation of series connection and the integral mean value theorem, one gets

Kx ¼
Gr4L

4 R0 þ kxð Þ
3N

. (8)

Since the total spring L is regarded as the series connection of the spring with its stiffness factor Kx then

1

K
¼

Z L

0

dx

Kx

¼
NðR2

N þ R2
0ÞðRN þ R0Þ

Gr4
, (9)
R
L

Ro

RN

x

Fig. 1. Cross-section graphics of the spring.
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i.e. the stiffness factor of the cone spring is

K ¼
Gr4

NðR2
N þ R2

0ÞðRN þ R0Þ
. (10)

If R0 ¼ RN ¼ R, then the stiffness factor of the cylindrical spring can be recovered, namely

K ¼
Gr4

4NR3
. (11)

Let the density of the wire be r, then the mass corresponding to dx is

dm ¼ rdl ¼ r
2Np

L
R0 þ kxð Þdx. (12)

While considering the forces as Fx and Fx+dx in x and x+dx, respectively, the total force

dF ¼ F xþdx � F x ¼ Kx

qU

qx

����
xþdx

� Kx

qU

qx

����
x

¼
q
qx

Kx

qU

qx

� �
dx, (13)

where U is the displacement in x. From the Newton’s second law, ðdF=dmÞ ¼ ðq2U=qt2Þ, and Eqs. (12) and
(13), one has

q=qx KxqU=qx
� �

dx

dm
¼

q2U

qt2
. (14)

From Eqs. (8), (12) and (14), the wave equation of the cone spring is

q2U
qt2
¼

Gr4L2

8prN2 R0 þ kxð Þ

q
qx

1

R0 þ kxð Þ
3

qU

qx

� �
. (15)

If k ¼ 0, then the wave equation of the cylindrical spring can be recovered, i.e.

q2U
qt2
¼

Gr4L2

8prR4
0N

2

q2U
qx2

. (16)

3. Effective elastic constant and effective mass

Now we consider a system consisting of a mass M suspended to the large end of a spring of non-negligible
mass m. When R0 ¼ 0, the special example is the cone spring. From Eqs. (2), (8), (10), (12) and (15), one gets

RN ¼ kL, (17)

Kx ¼
Gr4L

4Nk3x3
, (18)

K ¼
Gr4

NR3
N

, (19)

dm ¼
2rNkp

L
xdx, (20)

q2U

qt2
¼

Gr4L2

8prN2kx

q
qx

1

kxð Þ3
qU

qx

� �
. (21)

The substitution of Eqs. (17) and (19) into Eq. (18) yields

Kx ¼
L4K

4x3
. (22)
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From Eq. (20), the total mass of the cone spring is

m ¼

Z L

0

dm ¼

Z L

0

rk
2pN

L
xdx ¼ rNkLp. (23)

The substitution of Eq. (23) back into Eq. (20) yields

dm ¼¼
2m

L2
xdx. (24)

Inserting Eqs. (17), (19) and (23) into Eq. (21), the wave equation is of the form

q2U
qt2
¼

KL6

8mx

q
qx

1

x3

qU

qx

� �
. (25)

A valid solution of Eq. (25) is

Uðx; tÞ ¼ f ðxÞzðtÞ, (26)

where f(x) is ‘‘shape function’’ [4], which gives relative elongation as a function of x, and z(t) gives the motion
of the end point x ¼ L, where mass M is attached. In general, f(x) is unknown explicitly, yet clearly f ðLÞ ¼ 1,
so that UðL; tÞ ¼ zðtÞ. The total energy of this system is

E ¼ ðV þ TÞspring þ Tmass M , (27)

where (V+T)spring depends on the way the spring is stretched that is on the ‘‘shape function’’ f(x).
Vspring can be obtained as follows. By using the relation F ðxÞ ¼ KxðqU=qxÞ, the potential of the segment dU

is

dV ¼ F ðaverageÞdU ¼
F ðxÞ

2
dU ¼

Kx

2

qU

qx

� �2

dx. (28)

Substituting the differential of Eq. (26) to argument x into Eq. (28), and integrating once to argument x with
Eq. (22), we have

V spring ¼
z2ðtÞL4K

8

Z
df =dx
� 	2

x3
dx ¼

aKz2ðtÞ

2
, (29)

where

a ¼
L4

4

Z L

0

df =dx
� 	2

x3
dx. (30)

Now we discuss the kinetic energy of the spring. As for kinetic energy, each element dx with mass dm and
velocity m(x, t) possesses an energy:

dT spring ¼
1

2
n2ðx; tÞdm ¼

1

2
n2ðx; tÞ

2m

L2
xdx. (31)

By differentiating Eq. (26) to argument t, the velocity is

nðx; tÞ ¼ z0ðtÞf ðxÞ. (32)

where ‘‘0’’ denotes differential to argument t. At the location x ¼ L, the velocity

nðL; tÞ ¼ z0ðtÞf ðLÞ ¼ z0ðtÞ. (33)

Substituting Eq. (33) back into Eq. (32), one gets

nðx; tÞ ¼ nðL; tÞf ðxÞ. (34)

Inserting Eq. (34) in Eq. (31) and integrating once, the total kinetic energy of the spring reads

T spring ¼
1
2
n2ðL; tÞmb, (35)
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with

b ¼
2

L2

Z L

0

xf 2
ðxÞdx. (36)

Moreover, the kinetic energy of the mass M is

Tmass M ¼
1
2
n2ðL; tÞM. (37)

On substituting Eqs. (29), (35) and (37) into Eq. (27) obtains the total energy of the system

E ¼
aKz2 tð Þ

2
þ ðM þ bmÞn2 L; tð Þ=2, (38)

where aK and bm are the effective elastic constant and the effective mass of the spring, respectively.
Since the energy E(t) ¼ constant due to the energy conservation law, its time derivative must be zero:

dE

dt
¼

aKzdz

dt
þ
ðM þ bmÞnðL; tÞdnðL; tÞ

dt
¼ 0. (39)

The derivative of Eq. (33) to argument t substitutes into Eq. (39), to yield

d2z

dt2
¼ � aK=ðM þ bmÞ

� 	
z ¼ �o2z, (40)

with

o ¼ aK=ðM þ bmÞ
� 	1=2

. (41)

Since a and b are constant for a given shape function f(x), we see that z(t) must be harmonic with period

T ¼
2p
o
¼ 2p ðM þ bmÞ=aK

� 	1=2
, (42)

where a and b are defined by Eqs. (30) and (36). Let us evaluate a and b for the limit case Mbm .
For this case, the elongation is quasi-static; that is, the spring stretches uniformly. The elongation in the

location x is

yðxÞ ¼

Z x

0

dy ¼

Z x

0

F

Kx

dx ¼
Fx4

KL4

and the ‘‘shape function’’

f ðxÞ ¼
yðxÞ

yðLÞ
¼

x4

L4
. (43)

In terms of Eqs. (30), (36) and (43), constants a ¼ 1; b ¼ 1
5
. The substitution in Eq. (42) gives

T ¼ 2p ðM þ m
5
Þ



K

� �1=2
, (44)

which is different from the known spring period T ¼ 2pðM=KÞ1=2 with the spring mass being ignored.
Compared with the oscillation period of the cylinder spring [2,4,5]

T ¼ 2p ðM þ m
3
Þ



K

� �1=2
, (45)

it is clearly seen that the influence of the mass of the cone spring on vibration is smaller than on the cylinder
spring. Moreover, it is easily proven that effective elastic constant of the circular truncated cone spring is
between the cylindrical spring and the cone spring, i.e. 1

5
pbp1

3
. However, for other cases, except for Mbm,

the shape function f(x) is difficult to describe. In these cases, we should strictly solve the wave equation to
discuss the properties of the cone spring.
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4. Finite solution problem to wave equation

While considering the initial condition and boundary condition, if the spring is fixed at the
location x ¼ 0, then Uð0; tÞ ¼ 0. And if it is connected to an object of mass M in the location x ¼ L,
then MUttðL; tÞ ¼ �ðLK=4ÞUxðL; tÞ due to Newton’s second law and Hooke’s law. When t ¼ 0, the static
spring has tensile displacement U0, i.e. Uðx; tÞ ¼ U0 x4=L4

� �
, and UtðL; tÞ ¼ 0, thus the statement of the

problem is

Utt ¼
c2

x

1

x3
Ux

� �
x

,

Uð0; tÞ ¼ 0,

MUttðL; tÞ ¼ �
LK

4
UxðL; tÞ,

Uðx; 0Þ ¼ U0
x4

L4
,

Utðx; 0Þ ¼ 0, ð46Þ

with

c2 ¼
L6K

8m
. (47)

On inserting Eq. (26) into the first equation in Eq. (46), the wave equation has the form

zttðtÞf ðxÞ ¼
c2

x

1

x3
f xðxÞ

� �
x

zðtÞ.

By variable separation, one can get

zttðtÞ þ o2zðtÞ ¼ 0,

f xxðxÞ �
3

x
f ðxÞ þ

o2

c2
x4f ðxÞ ¼ 0. ð48Þ

From the initial condition in Eq. (46) and the first expression in Eq. (48), it is easily proven that

zðtÞ ¼ Dn cos ðotÞ. (49)

And the second expression in Eq. (48) is a Bessel equation [8]

f xxðxÞ þ
1� 2a

x
f xðxÞ þ bgxg�1� �2

þ
a2 �m2g2

x2

� �
f ðxÞ ¼ 0,

with its solution f ðxÞ ¼ CxaJmðbx2Þ because f(0) is zero, where a ¼ 2; g ¼ 3;b ¼ o=3c;m ¼ 2=3. Thus the
solution of the second expression in Eq. (48) reads

f ðxÞ ¼ Cox2J2=3
o
3c

x3
� �

. (50)

Clearly, the coefficient Co has the dimension of m�2. If Bo ¼ CoL2, the dimensionless form is

f ðxÞ ¼
Box2

L2
J2=3

o
3c

x3
� �

. (51)

Furthermore, let Ao ¼ BoDo, from Eqs. (49) and (51), then the wave equation has the solution as

U ¼ Ao
x2

L2
J2=3

o
3c

x3
� �

cos ðotÞ. (52)
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5. Circular frequency x

Substituting the boundary condition MUttðL; tÞ ¼ �ðLK=4ÞUxðL; tÞ in Eq. (46) into Eq. (52) yields

�o2Mx2J2=3
o
3c

x3
� ����

x¼L
¼ �

LK

4

d

dx
x2J2=3

o
3c

x3
� �h i���

x¼L
. (53)

That is

L3KJ�1=3
o
3c

L3
� �

¼ 4coMJ2=3
o
3c

L3
� �

.

On substituting c in Eq. (47) into above equation, o satisfies

ffiffiffiffiffiffiffiffi
mK
pffiffiffi
2
p

oM
¼

J2=3
2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� �
J�1=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� � , (54)

which is similar to the expression of the cylindrical spring
ffiffiffiffiffiffiffiffi
Km
p

=oM
� �

¼ tan o
ffiffiffiffiffiffiffiffiffiffi
m=K

p� �
in Refs. [1–3,5,6].

They both admit an infinity of circular frequencies, yet Eq. (54) is more complex than that of cylindrical
spring. The wave equation has the solution

U ¼
X

n

An

x2

L2
J2=3

on

3c
x3

� �
cos ðontÞ; (55)

where on is the frequency of the nth solution, An is the corresponding amplification.

6. Amplification An

The substitution of the initial condition Uðx; 0Þ ¼ U0ðx
4=L4Þ in Eq. (46) into Eq. (55) yields

U0
x2

L2
¼
X1
n¼1

AnJ2=3
2
ffiffi
2
p

3

ffiffiffiffi
m

K

r
on

L3
x3

� �
. (56)

Through the following variable substitution,

y ¼ x3, (57)

an ¼
2
ffiffi
2
p

3

ffiffiffiffi
m

K

r
on, (58)

t ¼ L3, (59)

Eq. (56) reads

U0
y2=3

t2=3
¼
X1
n¼1

AnJ2=3
an

t
y

� �
: (60)

In light of the orthogonal and unitary properties and integral formula of Bessel function, it is easily proven
that

An ¼
2U0J5=3ðanÞ

an J2=3ðanÞ
2
� J�1=3ðanÞJ5=3ðanÞ

� 	 . (61)

Upon inserting Eqs. (57)–(59) back in Eq. (61), the amplification An has the form

An ¼
2U0J5=3

2
ffiffi
2
p

3

ffiffiffi
m
K

p
on

� �
2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on J2=3

2
ffiffi
2
p

3

ffiffiffi
m
K

p
on

� �2
� J�1=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

� �
J5=3

2
ffiffi
2
p

3

ffiffiffi
m
K

p
on

� �� � . (62)
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Substituting Eq. (62) into Eq. (55), the solution of wave equation reads

U ¼
X

n

2U0
x2

L2

� �
J5=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

� �
J2=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

x3

L3

� �� �
2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on J2=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

� �2
� J�1=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

� �
J5=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
on

� �� � cos ðotÞ.

(63)

7. Discussion and summary

Now we discuss our interesting results in three different aspects (i.e. m, M and M=m). For simplicity, we let

Z1 oð Þ ¼
J2=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� �
J�1=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� � , (64)

Z2 oð Þ ¼

ffiffiffiffiffiffiffiffi
mK
pffiffiffi
2
p

oM
. (65)

(1) Discussion about m:
When m! 0, the expression of simple harmonic vibration without considering mass of the spring can be

recovered.
From the asymptotic formula of Bessel function [8]

Jg xð Þ �
x!0 1

C gþ 1ð Þ

x

2

� �g
, (66)

we have Z1 oð Þ ¼ 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o: Substituting this expression into Eq. (65), one gets

o ¼

ffiffiffiffiffiffi
K

M

r
. (67)

In light of the asymptotic formula of Bessel function , Eq. (63) reads

U L; tð Þ ¼

U0
1

C
5
3
þ1

� �
C

2
3
þ1

� �
1

C
2
3
þ1

� �2 � 1

C �
1
3
þ1

� �
C

5
3
þ1

� � cos ðotÞ. (68)

Substituting Eq. (67) into Eq. (68) with the relation C aþ 1ð Þ ¼ aC að Þ; the spring of negligible mass satisfies the
simple harmonic vibration:

U L; tð Þ ¼ U0 cos

ffiffiffiffiffiffi
K

M

r
t

 !
, (69)

which indicates the correctness of our results, and it is a special example of the general results (63) in this
paper.

(2) Discussion about M:
The circular frequency o satisfies

ffiffiffiffiffiffiffiffi
mK
pffiffiffi
2
p

oM
¼

J2=3
2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� �
J�1=3

2
ffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=KÞ

p
o

� � ,
which is a transcendental equation. For avoiding the complicated operation, we employ the graphic analysis
method. In Fig. 2, the abscissa is o with unit 3

2
ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK=mÞ

p
: We take ð3K=4MÞ ¼ 20 for example, F2 and the

graphics of Z1 and Z2 are shown in Fig. 2.
From Fig. 2, we infer that Z2 and Z1 have infinity crossing points, and the frequency related to the first one is

basic frequency, others are related to corresponding order harmonic frequencies, respectively. Strictly
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Fig. 2. Graphical solution of Eqs. (64) and (65).
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speaking, the motion of the spring is not simple harmonic vibrating, but quasi-period movement based mainly
on the basic frequency.

When M increases, the rectangular hyperbola moves in the paraxial direction, thus basic frequency and all
order frequencies decrease. For the limited case M ¼ 1; basic frequency should be the frequency
corresponding to the point P in Fig. 2 due to the request that basic frequency is not zero. When M ¼ 0;
the basic frequency is the frequency related to the first asymptotic line.

(3) Discussion about m and M:
For simplification, we assume that m and K are equal. Eq. (54) reads

mffiffiffi
2
p

oM
¼

J2=3
2
ffiffi
2
p

3 o
� �

J�1=3
2
ffiffi
2
p

3
o

� � . (70)

Further considering the vibration of the top end U L; tð Þ; Eq. (63) turns into

U L; tð Þ ¼
X

n

An Lð Þ cosðotÞ

and Eq. (62) reads

AnðLÞ ¼
2U0J5=3

2
ffiffi
2
p

3
on

� �
J2=3

2
ffiffi
2
p

3
on

� �
2
ffiffi
2
p

3 on J2=3
2
ffiffi
2
p

3 on

� �2
� J�1=3

2
ffiffi
2
p

3 on

� �
J5=3

2
ffiffi
2
p

3 on

� �� � .

Table 1 lists the corresponding results of circular frequency of the cone spring for Eq. (70) obtained by
solving wave equation, Eq. (44) obtained by energy method and the approximate formula o ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
with

ignoring inherent mass of the cone spring via different values M=m respectively. In this table, sn ¼

ðAn Lð ÞÞ=U0

� �2
denotes the ratio of all kinds of frequency to total energy.

From Table 1, we can find some novel results:
(1)
 The energy corresponding to the basic frequency accounts for very high percents in the total energy. When
M=m increases, this ratio increases in the total energy. When M=mX2, this ratio surpasses 95%, which
indicates basic frequency, namely the circular frequency observed in the experiment, is principal
macroscopic representation during the vibration. And in this case, the first harmonic frequency is less than
0.7%. Moreover, when M=m decreases, this ratio does not always increase, and may also decrease. For
example, the ratio of M=m ¼ 0:01 is smaller than that of M=m ¼ 0:1, whose reason is that the decreasing
energy may transfer to other harmonic frequencies.
(2)
 When M4m, the basic frequency o obtained from energy method and by solving wave equation is almost
identical. The formula of circular frequency by energy method possesses high precision.
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(3)
 o , which is given by general approximate formula with ignoring mass in its applicability with negligible
mass, is larger than that by the energy method. This conveys us that the energy method is superior to
general approximate formula in the applicability and precision.
In summary, we discuss the oscillatory properties of the cone spring by energy method and directly solving
the wave equation. These results from different methods are identical. For another opposite case, i.e. the large
is fixed and the mass M is suspended to the small end, we can deal with it similarly to this paper except for the
difference of the influence of the mass of the spring on oscillatory period. Moreover, for a circular truncated
cone spring with given R0, RN , and L, one can deal with it closely to this paper. We think that our worthy
work will provide a theoretical base for the cone spring in the practical application. Further work will be
discussed.
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