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Abstract

A perusal of the literature brings out the fact that research reports on the vibration characteristics of stiffened composite

hypar shells are missing. The present paper combines an eight noded shell element with a three noded beam element to

develop a finite element tool for solution of such problems. Benchmark problems are solved to validate the approach and

free vibration response of stiffened composite hypar shells is studied both with respect to fundamental frequency and mode

shapes by varying the number and depth of stiffeners, laminations and boundary conditions. The results are further

analysed to suggest guidelines to select optimum stiffened shell configurations considering the different practical

constraints.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Among the common civil engineering shell forms which are used as roofing units, the skewed hypars have a
special position because these architecturally pleasant forms may be cast and fabricated conveniently being
doubly ruled surfaces. The hypar shells may be stiffened to have enhanced rigidity when subjected to point
loads or provided with cutouts for some service requirements. A comprehensive idea about their static and free
vibration characteristics is essential for a designer for successfully applying these forms. Now-a-days
researchers are emphasizing more on laminated composite shells realizing the strength and stiffness potentials
of this advanced material.

Free vibration of orthogonally stiffened cylindrical shell panels was reported by Bardell and Mead [1] for
isotropic material using wave propagation techniques in conjunction with the hierarchical finite element
method. Later Mecito

_
glu and Dökmeci [2] used the collocation method to study the free vibration of isotropic

stiffened shallow cylindrical panels. Response of such panels under blast loading was carried out by Olson [3]
using both finite element and finite strip methods. Sinha and Mukhopadhyay [4] reported frequencies and
mode shapes of stiffened isotropic cylindrical panels using finite element again. Super finite elements were used
to obtain free vibration results of stiffened cylindrical panels by Jiang and Olson [5]. Vibration of shell roof
panels were reported by Chakravorty and Bandyopadhyay [6] considering isotropic cylindrical shells and later
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a,b length and width of shell in plan
bst width of stiffener in general
bsx, bsy width of X and Y stiffeners, respectively
Bsx, Bsy strain displacement matrix of stiffener

element
c rise of hypar shell
dst depth of stiffener in general
dsx, dsy depth of X and Y stiffeners, respectively
e eccentricity of stiffeners with respect to

mid-surface of shell
esx, esy eccentricities of X and Y stiffeners with

respect to mid-surface of shell
E11, E22 elastic moduli
G12, G13, G23 shear moduli of a lamina with

respect to 1, 2 and 3 axes of fibre
h shell thickness
Msxx, Msyy moment resultants of stiffeners
np number of plies in a laminate
nx, ny number of stiffeners along X and Y

directions, respectively
Nsxx, Nsyy axial force resultants of stiffeners
Qsxxz, Qsyyz transverse shear resultants of stiffen-

ers
Rxy radii of cross-curvature of hypar shell
Tsxx, Tsyy torsion resultants of stiffeners

usx, wsx axial and transverse translational degrees
of freedom at each node of X-stiffener
element

vsy, wsy axial and transverse translational degrees
of freedom at each node of Y-stiffener
element

Wb weight of bare shell
Wst weight of stiffened shell
x, y, z local coordinate axes
X, Y, Z global coordinate axes
zk distance of bottom of the kth ply from

mid-surface of a laminate
asx, bsx rotational degrees of freedom at each

node of X-stiffener element
asy, bsy rotational degrees of freedom at each

node of Y-stiffener element
dsxi, dsyi nodal displacement of stiffener element
f angle of twist
n12, n21 Poisson’s ratios
r density of material
o natural frequency
o nondimensional natural frequency b¼

oa2ðr=E11h2
Þ
1=2
c

ob nondimensional natural frequency of
bare shell

ost nondimensional natural frequency of
stiffened shell
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by Chakravorty et al. [7,8] considering composite cylindrical, conoidal, elliptic and hyperbolic paraboloidal
shells, but similar studies about skewed hypar roofs are missing. In a review paper by Sinha and
Mukhopadhyay [9], it was clearly pointed out that until 1995, only the cylindrical configuration for stiffened
shell panels received considerable attention. As the researchers became more inclined towards composite
materials, a number of interesting papers came up dealing with free vibrations of stiffened composite shell
panels, most of which used the finite element as the analytical tool. Among these papers, Goswami and
Mukhopadhyay [10], Mukhopadhyay and Goswami [11], Prusty and Satsangi [12] worked on both cylindrical
and spherical shells while Rikards et al. [13] took up cylindrical stiffened shell panels. Qatu [14,15] reviewed in
detail the research papers on shell dynamics for both isotropic and composite materials and observed that
among stiffened panels, only cylindrical and spherical forms received some attention, while information
of other forms are scanty. Recently Nayak and Bandyopadhyay [16,17] carried out free vibration studies
of isotropic stiffened shell panels in detail including stiffened hypar shells. Free and forced vibrations of
unstiffened composite hypar shell was reported by Chakravorty et al. [18]. In two recent papers Sahoo and
Chakravorty [19,20] presented results of static and free vibration analysis of composite hypar shells but
without stiffeners. Vibration of stiffened composite hypar shells received limited attention only in a recent
paper published by Nayak and Bandyopadhyay [21] considering biaxially stiffened, antisymmetrically
laminated shells only. The cases of uniaxially stiffened shells and symmetric laminations were excluded.

An overall look at the volume of literature that has accumulated regarding stiffened shell panels reflects the
fact that stiffened composite skewed hypar shells have not received due attention by researchers. This, no
doubt, defines a wide area of research and the present paper aims to focus on the free vibration characteristics
of stiffened graphite–epoxy composite hypar shells.
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2. Mathematical formulation

2.1. Finite element formulation for shell

A laminated composite hypar shell of uniform thickness h (Fig. 1) and twist radius of curvature Rxy is
considered. Keeping the total thickness the same, the thickness may consist of any number of thin laminae
each of which may be arbitrarily oriented at an angle y with reference to the X-axis of the coordinate system.
An eight-noded curved quadratic isoparametric finite element (Fig. 2) is used. The five degrees of freedom
taken into consideration at each node include two inplane and one transverse displacement and two rotations
about the X and Y axes. Sahoo and Chakravorty [19] reported in an earlier paper the strain–displacement and
constitutive relationships together with the systematic development of stiffness matrix for the shell element.

2.2. Finite element formulation for stiffener of the shell

Three noded curved isoparametric beam elements (Fig. 2) are used to model the stiffeners, which are taken
to run only along the boundaries of the shell elements. In the stiffener element, each node has four degrees of
Fig. 1. Laminations in skewed hypar shell.

Fig. 2. (a) Eight noded shell element with isoparametric coordinates and (b) three noded stiffener element (i) X-stiffener (ii) Y-stiffener.
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freedom i.e. usx wsx asx and bsx for X-stiffener and vsy wsy asy and bsy for Y-stiffener. The generalized
force-displacement relation of stiffeners can be expressed as (the notations have been defined in the
nomenclature):

X�stiffener : F sxf g ¼ Dsx½ � esxf g ¼ Dsx½ � Bsx½ � dsxif g,

Y�stiffener : F sy

� �
¼ Dsy

� �
esy

� �
¼ Dsy

� �
Bsy

� �
dsyi

� �
,

where

Fsxf g ¼ Nsxx Msxx Tsxx Qsxxz

h iT
; esxf g ¼ usx:x asx:x bsx:x asx þ wsx:xð Þ

h iT

and

Fsy

� �
¼ Nsyy Msyy Tsyy Qsyyz

h iT
; esy

� �
¼ vsy:y bsy:y asy:y bsy þ wsy:y

� �h iT
. (1)

Elasticity matrices are as follows:

Dsx½ � ¼

A11bsx B011bsx B012bsx 0

B011bsx D011bsx D012bsx 0

B012bsx D012bsx
1
6

Q44 þQ66

� �
dsxb3

sx 0

0 0 0 bsxS11

2
6664

3
7775;

Dsy

� �
¼

A22bsy B022bsy B012bsy 0

B022bsy
1
6
ðQ44 þQ66Þbsy D012bsy 0

B012bsy D012bsy D011dsyb3
sy 0

0 0 0 bsyS22

2
66664

3
77775;

where

D0ij ¼ Dij þ 2eBij þ e2Aij ; B0ij ¼ Bij þ eAij . (2)

and Aij, Bij, Dij and Sij are explained in an earlier paper by Sahoo and Chakravorty [19].
Here the shear correction factor is taken as 5/6. The sectional parameters are calculated with respect to the

mid-surface of the shell by which the effect of eccentricities of stiffeners is automatically included. The element
stiffness matrices are of the following forms.

forX�stiffener : Kxe½ � ¼

Z
Bsx½ �

T Dsx½ � Bsx½ �dx,

forY�stiffener : Kye

� �
¼

Z
Bsy

� �T
Dsy

� �
Bsy

� �
dy. ð3Þ

The integrals are converted to isoparametric coordinates and are carried out by 2 point Gauss quadrature.
Finally, the element stiffness matrix of the stiffened shell is obtained by appropriate matching of the nodes of
the stiffener and shell elements through the connectivity matrix and is given as

Ke½ � ¼ K she½ � þ Kxe½ � þ Kye

� �
. (4)

The element stiffness matrices are assembled to get the global matrices.

2.3. Element mass matrix

The element mass matrix for shell is obtained from the integral

Me½ � ¼

ZZ
N½ �T P½ � N½ �dxdy, (5)
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where

N½ � ¼
X8
i¼1

Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

2
6666664

3
7777775
; P½ � ¼

X8
i¼1

P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I

2
6666664

3
7777775
,

in which

P ¼
Xnp

k¼1

Z zk

zk�1

rdz; and I ¼
Xnp

k¼1

Z zk

zk�1

zrdz. (6)

Element mass matrix for stiffener element

Msx½ � ¼

ZZ
N½ �T P½ � N½ �dx forX�stiffener;

and

Msy

� �
¼

ZZ
N½ �T P½ � N½ �dy forY�stiffener: (7)

Here [N] is a 3� 3 diagonal matrix.

P½ � ¼
P3
i¼1

r:bsxdsx 0 0 0

0 r:bsxdsx 0 0

0 0 r:bsxd2
sx=12 0

0 0 0 rðbsx:d
3
sx þ b3

sx:dsxÞ=12

2
66664

3
77775 forX �stiffener;

P½ � ¼
P3
i¼1

r:bsydsy 0 0 0

0 r:bsydsy 0 0

0 0 r:bsyd2
sy=12 0

0 0 0 rðbsy:d
3
sy þ b3

sy:dsyÞ=12

2
666664

3
777775

forY �stiffener:

The mass matrix of the stiffened shell element is the sum of the matrices of the shell and the stiffeners matched
at the appropriate nodes.

Me½ � ¼ Mshe½ � þ Mxe½ � þ Mye

� �
. (8)

The element mass matrices are assembled to get the global matrices.

2.4. Solution procedure for free vibration analysis

The free vibration analysis involves determination of natural frequencies from the condition

K½ � � o2 M½ �
�� �� ¼ 0. (9)

This is a generalized eigenvalue problem and is solved by the subspace iteration algorithm.

3. Numerical examples

A simply supported square plate with one stiffener in one plan direction is analysed applying the present
formulation making the rise of the hypar shell zero. A comparison of the values of fundamental frequency
obtained by Mukherjee and Mukhopadhyay [22], Nayak and Bandyopadhyay [17] and present method is
presented in Table 1. Further a comparison of the nondimensional fundamental frequencies of cantilever
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twisted plates obtained by Qatu and Leissa [23] and those obtained by the present method is furnished in
Table 2.

Additional problems of stiffened skewed hypar shells (Fig. 3) are solved for eight different types of stacking
sequences of shell surfaces, two different types of boundary conditions and four different types of stiffening
schemes including bare shell with graphite-epoxy as the material. Among these combinations the symmetric
angle-ply [(þ451=� 451)s] and antisymmetric angle-ply [(þ451=� 451)2] laminations perform best for simply
supported and clamped boundaries, respectively. These shells are further analysed by varying the number of
stiffeners in either or both of the plan directions up to ten. The symbols used to represent different laminations
are: ASCP (antisymmetric cross-ply, 01/901, 01/901/01/901), SYCP (symmetric cross-ply, 01/901/01, 01/901/901/
Table 2

Nondimensional natural frequencies (o) for three-layer graphite-epoxy twisted plates, [y /-y /y ] laminate

Angle of twist (f) y (deg) 0 15 30 45 60 75 90

151 Qatu and Leissa [23] 1.0035 0.9296 0.7465 0.5286 0.3545 0.2723 0.2555

Present FEM 0.9989 0.9258 0.7443 0.5278 0.3541 0.2720 0.2551

301 Qatu and Leissa [23] 0.9566 0.8914 0.7205 0.5149 0.3443 0.2606 0.2436

Present FEM 0.9491 0.8840 0.7181 0.5141 0.3447 0.2614 0.2445

a/b ¼ 1, a/h ¼ 100; E11 ¼ 138GPa, E22 ¼ 8.96GPa, G12 ¼ 7.1GPa, n12 ¼ 0.3.

Table 1

Natural frequencies (Hz) of centrally stiffened clamped square plate

Mode no. Mukherjee and Mukhopadhyay [22] Nayak and Bandyopadhyay [17] Present method

N8 N9

(FEM) (FEM)

1 711.8 725.2 725.1 733

a ¼ b ¼ 0:2032m, shell thickness ¼ 0.0013716m, stiffener depth ¼ 0.0127m, stiffener width ¼ 0.00635m, stiffener eccentric at bottom.

Material property: E ¼ 6:87� 1010 N=m2, n ¼ 0:29, r ¼ 2823kg=m3.

Fig. 3. A typical skewed hypar shell panel with biaxial stiffeners eccentric at shell bottom.
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01), ASAP (antisymmetric angle-ply, þ451=� 451;þ451=� 451=þ 451=� 451) and SYAP (symmetric angle-
ply, þ451=� 451=þ 451, þ451=� 451=� 451=þ 451), etc. The individual lamina properties are assumed to be
as E11 ¼ 25E22, G12 ¼ G13 ¼ 0:5E22; G23 ¼ 0:2E22, n12 ¼ n21 ¼ 0:25. However, in all the cases the fibres in the
stiffeners are considered to be arranged in a single layer along the length. In all the cases only the converged
results are presented. The fundamental frequency is taken to have converged for particular finite element grid,
if further refinement of the grid does not improve that result by more than 1%. With this criterion a 12� 12
mesh is found to be appropriate for all the problems taken up here.
4. Results and discussions

The results of Table 1 show that the agreement of present results with the earlier ones is excellent and the
correctness of the dynamic formulation is established. The fundamental frequencies of cantilever twisted plates
obtained by Qatu and Leissa [23] compare well with the present results as furnished in Table 2 and the
correctness of the present approach incorporating the effect of twist of curvature in the formulation is
validated. Thus it is evident that the finite element model proposed here can successfully analyse vibration
problems of stiffened skewed hypar composite shells which is reflected by close agreement of present results
with benchmark ones.
4.1. Free vibration response of bare and stiffened hypars combining different laminations and boundary

conditions

4.1.1. Fundamental frequency

Nondimensional fundamental frequencies for composite hypar shells with bare and stiffened surfaces are
furnished in Tables 3 and 4 for simply supported (SSSS) and clamped (CCCC) boundary conditions,
respectively. The laminations include two, three and four layered antisymmetric and symmetric, cross and
angle plies. For this preliminary study only central stiffeners are considered running along either one or both
of the plan directions. For all the laminations frequencies of X- and Y-stiffened shells are comparable for
clamped boundary conditions. The same trend is almost true for simply supported boundary also. Only in the
cases of 01/901/01 and 01/901/901/01 laminates the X-stiffeners are found to impart considerably greater
dynamic rigidity to a bare shell compared to the Y-stiffeners. In all the cases, however, a biaxially stiffened
shell has greater frequency than one with a single stiffener. It is further noted that for cross-ply clamped shells
the increase of frequency of a bare shell on stiffening is insignificant. An overall study of Tables 3 and 4 reveals
that the angle-ply laminates yield higher frequencies than the cross-ply ones for both the boundary conditions.
Four layered symmetric and antisymmetric angle-ply laminates appear to yield the highest frequencies among
stacking orders considered presently for SSSS and CCCC stiffened surfaces, respectively.
Table 3

Nondimensional fundamental frequency of simply supported laminated composite hypar shells

Laminations nx ¼ 0; ny ¼ 0 nx ¼ 1; ny ¼ 0 nx ¼ 0; ny ¼ 1 nx ¼ 1; ny ¼ 1

01/901 6.04644 6.10935 6.0659 7.60834

01/901/01 6.47008 8.73346 6.47307 8.74104

01/901/01/901 7.72463 7.77772 7.72968 9.27972

01/901/901/01 6.92198 8.96514 6.92501 9.02681

+451/�451 5.97132 5.99681 5.97797 7.62406

+451/�451/+451 8.53660 8.76874 8.80660 10.1723

+451/�451/+451/�451 8.54295 8.54607 8.55353 10.1763

+451/�451/�451/+451 8.9652 9.0858 9.1229 10.5489

a=b ¼ 1, a=h ¼ 100, c=a ¼ 0:2; E11 ¼ 25E22 ,G12 ¼ G13 ¼ 0:5E22, G23 ¼ 0.2E22, n12 ¼ n21 ¼ 0:25, bst /h ¼ 1 , dst/h ¼ 2. Each stiffener has a

single lamina with fibres along its length.
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4.1.2. Mode shapes

The mode shapes of simply supported and clamped shells are presented in Figs. 4 and 5 considering the four
layered laminates only. For unstiffened SSSS cross-ply shells the fundamental vibration modes are
predominantly flexural with the nodal lines along the Y direction and hence X-stiffeners are found to be
more effective than the Y-stiffeners in increasing the frequency. On the other hand for simply supported angle-
ply unstiffened shells the Y-stiffeners are found to be more effective. The fundamental bending mode for the
antisymmetric angle-ply shell has a nodal line along the X direction and hence the relatively higher frequency
of the Y-stiffened shell is quite expected. Interestingly, the symmetric angle-ply simply supported shell with no
stiffener or a pair of biaxial stiffeners show a bending mode along a diagonal direction which may be looked
Table 4

Nondimensional fundamental frequency of clamped laminated composite hypar shells

Laminations nx ¼ 0; ny ¼ 0 nx ¼ 1; ny ¼ 0 nx ¼ 0; ny ¼ 1 nx ¼ 1; ny ¼ 1

01/901 17.2268 17.5550 17.5466 17.8214

01/901/01 17.6786 17.9648 17.8316 18.2082

01/901/01/901 17.6069 17.9067 17.9067 18.1616

01/901/901/01 17.7269 18.0191 17.9912 18.2584

+451/�451 18.2576 19.5535 19.4445 25.5791

+451/�451/+451 21.6202 23.4061 23.3884 28.4175

+451/�451/+451/�451 21.6021 24.1832 24.1341 29.7274

+451/�451/�451/+451 21.8578 23.9762 23.9714 28.7803

a=b ¼ 1, a=h ¼ 100, c=a ¼ 0:2; E11 ¼ 25E22 ,G12 ¼ G13 ¼ 0:5E22, G23 ¼ 0:2E22, n12 ¼ n21 ¼ 0:25, bst /h ¼ 1 , dst/h ¼ 2. Each stiffener has a

single lamina with fibres along its length.

Fig. 4. Shapes for first mode of vibration of simply supported hypar shells with different arrangement of stiffeners and laminations (a) 01/

901/01/901 (b) 01/901/901/01 (c)+451/�451/+451/�451 (d) +451/�451/�451/+451.
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Fig. 5. Shapes for first mode of vibration of clamped hypar shells with different arrangement of stiffeners and laminations (a) 01/901/01/

901 (b) 01/901/901/01 (c)+451/�451/+451/�451 (d) +451/�451/�451/+451.
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upon as torsional modes of vibration along X and Y directions. In general, uniaxially stiffened shells have
nodal lines along the stiffeners. Among the biaxially stiffened shells 3 out of 4 simply supported configurations
(ASCP, SYCP and ASAP) have nodal lines along the Y direction.

For clamped shells both with and without stiffeners, nodal lines are less in number within the shell span
compared to that for simply supported ones. The cross-ply clamped shells, both stiffened and unstiffened,
show simple bending vibration modes along both the plan directions and provision of stiffeners either uniaxial
or biaxial does not seem to have any major effect on the mode shapes and hence the performances of X- and
Y-stiffeners are comparable. Interestingly, the angle-ply shells exhibit a greater amount of crests and troughs
in the vibration modes. The symmetry of the shell geometry and laminations about the diagonals and the
distribution of stiffeners parallel to the edges interact in a complex fashion giving rise to so many crests and
troughs.

4.2. Effect of different stiffener arrangements on fundamental frequency

4.2.1. Fundamental frequency

The above study shows that among the simply supported shells the four layered symmetric angle-ply seems
to be the best choice among all the laminations taken up here for both the bare and stiffened shells. It may be
noted that such an inference is true only among the laminations considered here. Further study with other
stacking sequences may lead to some other findings. Hence this stacking order is further taken up to
investigate the effect of number of stiffeners, which may vary from 1 to 10 in either or both of the directions,
on the fundamental frequency. The results furnished in Table 5 reveal that for any given value of nx (0 to 8)
when ny increases, the nondimensional fundamental frequency (o) always increases upto ny ¼ 8. However,
when ny is varied beyond 8 for given value of nx ¼ 9 or 10, o sometimes shows a marginal change and even
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Table 5

Nondimensional fundamental frequency of simply supported laminated composite hypar shell of 451/�451/�451/+451 lamination and

different combinations of stiffener arrangements

ny- 0 1 2 3 4 5 6 7 8 9 10

nxk

0 8.9652 9.1229 9.2975 9.4907 9.8528 10.0592 10.3995 10.5156 10.6818 10.7385 10.7763

1 9.0858 10.5489 10.8372 11.0671 11.4807 11.7362 12.1770 12.3299 12.5731 12.6334 12.7149

2 9.2578 10.8180 11.7484 12.1370 12.6206 12.9199 13.4453 13.6231 13.9173 13.9797 14.0938

3 9.4473 11.0462 12.1229 12.9424 13.6048 13.9575 14.5471 14.7424 15.0629 15.1249 15.2616

4 9.8012 11.4542 12.6026 13.5921 14.5807 15.0790 15.6627 15.8354 16.1023 16.1425 16.2806

5 10.0032 11.7050 12.8977 13.9402 15.0594 15.8676 16.6038 16.7789 17.0268 17.0520 17.2000

6 10.3352 12.1341 13.4108 14.5177 15.6295 16.5738 17.4272 17.6605 17.7431 17.7353 17.8637

7 10.4483 12.2810 13.5819 14.7058 15.7945 16.7370 17.5985 18.2791 18.5168 18.4319 18.6746

8 10.6120 12.5154 13.8650 15.0141 16.0499 16.9726 17.6788 18.4508 18.5499 18.6031 18.7027

9 10.6678 12.5729 13.9244 15.0724 16.0867 16.9952 17.6687 18.3635 18.5923 19.0473 18.8795

10 10.7063 12.6541 14.0378 15.2083 16.2235 17.1412 17.7953 18.5104 18.6378 18.8553 18.8673

a=b ¼ 1, a=h ¼ 100, c=a ¼ 0:2; E11 ¼ 25E22 ,G12 ¼ G13 ¼ 0:5E22, G23 ¼ 0:2E22, n12 ¼ n21 ¼ 0:25, bst /h ¼ 1 , dst/h ¼ 2. Each stiffener has a

single lamina with fibres along its length.
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may show a decreasing tendency. Addition of stiffeners to a bare shell surface increases both its stiffness and
mass. When increase of stiffness is more significant than mass addition, the fundamental frequency tends to
increase. But if the mass contribution prevails over the stiffness contribution of the stiffeners the shell may
suffer from a resulting flexibility and o may decrease. This explains the above observation. For the same
reason when ny is fixed between 0 and 5 or at 8 and nx is increased, o increases monotonically but when ny is
fixed at 6, 7, 9 or 10, the variation of o with nx is not always monotonic.

As evident from Table 5, for simply supported shells for almost all given values of nx, o tends to attain a
saturation when ny exceeds 5 and a shell with ny ¼ 5 (for any given value of nx except 7) has o equal to 90% or
more than that of a shell with ny ¼ 10. For nx ¼ 7 above value is marginally less than 90% (89.63%). Hence it
may be concluded that for any given value if nx, providing more than 5 Y-stiffeners is of no practical use. In
fact, in some cases (nx ¼ 0 or 1 ) a shell with 4 Y-stiffeners can attain a frequency more than 90% of that with
ny ¼ 10. Interestingly for any given value of ny also, 5 X-stiffeners may be regarded practically to be as efficient
than 10 X-stiffeners according to the criterion mentioned above.

If one looks along the diagonal of Table 5 it becomes evident that among shells with nx ¼ ny ¼ n ðsayÞ, a
shell with n ¼ 6 has o more than 90% of that with n ¼ 10ð0:9� 18:8673 ¼ 16:9806Þ. Other stiffener
combinations where nxany may yield o more than 16.9806 provided the number of stiffeners along either of
the directions is not less than 4.

From Table 4 it is evident that among clamped stiffened shells, the four layered antisymmetric angle-ply
shows the best performance. This is why a study with this lamination is carried out further for clamped shells
in the same way by varying nx and ny as done for simply supported shells. The results are presented in Table 6.
Here again it is found that keeping either of nx or ny fixed when the number of stiffeners in the other direction
is increased o initially shows an increasing tendency but attains a constancy or may even decrease when the
number of such stiffeners exceed a certain value. From a similar study and using the same criterion as is done
for simply supported shells above it is found that for clamped shells for a given number of stiffeners in one
direction there is no practical point in increasing the number of stiffeners in other direction beyond 3. It is also
seen from the Table 6 that a shell with nx ¼ ny ¼ 5 has frequency (34.8715) more than 90% of that with
nx ¼ ny ¼ 10ð0:9� 37:8762 ¼ 34:0886Þ. It is further noted that for shells with nxany, o ¼ 34.0886 may be
attainable in some cases provided the numbers of stiffeners in both the directions are not less than 3.

4.2.2. Mode shapes

From Figs. 6 and 7 it is found that when uniaxially stiffened SSSS shells are considered (with one
or more stiffeners) nodal lines are found to run through the shell centre parallel to the stiffeners. But for
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Table 6

Nondimensional fundamental frequency of clamped laminated composite hypar shell of +451/�451/+451/�451 lamination and different

combinations of stiffener arrangements

ny- 0 1 2 3 4 5 6 7 8 9 10

nxk

0 21.6021 24.1341 24.6929 24.8307 24.9228 24.9155 24.9628 24.9234 24.9486 24.9031 24.9418

1 24.1832 29.7274 29.6278 29.5266 29.6866 29.7578 30.1070 30.1191 30.2298 30.1669 30.2183

2 24.7494 29.6832 30.9348 31.2071 31.6679 31.8505 32.5323 32.6145 32.9754 32.9041 33.0199

3 24.8763 29.5893 31.2522 32.0353 32.8273 33.1560 34.0517 34.2163 34.8153 34.7624 34.9391

4 24.9559 29.7642 31.7610 32.8901 33.8740 34.2963 35.2026 35.3991 36.0571 36.0290 36.2432

5 24.9468 29.8480 31.9723 33.2648 34.3578 34.8715 35.7760 36.0291 36.6846 36.7201 36.9048

6 24.9994 30.2195 32.7134 34.2437 35.3430 35.8324 36.5602 36.7443 37.2344 37.2432 37.4173

7 24.9598 30.2357 32.8086 34.4396 35.5904 36.1439 36.8170 37.0340 37.4490 37.5047 37.6188

8 24.9857 30.3360 33.1684 35.0675 36.2828 36.8087 37.3113 37.4370 37.7107 37.7069 37.8144

9 24.9376 30.2705 33.0926 35.0152 36.2777 36.8892 37.3767 37.5559 37.7793 37.8280 37.8730

10 24.9768 30.3184 33.2016 35.1829 36.4669 37.0262 37.4942 37.6058 37.8184 37.8038 37.8762

a=b ¼ 1, a=h ¼ 100, c=a ¼ 0:2; E11 ¼ 25E22 ,G12 ¼ G13 ¼ 0:5E22 , G23 ¼ 0:2E22, n12 ¼ n21 ¼ 0:25, bst /h ¼ 1 , dst/h ¼ 2. Each stiffener has a

single lamina with fibres along its length.

Fig. 6. Shapes for first mode of vibration of simply supported laminated (+451/�451/�451/+451) hypar shells with different numbers of

stiffeners in each direction. Values in parentheses indicate (nx, ny).
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biaxially stiffened shells the vibration modes are complex. For clamped shells, however, nodal lines are
not observed along the stiffeners among uniaxially stiffened shells. For simply supported shells some of
the vibration modes are flexural along the diagonals and hence torsional along the X and Y directions.
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Fig. 7. Shapes for first mode of vibration of clamped laminated (+451/�451/�451/+451) hypar shells with different numbers of stiffeners

in each direction. Values in parentheses indicate (nx, ny).
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For clamped shells such torsional modes of vibration are not observed and fundamental modes of vibra-
tion in all the cases are flexural along both the X and Y directions with a varying number of crests and
troughs.

4.3. Effect of stiffener depth and number of biaxial stiffeners on fundamental frequency and guidelines for

selection among different shell options

The variations of o with dst/h ratio are presented in Fig. 8 for simply supported and clamped shells
respectively with nx ¼ ny ¼ n varying between 1 and 6. The graphs show that for any given value of n when the
dst/h ratio is increased the ratio of frequencies of stiffened and bare shells (ost=ob ¼ k) initially increases but
then attains a saturation for both the boundary conditions. For n ¼ 6 such saturation values of k are 2.8 and
1.6 respectively for simply supported and clamped boundary conditions.

Table 7 is derived from Fig. 8 and furnishes the values of r (which is the ratio of weights of stiffened and
bare shells) for different values of n and k. The values of dst/h ratios are given in parentheses. If a particular
value of k is unattainable for a given value of n the corresponding place of the table is left blank. It is found
from the Table 7 that for any given value of k, there are different options of r and the minimum value of r

among these is obviously the most economical solution provided the corresponding value of dst/h ratio is not
unacceptable due to consideration such as aesthetics and headroom. Interestingly, for any given value of k,
although dst/h decreases monotonically with n variation of r with n is quite arbitrary. In some cases a large
value of dst/h ratio combines with a small value of n to give economy (low value of r) and in some other
situations a combination of a greater number of biaxial but shallow stiffeners seems to be most acceptable
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Fig. 8. Variation of nondimensional fundamental frequency with stiffener depth to shell thickness ratio for orthogonally stiffened

composite hypar shell.

Table 7

Weight ratios (Wst/Wb ¼ r) of stiffened to bare shell for different values of frequency ratios (k ¼ ost=ob) of stiffened to bare shell and nx

¼ ny ¼ n (Ref. Fig. 8)

Simply supported +451/�451/�451/+451 Clamped +451/�451/+450/-450

k- 1.3 1.6 1.9 2.2 2.5 2.8 1.1 1.2 1.3 1.4 1.5 1.6

nx ¼ ny ¼ nk

1 1.0645 — — — — — 1.1025 1.0231 1.0316 1.0460 1.0983 —

(3.24) (0.63) (1.16) (1.59) (2.31) (4.94)

2 1.0768 1.1584 — — — — 1.0123 1.0277 1.0420 1.0705 1.1338 —

(1.94) (4.0) (0.31) (0.70) (1.06) (1.78) (3.38)

3 1.0904 1.1531 1.2660 — — — 1.0112 1.0300 1.0443 1.0703 1.1294 1.2624

(1.53) (2.59) (4.5) (0.19) (0.50) (0.75) (1.19) (2.19) (4.44)

4 1.0972 1.1474 1.2078 1.3183 1.7542 — 1.0149 1.0321 1.0463 1.0737 1.1027 1.1835

(1.24) (1.88) (2.65) (4.06) (9.62) (0.19) (0.41) (0.59) (0.94) (1.31) (2.34)

5 1.1034 1.1580 1.2126 1.2925 1.4076 1.8375 1.0185 1.0400 1.0575 1.0819 1.1190 1.1862

(1.06) (1.62) (2.18) (3.00) (4.18) (8.59) (0.19) (0.41) (0.59) (0.84) (1.22) (1.91)

6 1.1059 1.1641 1.2118 1.2875 1.3562 1.4214 1.0221 1.0361 1.0617 1.0908 1.1164 1.1676

(0.91) (1.41) (1.82) (2.47) (3.06) (3.62) (0.19) (0.31) (0.59) (0.78) (1.00) (1.44)

The values in the parentheses are dst/h ratios.
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economically. Hence this table is expected to be very useful to practicing engineers to select a particular set of
values of n and dst/h to achieve a given value of k considering all the aspects of economy and other
architectural and functional criteria.
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Table 8

Values of nx ¼ ny ¼ n for different values of frequency ratio of stiffened to bare shell (k ¼ ost=ob) and dst/h ratio

Simply supported lamination: +451/�451/�451/+451 Clamped lamination: +451/�451/+451/�451

k- 1.3 1.6 1.9 2.2 2.5 2.8 1.1 1.2 1.3 1.4 1.5 1.6

dst/h k

1.0 5 — — — — — 1 2 3 5 — —

(1.0975) (1.0199) (1.0396) (1.0591) (1.0975)

1.5 3 6 — — — — 1 1 2 4 6 —

(1.0887) (1.1746) (1.0299) (1.0299) (1.0594) (1.1176) (1.1746)

2.0 2 4 6 — — — 1 1 1 3 4 6

(1.0792) (1.1568) (1.2328) (1.0398) (1.0398) (1.0398) (1.1182) (1.1568) (1.2328)

2.5 2 4 5 6 — — 1 1 1 2 4 6

(1.0990) (1.1960) (1.2438) (1.2910) (1.0498) (1.0498) (1.0498) (1.0990) (1.1960) (1.2910)

3.0 1 3 4 5 6 — 1 1 1 2 4 5

(1.0597) (1.1773) (1.2352) (1.2925) (1.3492) (1.0597) (1.0597) (1.0597) (1.1188) (1.2352) (1.2925)

3.5 1 3 4 5 6 — 1 1 1 2 4 4

(1.0697) (1.2955) (1.2744) (1.3413) (1.4074) (1.0697) (1.0697) (1.0697) (1.1386) (1.2744) (1.2744)

4.0 1 2 4 4 5 6 1 1 1 1 3 4

(1.0796) (1.1584) (1.3136) (1.3136) (1.3900) (1.4660) (1.0796) (1.0796) (1.0796) (1.0796) (1.2364) (1.3136)

Values in the parentheses indicate weight ratios (r) of stiffened shell to bare shell.
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Table 8 presents the values of the number of biaxial stiffeners (nx ¼ ny ¼ n) in each direction for different
values of the dst/h ratio for which a particular value of k is just exceeded with the corresponding values of r in
parentheses. This table is prepared taking practical upper limits of dst/h ¼ 4.0 and n ¼ 6. For example for
SSSS/SYAP boundary conditions when dst/h ¼ 3.5 and n ¼ 3 the value of k just exceeds 1.6. A particular
value of dst/h ratio may not be sufficient to achieve a particular value of k since the upper limit of n is restricted
to 6. The blank spaces in the table refer to such cases which means that for CCCC/ASAP shells the value of
k ¼ 1.6 is unattainable if dst/h ¼ 1.0 or 1.5. In order to attain a desired value of k an engineer may have
practical limitations either in terms of headroom (dst/h ratio) or in terms of number of stiffeners (n). In such
situations Table 8 will be of great help to decide on the final selection of shell options keeping economy in
consideration. If for SSSS/SYAP shells one has to attain kX1.6 with dst/h p3.5, Table 8 shows that they have
14 options: (1) with dst/h ¼ 1.5 (n ¼ 6), (2) with dst/h ¼ 2.0 (n ¼ 4; 6), (3) with dst/h ¼ 2.5 (n ¼ 4; 5; 6), (4) with
dst/h ¼ 3.5 (n ¼ 3; 4; 5; 6) and (4) with dst/h ¼ 3.5 (n ¼ 3; 4; 5; 6). Of these combinations, the one with dst/h ¼
2.0 and n ¼ 4 is the most economical solution as it has the least value of r.

If in some other case for CCCC/ASAP shells an engineer has to attain kX1.4 with np4 he has 13 choices:
(1) with dst/h ¼ 1.5 (n ¼ 4), (2) with dst/h ¼ 2.0 (n ¼ 3; 4), (2) with dst/h ¼ 2.5 (n ¼ 2; 4), (2) with dst/h ¼ 3
(n ¼ 2; 4), (3) with dst/h ¼ 3.5 (n ¼ 2; 4; 4) and (3) with dst/h ¼ 4.0 (n ¼ 1; 3; 4). The designer can go for any of
these options, and the one with dst/h ¼ 4 and n ¼ 1 is the most economical choice.

In some critical situations an engineer may be encountered with restrictions both in terms of dst/h ratio and
n. If in the last case cited above the designer has both limitations of np4 and dst/hp2.5, Table 8 reveals that he
has 5 options to attain kX1.4 for CCCC/ASAP shells. These are with dst/h ¼ 1.5 (n ¼ 4), dst/h ¼ 2.0 (n ¼ 3; 4)
and dst/h ¼ 2.5 (n ¼ 2; 4). Among these choices, the option with dst/h ¼ 2.5 and n ¼ 2 provides the maximum
economy.

5. Conclusions

The following conclusions are drawn from the present study.
1.
 The finite element model used in the present paper may successfully solve the vibration problems of
stiffened hypar shells and the results of the benchmark problems obtained by the present approach match
well with the published ones.
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2.
 If a designer has the limitation of providing only one central stiffener only he may preferably run the
stiffeners along X direction because central X-stiffeners perform either equally or better than central Y-
stiffeners for the class of laminations considered in the present study. For other laminations, however, this
conclusion may not be true.
3.
 For effective increase of the fundamental frequency the stiffeners may be provided perpendicular to the
nodal lines obtained from vibrations of bare shells. In the cases where no nodal lines are exhibited by a
vibrating bare shell the performance of X- and Y-stiffeners are comparable.
4.
 The mode shapes of angle-ply shells are more complex than those of the cross-ply ones with greater number
of crests and troughs within shell span among shells with a single central stiffener along one or both the
plan directions.
5.
 For biaxially stiffened shells with one or more stiffener/s along each of the plan directions, the vibration
modes for both the boundary conditions were found to be complicated. For some of the simply supported
shells, torsional modes of vibration are identified while for clamped shells, the vibrational modes are
flexural along both the plan directions.
6.
 With the increase of the number of stiffeners, either uniaxial or biaxial, the fundamental frequency increases
but reaches a saturation whereafter there is no appreciable increase in frequency with the provision of
additional stiffeners.
7.
 For any given number of stiffeners in one of the directions, there is no point in providing more than five or
three stiffeners for simply supported and clamped shells respectively, along the other direction. Among
shells with equal number of X- and Y-stiffeners there is no appreciable increase in frequency when the
number of stiffeners in either direction exceeds 5.
8.
 The present study proves that there are two ways of increasing the fundamental frequency of a bare shell by
stiffening, either by increasing the stiffener depth keeping the number of stiffeners fixed or by increasing the
number of stiffeners with a given stiffener depth. Table 7 combines these possibilities with the ratios by
which the weight of bare shell increases on stiffening and will help a practicing engineer to choose his
optimum solution considering both economy and other practical limitations such as aesthetics and
headroom. In many practical situations an engineer has to restrict the stiffener depth and also the number
of stiffeners in either direction. Table 8 is prepared taking practical upper limits of dst/h ¼ 4 and nx ¼

ny ¼ 6 and will help a practicing engineer to decide on the number and depth of stiffeners which will
economically achieve a given increase of the fundamental frequency of a bare shell.
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