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Abstract

The implementation of the element free Galerkin method (EFG) for static and free vibration analysis of general shell

structures is presented in this paper. The formulation of the discrete system equations is derived from the governing

equations of stress resultant geometrically exact shell theory based on the Cosserat surface. A discrete singularity-free

mapping between the five- and the six-degrees-of-freedom formulation is constructed by exploiting the geometry

connection between the orthogonal group and the unit sphere. Moving least-squares approximation is used in both the

construction of shape functions based on arbitrarily distributed nodes as well as in the surface approximation of general

spatial shell geometry. Discrete system equations are obtained by incorporating these interpolations into the Galerkin

weak form. The formulation is verified through numerical examples of static stress analysis and frequency analysis of

spatial shell structures. The phenomena of shear locking and membrane locking are illustrated by showing the membrane

and shear energy as fractions of the total energy. Essential boundary conditions are efficiently imposed through a penalty

technique for both static analysis and frequency analysis. The formulation is tested on several benchmark problems and

the results compare favorably with closed-form solutions and that of finite element analyses.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The numerical analysis of shell structures has always been a challenge in applied mechanics. In the last three
decades, theoretical models have been developed and applied to various practical problems [1]. It should be
noted that the shell asymptotic stiffness (as the thickness tend to zero), may vary depending on the shell
geometry, the loads and the boundary conditions [2–5]. It has been proposed that when the thickness of shells
becomes small, shells fall into dramatically different categories, namely bending-dominated (when the stiffness
of the structure is of order e3 as e! 0 (e being the shell thickness), most of the elastic energy is typical stored in
the bending part), membrane-dominated structures (when the stiffness of the structure is of order e as e! 0,
most of the elastic energy is carried by membrane term), and intermediate states (in which neither the bending
nor the membrane one asymptotically dominates). Carrera [6,7] presented an overview of available theories
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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and finite elements that have been developed for shell structures. He summarized the various approaches
available in computational shell analysis: 3-D elasticity theory, continuum based methods, axiomatic and
asymptotic 2-D theories, classical and mixed formulations, etc. Then he proposed a unified description of
several modeling based on displacements and transverse stress assumptions. There are advantages in using
shell theories for structures instead of the governing equations for general 3-D solids, which enable an insight
into the structure of the equations involved independently. Eriksen and Truesdell [8] initiated the direct
approach in the construction of shell theories by considering the shell as a surface with oriented directors.
They were inspired by the concept of a Cosserat continuum by which, in addition to the displacement field and
independent of it, rotational degrees of freedom (dof) are assigned to every point of the continuum. Simo and
Fox [9] proposed a stress-resultant-based geometrically exact shell model that is formulated entirely in terms
of stress resultants and is essentially equivalent to a one director inextensible Cosserat surface. There are two
important features in the above approaches: One is that the construction of the interpolants for the reference
director and the linearized director fields preserve the kinematic structure of the theory; another is that the
transformation from six to 5 dof formulation is described by a unique orthogonal transformation that maps
the inertial frame onto an orthonormal director frame without drill.

The finite element method (FEM) remains the most popular numerical technique as evident from numerous
publications since the 1970s. However, FEM requires the design of meshes, which is an extremely tedious and
time-consuming process. In light of decreasing computer costs and increasing manpower costs, mesh-free
methods present an attractive alternative to FEM, especially for shell structures that are very complex both in
the field variable expression and the geometry representation. Mesh-free methods developed in recent year
allow sufficient flexibility in customizing the approximation function of desired smoothness, accuracy or
special characteristics of particular engineering and scientific problems. The satisfaction of the C1 (C1 means
that the first derivative of displacement fields is continuous) continuity requirements of the Kirchhoff plate
and shell problems are easily achieved using moving least squares (MLS) approximation since it requires only
C1 weights. Despite of these attractive features, several authors have reported locking difficulties in
constrained problems using mesh-free methods.

It has been established that the shear locking phenomenon results from an inconsistency between the rotation
and the transverse displacement fields and the membrane locking phenomenon takes place due to the different
orders of magnitude for the membrane and bending strains when the shell is thin. When the shell thickness
decreases, shear locking and membrane locking arise because of the inability of shell to achieve deformed states
in which the transverse shear strain and membrane strain vanish throughout the structure. Therefore a
modification of the membrane energy term is needed in the bending-dominated shells structures to avoid locking
effects, however, a modification of membrane energy in membrane-dominated shells may cause undesirable
numerical instabilities [3,4]. For the element free Garberkin (EFG) method, it allows the definition of smooth
and consistent approximations for rotation and displacements. Donning and Liu [10] proposed the matching
field approach to eliminate the shear locking phenomenon for beams, they discovered that the approximate slope
field may be matched with that of the approximate rotation field by the consistent property of cardinal spline
functions constructed over uniformly spaced arrangements of nodes. Kanok-Nukulchai et al. [11] proposed a
modified version of the element-free Galerkin (MEFG) to apply the matching field approach on the bending
problems such as beams and plates in conjunction with the EFG method. The shape functions for rotation are
constructed from the corresponding partial derivatives of the shape functions for displacement. This leads to a
complete absence of transverse shear locking and a high degree of accuracy for EFG analysis regardless of the
slenderness ratio of the respective beams and plates. However, the design of a numerical procedure that is
general and optimal for all categories is very difficult, and mathematical analysis of available numerical schemes
hardly exist . Thus, it is crucial to have available appropriate numerical test problems, and use these in a
judicious manner to evaluate the capability of a numerical scheme [12–15]. In the paper, the matching field
approach and high-order basis functions are used in order to avoid shear and membrane locking. The variation
in membrane energy and shear energy are presented to illustrate the features of membrane and shear locking.

Krysl and Belytschko [16] implemented the EFG method for thin shells as MLS approximation can easily
produce C1 continuous displacement fields to satisfy the Kirchhoff hypothesis. Li et al. [17] utilized RKPM to
simulate large deformation of thin shell structures using the window function to construct highly smoothed
shape functions. Noguchi et al. [18] applied the EFG method to analyze the general shell based on the total
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Lagrangian method. In this paper, shell formulation based on Cosserat surface theory using the EFG method
is presented. There are only 5 dof assigned to every point of the shell. The surface approximation of the
geometry of an arbitrary curved surface is constructed using MLS approximation. Different types of basis
functions are adopted to avoid membrane and shear locking. In the present formulation, the penalty method is
used to impose the essential boundary conditions, which is applicable not only to the static deflection analysis,
but also to the free vibration analysis. The discrete system equation so derived has a simple form as that in
conventional FEM and is more efficient than orthogonal transform method [19]. The outline of the paper is as
follows. In Section 2, a short account of the numerical formulation of the geometrically exact shell theory is
given. First, the definition of configuration space, stress resultant, stress couples and constitutive equations
adopted in the formulation are described. Then the equations of virtual work for static analysis and equations
for imposing the boundary condition by the Lagrange Multipliers is introduced and the discrete equations are
derived. In Section 3, the results of several shell benchmark tests are presented to validate the proposed
method. Finally, conclusions are drawn in Section 4. In Appendix A, the derivation of the EFG shape function
from MLS approximation method is briefly reviewed.

2. Governing equations for general shell

2.1. The configuration space and deformation gradient

A continuum is termed classical if the displacement field completely describes the deformation process.
Hence, every point of a classical continuum is associated with 3 dof. On the contrary, the Cosserat continuum,
which is the simplest possible continuum of a wide class of continua to be considered non-classical, is
characterized by the fact that to every point of the continuum the displacements and rotations are assigned.

The shell theory is based on the assumption that all governing equations describing shell deformation can be
derived by considering a Cosserat surface with a displacement as well as a rotation field are attached. The shell
theory presented here is based on the idea that a thin 3-D classical continuum can be directly modeled as a 2-D
non-classical continuum. A 2-D Cosserat continuum in the paper is referred to as a Cosserat surface.

The set Re is defined to state precisely the basic kinematic assumption [20]

Re :¼ u; tð Þ : A � R2! R3 � S2
� �

. (1)

Here A � R2 is an open set with smooth boundary qA, compact closure A, and points denoted x 2 A. The
following expressing is set

x ¼ x1E1 þ x2E2 x1; x2
� �

2 R2. (2)

The basic kinematic assumption is that of an inextensible one-direct Cosserat surface. Accordingly, the Gauss
intrinsic coordinates are used to describe the configuration of the shell, any configuration of the shell is
described by a pair u; tð Þ 2 Re, where the map u : A! R3 defines the position of the middle surface of the
shell and the map t : A! S2 defines a unit vector field at each point of the surface, refer to the director field.

Hence, the configuration of the shell is defined as

A ¼ x 2 R3 : x ¼ uðx1; x2Þ þ xtðx1; x2Þ with x1; x2 2 A and x 2 h�; hþ
� �� �

. (3)

Here, (h�, h+) are the distances of the ‘‘lower’’ and ‘‘upper’’ surfaces of the shell measured from the shell mid-
surface, tðx1; x2Þ 2 S2.

The convected basis vectors gI are defined as

rx ¼
qx

qxI
� EI � gI � EI . (4)

Here, r denotes gradient, � denotes tensor product and E denotes inertial basis. In addition to the convected
basis, a contravariant basis gI can be obtained from the standard relation gI � gJ ¼ dI

J .
The mid-surface is defined by the differential two form

dA ¼ u;1 � u;2dx
1dx2, (5)
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where ‘‘� ’’ denotes vector cross-product. The determinants of the tangent maps in the deformed and
reference configuration will be denoted subsequently as j and j0, respectively, with j and j

0
denoting the

Jacobians on the mid-plane surface;

j ¼ det rx½ �; j0 ¼ det rx0
� �

; j ¼ j
		
x¼0; j

0
¼ j0

		
x¼0, (6)

where the superscript ‘‘0’’ is used to denote quantities in the reference configuration.
In addition to the fixed inertial frame, two reference frames on the mid-surface are defined to play an

important role in the following formula. The reference frames on the mid-surface are illustrated in Fig. 1. The
surface-convected frame, which spans the tangent space to the mid-surface, is defined as aa ¼ u;aða ¼ 1; 2Þ.
Hence, the first fundamental form on the reference surface is

a ¼ aabaa � ab; aab ¼ u;a � u;b. (7)

Here, aI ðI ¼ 1; 2Þ denotes the dual surface convected basis through the standard relation aI � aJ ¼ dI
J and ‘‘ � ’’

denotes dot product.
The director orthogonal frame is defined as

ta ¼ WEa ða ¼ 1; 2Þ; t3 ¼ wE3 ¼ t. (8)

Here, {tI} is the orthonormal basis, SE
2 is the set of rotations whose rotation axis is perpendicular to E,

w : A � R2 ! S2
E is the orthogonal transformation, which could be expressed as

W ¼ ðt � EÞIþ dE� t½ � þ
1

1þ t � E
E� tð Þ � E� tð Þ. (9)

Here, I is the 3� 3 unit matrix. dE� t½ � is the skew-symmetric tensor while [E� t] is the corresponding axial
vector.

2.2. Stress resultants and stress couples

A section in the current configuration is described [20]

Aa
¼ x 2&3 : x ¼ xjxa¼const
� �

; a ¼ 1; 2. (10)

The stress resultants and resultant couples are defined as

na ¼ j
� ��1 Z hþ

h�
rgaj dx; a ¼ 1; 2 (11)

and

ma ¼ j
� ��1 Z hþ

h�
ðx� uÞ � rgaj dx; a ¼ 1; 2. (12)
a2

a1

t

�

�1

�2

(�,�)

Fig. 1. Reference frames on the mid-surface.
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The through thickness stress resultant is denoted by

l ¼ j
� ��1 Z hþ

h�
rg3j dx. (13)

The director stress couple ~ma can also be defined by

~ma
¼ j̄
� ��1 Z hþ

h�
xrgaj dx. (14)

The effective membrane and effective shear resultant forces, which are denoted by ~n ¼ ~nbaab � aa and
~q ¼ ~qaj;a respectively, can be defined by the following relations

~nba ¼ nba � lbm ~m
am (15)

and

~qa ¼ qa � l3m ~m
am. (16)

Here, t;a ¼ lwau;w þ l3at. The direct stress couple can be denoted by ~m ¼ ~mbaab � aa.
2.3. Linearization

Making use of the definition of spatial tensors, the corresponding linearized strain measures are defined
relative to the dual spatial surface basis as

eab ¼
1

2
u0
;a � u;b þ u0

;b � u;a


 �
,

ga ¼ u0
;a � Dtþ u;a � t

0

 �

and

rab ¼
1

2
u0
;a � Dt;b þ u0

;b � Dt;a þ u;a � t
0
;b þ u;b � t

0
;a


 �
. (17)

Here, only the symmetric part of the bending strain measure is considered.
The incremental spatial rotation vector Dt can be defined as

Dt ¼ W � DT (18)

Here, DT ¼ DT1E1 þ DT2E2; which means that the drill degree of freedom is automatically excluded. W is a
(3� 2) matrix obtained by deleting the third column of W giving

W ¼ t1t2½ � ¼

C11 C12

C21 C22

C31 C32

264
375. (19)

2.4. Constitutive equations

For isotropic elastic shell structures, the constitutive relations for the effective membrane stress ~n and the
stress couple resultant ~m are written as

~n11

~n22

~n12

8><>:
9>=>; ¼ Eh

1� n2
C

e11
e22
2e12

8><>:
9>=>; ¼ D1

e11
e22
2e12

8><>:
9>=>;
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and

~m11

~m22

~m12

8><>:
9>=>; ¼ Eh3

12 1� n2ð Þ
C

r11
r22
2r12

8><>:
9>=>; ¼ D2

r11
r22
2r12

8><>:
9>=>;, (20)

where the matrix C is given by

C ¼

a011
� �2 na011a022 þ 1� nð Þ a012

� �2
 �
a011a012

a022
� �2

a022a012

symm 1
2

1þ nð Þ a012
� �2

þ 1� nð Þa011a022

 �

266664
377775. (21)

Here, a0ab are the components of the first fundamental form in the dual basis, E is the Young’s modulus, n is
Poisson’s ratio, h is the thickness of shell. The shear stress resultants ~q is given by

~q ¼
~q1

~q2

( )
¼ kGh

g1

g2

( )
¼ D3

g1

g2

( )
. (22)

Here, k is the shear reduction coefficient, G is the shear modulus. The constitutive equations for the resultant
director couple are given in terms of the symmetrical part of ~mab. The skew-symmetric part of ~mab is assumed
to be zero.
2.5. Principle of virtual work

By making use of the basic kinematic assumption equation given by Eq. (3), the weak form of the governing
equation for the shells under static load is

WSta dxð Þ ¼
Z
A

~nba � deba þ ~mba � dkba þ ~qa � dga
� �

dRe�W ext dxð Þ. (23)

Here, dRe ¼ j dx1 dx2 is the current surface measure. Wext is the virtual work of the external loading given by

W ext ¼

Z
A

½n � duþ ~m � dt̄�dReþ

Z
qnA

n � duj̄ dsþ

Z
qmA

m � dtj̄ ds, (24)

where n̄ is the applied resultant force per unit length and ~m is the applied direct couple per unit length. n and m

Z are the prescribed resultant force and the prescribed director couple on the boundaries qnA and qmA,
respectively.

As the Kronecker delta function property is not satisfied at each node by the MLS shape function, the
essential boundary conditions cannot be imposed directly as in FEM. In the paper, the essential boundary
conditions are enforced through an additional boundary condition term in the variational form of the
static–elastic equilibrium equation. When the penalty method is utilized to impose the essential boundary
conditions, the modified variational form is written as

WSta dxð Þ þ
Z
Au

a � u� uð Þduds ¼ 0. (25)

Here, u and u are the nodal vector and prescribed vector corresponding to one of the dof in the displacement
or rotation vector on the surface Reu. a is a diagonal matrix of penalty coefficients which are usually very large
numbers.

For free vibration analysis of spatial shells, in order to produce a positive-definite stiffness matrix with
smallest dimension for the eigenvalue equation in computing natural frequencies, the discrete system equation
and the boundary condition equation are formulated separately. The variational form of the dynamical
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undamped equilibrium equation can be written asZ
A

~nba � deba þ ~mba � dkba þ ~qa � dga
� �

dReþ

Z
Re

du � r€u dRe�W ext dxð Þ ¼ 0, (26)

where r is the mass density of the material. The weak form equilibrium equation with the penalty technique
employed on the essential boundary conditions is given asZ

A

~nba � deba þ ~mba � dkba þ ~qa � dga
� �

dReþ

Z
Re

du � r€udRe�W ext dxð Þ þ
Z
Au

a � u� uð Þduds ¼ 0. (27)

The penalty term to impose essential boundary conditions in Eq. (27) can be discretized to give

a

Z
Au

u � duds ¼
Xm

I¼1

d~uTaUIU
T
I ~u (28)

and

a

Z
Au

u � duds ¼
Xm

I¼1

d~uTuIaUI , (29)

where m is the number of sampling points for integration on surface Au and ~u is the nodal vector
corresponding to a dof in the translation and rotation fields. The penalty matrix in Eq. (28) and the penalty
vector in Eq. (29) are assembled in the stiffness matrix and the external force vector, respectively.

2.6. Surface approximation

The MLS technique for surface approximation of general shells is applied in this paper in a consistent
manner as in the interpolation of displacement fields. Therefore, the surface approximation is described by

u zð Þ ¼ fI zð ÞxI , (30)

where z is the parameterization of the surface. A deficiency of this approximation is that the constructed
surface does not pass through the prescribed points unlike that of FEM. However, since the polygonalization
of surfaces is usually available, curved subsections can be mapped onto flat surfaces. The nodes of FE meshes
can act as discrete EFG nodes and the parameterization of the surface z can be carried out in a similar manner
to the parameterization defined by standard FE interpolation on FE meshes.

2.7. Discrete equation

The displacement vector u and incremental rotation vector Dt can be expressed in the global Cartesian basis
EK as

u zð Þ ¼
Xm

I¼1

fI zð Þ UIE1 þ V IE2 þW IE3½ � ¼
Xm

I¼1

fI zð ÞuI (31)

and

Dt zð Þ ¼ w � DT ¼ w �
Xm

I¼1

fI zð Þ DT1ð ÞIE1 þ DT2ð ÞIE2

� �
¼ w �

Xm

I¼1

fI zð ÞDTI , (32)

where m is the number of points in the neighborhood of z, UI, VI and WI are the components of the
displacement vector of the Ith point in the E1, E2 and E3 directions, respectively. The vectors U, T and DT are
defined as

U ¼ U V Wð Þ
T; T ¼ T1 T2ð Þ

T and DT ¼ DT1 DT2ð Þ
T.
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Using Eqs. (17), (20) and (22), the static variation form (23) can be written as

WSta dxð Þ ¼
Z
A

HmmdU½ �
T ~nþ HbmdUþHbbdT½ �

T ~mþ HsmdUþHsbdT½ �
T ~q

� �
dRe

�W ext dU; dTð Þ. ð33Þ

Here, the respective matrices are defined as

Hmm ¼

u;1
q
qx1

u;2
q
qx2

u;1
q
qx2
þ u;2

q
qx1

26664
37775
3�3

,

Hsm ¼

t q
qxa

t q
qxb

24 35
2�3

; Hsb ¼
u;1

u;2

" #
2�3

W3�2,

Hbm ¼

t;1
q
qx1

t;2
q
qx2

t;1
q
qx2
þ t;2

q
qx1

26664
37775
3�3

and Hbb ¼

u;1
q
qx1

u;2
q
qx2

u;1
q
qx2
þ u;2

q
qx1

26664
37775
3�3

W3�2. (34)

The important feature of the resultant shell theory is that the interpolations of the reference director field t

and the linearized field Dt have to be computed. Let tI denote the directors at the EFG nodal points. The
interpolation of the reference director field t can be expressed as

t ¼

Pm
I¼1fI tIPm
I¼1fI tI

�� �� ¼ ~t
~t
�� �� , (35)

where m is the number of nodes in the neighborhood. The interpolation of the linearized field Dt is consistent
with the expression of the reference director field t and is given by

Dt ¼
Xm

I¼1

1� t� tð Þ

~t
�� �� fIDtI . (36)

The derivatives of the director field t,a and linearized field Dt,a must be calculated to obtain the interpolation
for bending strain measures. The derivatives of the director field t,a can be expressed as

t;a ¼
1

~t
�� �� ~t;a � t t � ~t;a

� �� �
. (37)

Hence, the derivatives of linearized field Dt,a can be written as

Dt;a ¼
Xm

I¼1

1

~t
�� �� 1� t� tð ÞfI ;a � t;a � tþ t� t;a þ

1

~t
�� �� t � ~t;a

� �
1� t� tð Þ

" #
fI

( )
DtI , (38)

where ~t;a is given by

~t;a ¼
Xm

I¼1

fI ;atI . (39)

Substituting the displacement field of forms (31) and (32) into the variational form (32), the finial static
discrete equation of penalty method can be obtained as

Kþ ~K
� �

U ¼ F, (40)

where K is the global stiffness and matrix. The contribution of the membrane stress, bending stress resultant
and shear stress resultant to the stiffness matrix associated with nodes (I, J) are denoted by Km

IJ ; K
b
IJ and Ks

IJ ,
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which are given by

Km
IJ ¼

Z
Re

HT
mmðIÞD1HmmðJÞ dRe (41)

Kb
IJ ¼

Z
Re

HT
bmðIÞ

HT
bbðIÞ

0@ 1AD2ðHbmðJÞ HbbðJÞÞdRe, (42)

Ks
IJ ¼

Z
Re

HT
smðIÞ

HT
sbðIÞ

0@ 1AD3ðHsmðJÞ HsbðJÞÞdRe (43)

~KIJ ¼

Z
Reu

UT
I aUJ dRe; (44)

FI ¼

Z
A

ðUT
I nþ j

� ��1
UT

I ~mÞdReþ

Z
qnA

jUT
I ndsþ

Z
qmA

UT
I mdsþ

Z
A

UT
I auI dRe, (45)

where U is a vector of generalized displacement and is written as

U ¼ U V W DT1 DT2ð Þ
T. (46)

For eigenvalue analysis, the essential boundary conditions are homogeneous. The displacement can be
expressed as

U ¼ ~Ueiot, (47)

where i is the imaginary unit, o is the angular frequency and U is the amplitude of the vibration.
Substituting the displacement field of forms (31) and (32) into the variational form for free vibration (26),

the discrete equation of penalty method for dynamic analysis can be obtained as

M €Uþ Kþ ~K
� �

U ¼ 0, (48)

The eigenvalue equations of the shells derived from Eq. (48) is of the form

Kþ ~K
� �

� o2M
� �

~U ¼ 0, (49)

Where ~U is an egenvector in the form of

~U ¼ U1 U2 U3 . . .Unf gT.

As the penalty technique is used to impose the essential boundary conditions, an additional matrix is
introduced into Eq. (49), the eigenvalue equation can be conveniently calculated using standard routines.

In order to obtain the integrals defined by Eqs. (41)–(45), a background cell structure is needed, which
maybe independent of the scattered nodes for interpolation. In each background cell, Gauss quadrature is
employed. The number of Gauss points is determined by the accuracy requirements. A detailed investigation is
given by Krysl and Belytschko [21] on the relation between density of nodes and density of Gauss points. A
quadrature at 6� 6 integration stations are adopted in the paper. It is also noted that the mass matrix is in
consistent form and is adopted in the following numerical examples.

3. Numerical examples

The present method is tested on several common benchmark problems. Numerical integration with 6� 6
Gaussian quadrature on the background elements is used in all numerical examples. The essential boundary
conditions are enforced by the penalty method. The linear shape functions with one-point quadrature in
enforcing the essential boundary conditions are used in all numerical examples describe in the paper.
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3.1. Static problems for shells

3.1.1. Barrel vault roof

The performance of the present method is evaluated on a standard test problem of a barrel vault roof shown
in Fig. 2. The shell roof is loaded by its own uniform vertical gravity load. It is supported by diaphragms along
the curved ends, but is free along the straight edges. The following parameters are used: length L ¼ 600, radius
R ¼ 300, thickness h ¼ 3:0 and the semi-span-angle of the section is y ¼ 401. The Young’s modulus is
E ¼ 3:0� 106; the Poisson’s ratio is n ¼ 0 and the mass density is r ¼ 0:20833.

This problem is commonly used for determining the ability of the shell formulations to accurately solve
complex states of membrane strain. A substantial part of the strain energy is membrane strain energy and the
representation of inextensional modes is not crucial in this problem [22]. Therefore inadequacies in membrane
stress analysis will severely inhibit convergence. Using symmetry, only one-quarter of panel needs to be
modeled. There is a convergent solution of magnitude �3.618 for the vertical deflection at point A, which is
used to normalize the result in Fig. 3. The polynomial bases adopted for this problem are quadratic and
quartic for standard EFG and quadratic for the MEFG. The convergence of the present analysis is excellent in
comparison with the results of high-performance FEM by Simo et al. [20], by the EFG method for thin shells
[16], by the EFG method for general shell [18]. It can be seen that the convergence rate of quartic basis always
exceeds that of quadratic basis for EFG. The result for quartic basis approaches the exact result from above
with increase in numbers of EFG nodes, while that for quadratic basis oscillates along the exact result with
increase in EFG nodes. It should be mentioned that there are only 3 dof assigned to each point for the
Kirchhoff–Love model of thin shells by Krysl and Belytschko [16]. It also should be noted that the result and
the convergence rate of quadratic basis for MEFG are better than that of quadratic basis for standard EFG.
The reason is that MEFG shows a complete absence of shear locking which can give a correct estimation of
shear energy.

Fig. 4 shows the variation of shear, membrane and bending energies with respect to the size of domain of
influence using quartic basis. It can be seen that membrane and bending energies remain constant regardless of
domain size; the difference between the membrane and bending energies are no more than 4.0%. The shear
energy is very small and approaches zero with increase in EFG nodes, which means the shear stress plays
almost no role in the displacement response of this problem.
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Fig. 2. Barrel vault roof.
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Fig. 4. Convergence of membrane (M), shear (S) and bending (B) energies with size of domain of influence.
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Fig. 3. Convergence of vertical displacement.
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The comparison of computational efficiency of the EFGM for spatial shells with respect to the FEM is
discussed. The model consists of 8� 8 integration background meshes, with the scattered nodes located at the
vertices of the cells. Numerical integration is carried out on the background elements using a 6� 6 Gaussian
quadrature. The computations are carried out on the slave nodes of Linux Beowulf Cluster (IBM xSeries 330
with 1G hz PIII CPU/256MB L2 cache, 18 GB SCSI HDD and 1GB RAM). Figs. 5 and 6 show the variation
of displacement of the point A and the variation of computation time with the size of influence domain for
EFG method, respectively. The minimum distance between nodes is utilized to normalize the size of domain of
influence. Solving the problem using the same number of nodes by FEM commercial software, such as
ANSYS, requires a computation time of about 13 s and the error between the convergent numerical results
and the numerical results is greater than 1.5%. The EFG method can be found to be 10 to 50 times slower than
the FEM for this problem in order to get an acceptable result. The major disadvantage of EFG method is that
the construction of EFG shape function is computationally more expensive. For the EFG method, the number
of the nodes is usually greater than the number of monomials in the polynomial basis in order to obtain an
accurate shape function, especially for the analysis of shell structures. In general, it takes extra effort to choose
and compute the weight functions. The reason is that the weight functions play an important role in the
performance of the EFG method and are usually different for different problems. It also should be noted that
the nodal parameters are not the nodal values, which means that the approximation of the value at a certain
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node depends on the nodal parameter of this node as well as the nodal parameters of the nodes in its influence
domain.

3.1.2. Pinched cylindrical shell

The second test problem involves a thin cylindrical shell loaded by two centrally located and diametrically
opposing concentrated forces as shown in Fig. 7. The ends of the cylinder are supported by rigid diaphragms
which allow displacement in the axial direction and rotation about the tangent to the shell boundary. The
length of the cylinder is L ¼ 600, the radius is R ¼ 300, and the thickness is h ¼ 3. The material properties are
E ¼ 3:0� 106 and n ¼ 0:3.

This problem is one of the most severe tests for both inextensional bending and complex membrane states of
stress. Using symmetry, only one-eighth of the cylinder needs to be modeled by present method. There is a
convergent numerical solution of 1.8248e-5 for the radial displacement at the loaded points, which was used to
normalize the results in Fig. 8. The convergence by the present method is excellent in comparison with the
results from FEM [20], the EFG method for thin shells [16] and the common commercial software ABAQUS
using S4R elements. S4R element means the 4-node doubly curved general-purpose shell element and reduced
integration with hourglass control is used.
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The variation of displacement at the central point with the size of domain of influence is shown in Fig. 9.
The minimum distance between nodes is utilized to normalize the size of domain of influence. The fluctuation
of the normalized displacement is less than 2.8% when the support domain is large. The fractions of total
energy as membrane, shear and bending energies are shown in Fig. 10. The membrane energy is over predicted
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Fig. 11. Convergence of membrane, shear and bending energies.
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for the coarse arrangement nodes, which is indicative of membrane locking. All energies show the similar
fluctuating trends as that observed for displacement. For domain size between 5.5 and 8.5, the displacement
and energies are relatively constant. It is also interested to see that membrane energy fraction increases initially
and accompanies by the decrease of the shear energy fraction. Maybe the reason is that the initial addition of
scatter nodes serves primarily to reduce the shear locking and the total internal energy is very small because of
severe locking.

Fig. 11 shows the fractions of total energy, as shear, membrane and bending energies for both quartic and
quadratic polynomial bases of standard EFG and quadratic polynomial base of MEFG (modified EFG). As
can be seen, for quartic polynomial basis, the shear energy fraction tends to be less than 4.0% as the number of
EFG nodes increase, which means that shear stress plays a minor role in the displacement response. The
membrane energy fraction is approximately 40:0%, which agrees satisfactorily with the results from the
9-noded Gamma FEM by Belytschko et al. [9]. For the quadratic polynomial basis, the membrane fraction
tends to be 40.0%, similar to that for the quartic polynomial basis, however, the shear energy increases with
the addition of EFG nodes and play an important role in the problem. It can be seen that for sparse discrete
nodes, membrane locking is dominant, while for the dense nodes, shear locking becomes more important. For
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quadratic basis of MEFG, it can be seen that the shear energy fraction tends to almost zero with the increase
of scatter nodes and even less than that of quartic basis of standard EFG, which means using high order basis
function may alleviate but not totally suppress shear locking effects. The good results cannot be obtained by
the quadratic basis of MEFG because membrane energy is over predicted even a lot of scatter nodes are used
in the problem, which is indicative of membrane locking occurs primarily in curved structures. Kanok-
Nukulchai [11] demonstrated that MEFG method could completely eliminated the presence of transverse
shear locking when the matching fields concept is employed. However the results given here shows that the
MEFG method could not work efficiently for the shell problems occurring shear locking and membrane
locking.

3.2. Frequency analysis for shells

The performance characteristics of the EFG method for the free vibration analysis are also evaluated. The
results of several examples are presented and compared with analytical solution and other results to show their
accuracy and validity.

3.2.1. Free vibration of a clamped cylindrical shell panel

The free vibration test performed by Petyt [23] on a clamped shallow shell panel provides a good reference
for comparison. The geometry and boundary conditions of the shell panel are shown in Fig. 12 and the
following parameters are used in the analysis: length L ¼ 76:2mm, radius R ¼ 762mm, thickness
h ¼ 0:33mm. The Young’s modulus is E ¼ 6:8948� 1010 N=m2; the Poisson’s ratio is n ¼ 0:33 and the mass
density is r ¼ 2657:3 kg=m3. The central subtended angle of the section is y ¼ 7:641.

Petyt [23] carried out a comparison between the experimental natural frequencies and those obtained by
four different numerical method, namely extended Raleigh–Ritz method (ERR), triangular finite element
method (FET) and rectangular finite element method (FER) and Kantorovich. Regular nodes of different
densities are used to investigate the convergence characteristics of natural frequencies and the results are given
in Table 1. The values of natural frequency of the shell panel are also presented in Table 2 together with
experimental results and results obtained by Petyt [23] and isoparametric spline finite strip method. It can be
seen that the EFG results show good convergence and good agreement with other methods.

3.2.2. Free vibration of a clamped– free hyperboloidal shell

Hyperboloidal shells are of considerable practical importance, because of their frequent use as reinforced
concrete hyperbolic cooling towers. This particular problem has been shown to be particularly difficult
x
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Fig. 12. Clamped cylindrical shell panel.
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Table 1

Natural frequencies of a clamped cylinder panels (Hz). Results of convergence study

Mode MEFG (Quadratic)

7� 7 9� 9 13� 13 17� 17

1 827.8 861.2 869.1 870.8

2 923.0 960.7 959.0 961.4

3 1193.7 1297.2 1294.1 1295.6

4 1361.7 1385.6 1369.4 1368.9

5 1454.4 1435.7 1446.1 1440.7

6 1600.7 1729.2 1751.7 1749.2

7 1730.4 1761.5 1775.3 1780.5

8 1934.2 2055.5 2062.0 2056.9

9 2133.1 2209.4 2224.4 2227.3

10 2238.3 2290.4 2277.2 2293.6

Table 2

Natural frequencies of clamped cylinder panels. Comparison of experimental and numerical results

Mode Experimental results ERR FET FER K Present method (17� 17)

1 814 870 970 890 890 870.8

2 940 958 958 973 966 961.4

3 1260 1288 1288 1311 1295 1295.6

4 1306 1364 1363 1371 1375 1368.9

5 1452 1440 1440 1454 1450 1440.7

6 1802 1753 1756 1775 1745 1749.2

7 1735/1770 1795 1780 1816 1780.5

8 2100 2057 2056 2068 2056.9

9 2225 2220 2222 2234 2227.3

10 2280 2300 2295 2319 2293.6

a

d

R1

R2

L

Fig. 13. Geometry of clamped–free hyperboloidal shell.
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Table 3

Natural frequency (Hz) of a clamped–free hyperboloidal shell

Mode Özakca and Hinton [24] Carter et al. [25] Present method (EFG) Quartic

13� 17 19� 25

(axial � circum)

1 1.0354 1.0348 1.0307 1.0312

2 1.1508 1.1467 1.1412 1.1436

3 1.1826 1.1808 1.1698 1.1743

4 1.3061 1.3015 1.2901 1.2972

5 1.3293 1.3231 1.3127 1.3179

6 1.3758 1.3749 1.3665 1.3711

7 1.4329 1.4293 1.4188 1.4224

8 1.4488 1.4475 1.4393 1.4423
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because slight variation in geometry leads to large chances in the natural frequencies. The geometry of a
clamped–free hyperboloidal shell is shown in Fig. 13. The shell geometry is defined by the equation of its
meridian

R

a


 �2

�
L� d

b


 �2

¼ 1, (50)

where b is a characteristic dimension of the shell defined as b ¼ ad=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 � a2

q
. The following geometric and

material properties are used in the analysis: L ¼ 100:787m, h ¼ 0:127m, a ¼ 25:603m, b ¼ 63:906m,
d ¼ 82:194m, Young’s modulus E ¼ 2:069� 1010 N=m2, Poisson’s ratio n ¼ 0:15, and the mass density
r ¼ 2405 kg=m3. A regular nodal arrangement in the axial and circumferential direction is used in the analysis.
The results of the present study using different number of nodes are given in Table 3 together with those
obtained by Özakca and Hinton [24] using the FEM and Carter et al. [25] using a numerical integration
technique based on classical thin shell theory. Close agreement can again be observed in Table 3.

4. Conclusion

The EFG method has been utilized to analyze spatial shell structures based on the stress resultant shell
geometrically exact theory, which has only 5 dof assigned to every point of the shell. The 3-D classical
continuum of a shell is modeled directly as a 2-D Cosserat surface thus avoiding any explicit kinematical
assumptions. By using the background stretch method, the geometry of an arbitrary curved surface is mapped
to a 2-D space and each discrete EFG node has a unique parameter value.

For thick shells, the formulation allows for transverse shear strain and results in the Mindlin plate when the
surface is flat and membrane state is negligible. In order to avoid shear locking and membrane locking, a
quartic basis function is adopted for the MLS approximation. Using high-order basis functions alleviate shear
locking. This method is easily implemented for the EFG method because MLS shape functions are obtained
from the discrete EFG nodes. Therefore, the formulation is available for both thin and thick shells. Several
benchmark shell examples are analyzed to show the validity of the proposed method and satisfied results
obtained are in good agreement with theoretical and FE results. However, it should be noted that recourse
must be taken to meshes for the integration of the weak form of governing equations by the EFG method
presented in the paper.

Appendix A. MLS approximation

In the paper, the MLS approximation method is used to approximate the displacement and the surface
geometry of the shell. The derivations of shape functions from the MLS approximation method were
presented by Nayroles et al. [26] and Belytschko et al. [27]. A 2-D field is assumed for modeling thin shell and
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membrane structures. A component of the displacement vector is approximated by a polynomial function as
follows

uh xð Þ ¼ PT xð Þa xð Þ, (A.1)

where P(x) is the polynomial function and a(x) is the vector of coefficients. The complete polynomial basis of n

terms of order s in two dimensions is given by (see Ref. [27])

PT xð Þ ¼ PT x; yð Þ ¼ 1;x; y;x2;xy; y2; . . . ;xs; . . . xys�1; ys
� �T

. (A.2)

The unknown coefficients a(x) are solved by minimizing the following weighted residual

J ¼
Xm

I¼1

w x� xIð Þ PT xð Þa xð Þ � uI

� �2
, (A.3)

where w(x�xI) is the weight function of compact support (often called the domain of influence of node I), m is
the number of points in the neighborhood of x, uI is an unknown nodal value of u at a sampling point xI.

The stationary condition of J in Eq. (A.3) with respect to a(x) yields the following linear system of equations

A xð Þa xð Þ ¼ B xð Þu, (A.4)

where u consists of the nodal values uI. The symmetrical matrix A(x) and the non-symmetrical matrix B(x) are
defined as

A xð Þ ¼
Xm

I¼1

w x� xIð ÞP xIð ÞP
T xIð Þ,

B xð Þ ¼ w x� x1ð ÞP x1ð Þ; . . . ;w x� xmð ÞP xmð Þ½ �. (A.5)

Substituting Eq. (A.5) into Eq. (A.1) yields

uh xð Þ ¼ PT xð ÞA�1 xð ÞB xð Þu ¼ UT xð Þu ¼
Xm

I¼1

fI xð ÞuI , (A.6)

where the shape function fI ðxÞ is a component of vector UT uð Þ. It can also be written as

fI xð Þ ¼ PT xð ÞA�1 xð ÞBI xð Þ ¼ cT xð ÞBI xð Þ, (A.7)

where cT xð Þ ¼ PT xð ÞA�1 xð Þ. This leads to the relationship

A xð Þc xð Þ ¼ P xð Þ. (A.8)

The weight function w x� xIð Þ plays an important role in the performance of the EFG method. A poorly
constructed weight function will not guarantee a unique solution of a(x). The weight functions are positive and
decrease in magnitude as the distance from x to xI increases.

In this paper, the quartic spline weight function is chosen on account of the requirements on the continuity
of the function and its derivatives. The spline is expressed as a function of normalized distance [27]

w rð Þ ¼
1� 6r2 þ 8r3 � 3r4
� �

for 0prp1;

0 for 41

(
(A.9)

with the normalized distance r being r ¼ r=RI , where RI is the radius of the support of the Ith node. The
choice of the shape of the domain is arbitrary, but square domains and the circular domains are the most
common. In this paper, circular domains are used. Therefore, weight functions depend only on the distance
between two points as follows

w x� xIð Þ ¼ wI rð Þ, (A.10)

where r ¼ x� xIk k is the distance between the two points x and xI. The support radius can be computed from
the arrangement of the EFG points by defining the domain of each quadrature point to include the required
number of EFG points for evaluating the partial derivatives of the shape function.
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In the paper, the two different polynomial basis adopted are (i) quadratic and (ii) quartic to ameliorate
shear and membrane locking [16]

ið Þ PT xð Þ ¼ 1; x; y;x2;xy; y2
� �

; n ¼ 6ð Þ, (A.11)

iið Þ PT xð Þ ¼ 1;x; y;x2;xy; y2;x3;x2y;xy2; y3;x4;x3y; x2y2;xy3; y4
� �T

n ¼ 15ð Þ. (A.12)
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