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Abstract

This article describes a characterization method to specifically determine the asymptotic behavior of kinetic and

potential energies at higher frequencies with the driving point measures only. Longitudinal and flexural motions of semi-

infinite and finite beam structures are considered when a harmonic force excitation is applied. Our method predicts spectral

energies well at high frequencies unlike the existing methods that are limited to low frequencies and/or lightly damped case.

The new method is insensitive to the driving point mobility or impedance formulations and yields consistent results.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, we proposed a method that characterizes the spectral kinetic or potential energy input to
structures by driving point mobility or impedance only [1]. This method in our earlier paper overcomes some
deficiencies of the existing methods [2,3]. However, such spectral characterization methods are still limited to
lower frequencies and/or lightly damped system since the estimates deviate significantly as the frequency or
damping loss factor increases [1–3]. In this communication, we extend the methods [1–3] to higher frequencies
with application to semi-infinite and finite beams.

Energy-based methods are widely used in vibro-acoustic modeling [4–10]. Some methods are statistical in
nature, and thus are more suitable at high frequencies, especially when the high modal density assumption is
ensured [4–7]. Deterministic energy methods have also been employed in vibration transmission, isolation and
transfer path analyses over a wide range of frequencies [7–10]. Typically, the driving point information at the
sub-system interfaces represents the sub-system behavior in such modeling techniques and most of the energy-
based methods are based on the dissipated energy (power) concept [4–10]. However, the kinetic or potential
energy input may be more suitable for describing the vibrational behavior of sub-systems than the dissipated
energy (power) level. For instance, our earlier article clearly shows that the dissipated energy may not exhibit
much reduction by the application of high damping although the kinetic energy input is significantly
diminished at higher frequencies [1]. Nonetheless, lack of an appropriate spectral kinetic or potential energy
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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calculation method at higher frequencies hinders proper understanding of vibro-acoustic behavior. This
communication attempts to partially remedy this by suggesting a method that would characterize the kinetic
and potential energies at high frequencies with only driving point transfer function information. The scope is
limited to a linear time-invariant system, and longitudinal and flexural motions of semi-infinite and finite beam
structures are analyzed in the frequency domain given a single harmonic force excitation. Chief objectives of
our study are: (1) examine the asymptotic behavior of energy characteristics at higher frequencies; (2) clarify
the role of structural damping; (3) propose a method (designated here as Method 4, as a continuation of three
methods described in Ref. [1]) to estimate the spectral energies at high frequencies via the driving point
transfer mobility or impedance.
2. Asymptotic energy behavior of a semi-infinite beam at high frequencies

A semi-infinite beam of Fig. 1 is considered to analyze the asymptotic energy behavior at high frequencies.
A harmonic force excitation at frequency o is applied to the beam in axial or transverse directions separately
to examine the longitudinal or flexural motions.

Harmonic velocity (v), displacement (x) and its gradient in longitudinal motions of the semi-infinite beam
given a force of amplitude f0 at o are written as follows where r and S are the mass density and the cross-
sectional area, respectively:

vðxÞ ¼ joxðxÞ ¼
f 0

S

ffiffiffiffiffiffi
reEq expð�ekLxjÞ;

qxðxÞ
qx
¼ �

f 0

SeEexpð�ekLxjÞ. (1,2)

Here, Z is the damping loss factor, and eE, and ekL represent the complex modulus and the longitudinal
wavenumber, respectively, and are expressed as follows where superscripts 0 and 00 denote the real and
imaginary parts, respectively:

eEðoÞ ¼ E0ð1þ jZÞ ¼ E0 þ jE00; ekL ¼ o
ffiffiffiffiffiffiffiffiffi
r=eEq
¼ k0L þ jk00L � o

ffiffiffiffiffiffiffiffiffiffi
r=E0

q
½ð1� jZ=2Þ�. (3,4)

Spectral kinetic, potential and dissipated energies within the semi-infinite beam are derived as follows where
Em, Ek and Ed represent the time-averaged kinetic, potential and dissipated energies, respectively, at frequency
o and the superscript � denotes the complex conjugate:

EmðoÞ ¼
rS

2

Z 1
0

jvðxÞj2 dx ¼
rS

2

Z 1
0

vðxÞ � vnðxÞdx

¼
rS

2

Z 1
0

jf 0j
2

rS2jeEj exp 2k00Lx
� �

dx ¼
�jf 0j

2

4SjeEjk00L , ð5Þ

EkðoÞ ¼
SE0

2

Z 1
0

qxðxÞ
qx

���� ����2 dx ¼
SE0

2

Z 1
0

qxðxÞ
qx
�

qxðxÞ
qx

� ��
dx

¼
SE0

2

Z 1
0

jf 0j
2

S2jeEj2 exp 2k00Lx
� �

dx ¼
�E0jf 0j

2

4SjeEjk00L , ð6Þ
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Fig. 1. Semi-infinite beam given a sinusoidal force excitation at the free edge ðx ¼ 0Þ: (a) Under longitudinal excitation; (b) under

transverse excitation.
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EdðoÞ
SE00

2

Z 1
0

qxðxÞ
qx

���� ����2 dx ¼
�E00jf 0j

2

4SjeEjk00L . (7)

Note that k00L is a negative value for positive damping loss factors as shown in Eq. (4), and the integrations of
Eqs. (5–7) converge to a finite value.

Next, the flexural motions of the semi-infinite beam of Fig. 1(b) are considered. The flexural velocity field at
o is

vðxÞ ¼
of 0eEIek3Bð1þ jÞ

expð�ekBxjÞ

þ expð�ekBxÞ

" #
; vnðxÞ ¼

of 0eEn

Iekn3
B ð1� jÞ

expðekn

BxjÞ

þ expð�ekn

BxÞ

" #
. (8,9)

Here, I is the area moment of inertia and the following ~kB represent the complex flexural wave number where
superscripts 0 and 00 denote the real and imaginary parts, respectively:

ekB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rS=eEI4

q
¼ k0B þ jk00B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rS=IE04

q
½ð1� jZ=4Þ�. (10)

Then, time-averaged kinetic energy within the semi-infinite beam is derived as follows by integrating the
squared-magnitude of velocity:

jvðx;oÞj2 ¼ vðxÞ � vnðxÞ ¼
o2jf 0j

2

2jeEj2I2jkBj
6

expð2k00BxÞ þ expð�2k0BxÞ

þ2 expð�k0Bxþ k00BxÞ � cosð�k0Bxþ k00BxÞ

" #
, (11)

EmðoÞ ¼
rS

2

Z 1
0

jvðxÞj2 dx ¼
jf 0j

2

4jeEjIjkBj
2

k00B � k0B
2k0Bk

00
B

þ
1

k0B � k00B

� �
. (12)

Similarly, time-averaged potential and dissipated energies within the semi-infinite beam are obtained as
follows by using the squared-magnitude of q2xðxÞ=qx2:

xðxÞ ¼
f 0eEI ~k3Bðj� 1Þ

expð�ekBxjÞ

þ expð�ekBxÞ

" #
;

q2xðxÞ
qx2

¼
f 0eEIekBð1� jÞ

expðekn

BxjÞ

� expð�ekn

BxÞ

" #
, (13,14)

q2xðxÞ
qx2

���� ����2 ¼ q2xðxÞ
qx2

�
q2xðxÞ
qx2

� ��
¼

jf 0j
2

2jeEj2I2jkBj
2

expð2k00BxÞ þ expð�2k0BxÞ

�2 expð�k0Bxþ k00BxÞ � cosð�k0Bxþ k00BxÞ

" #
, ð15Þ

EkðoÞ ¼
E0I

2

Z 1
0

q2xðxÞ
qx2

���� ����2 dx ¼
E0jf 0j

2

8jeEj2I 1

k0Bk
00
Bðk
00
B � k0BÞ

� �
, (16)

EdðoÞ ¼
E00I

2

Z 1
0

q2xðxÞ
qx2

���� ����2 dx ¼
E00jf 0j

2

8jeEj2I 1

k0Bk
00
Bðk
00
B � k0BÞ

� �
. (17)

Similar to the longitudinal motion case, k00B of Eq. (10) is a negative value for positive damping loss factors,
and the integrations of Eqs. (12,16,17) converge to a finite value.

3. Effect of damping of the energy behavior of a semi-infinite beam

The spectral energy levels, Em, Ek and Ed for both longitudinal and flexural motions, are shown in
Figs. 2(a,b) and (c,d). Observe that Em and Ek match each other but the discrepancy between them is relatively
higher in flexural motion with high damping ðZ ¼ 0:2Þ. Further, Fig. 2 shows that Ed remains the same for low
ðZ ¼ 0:08Þ and high ðZ ¼ 0:2Þ damping cases while Em or Ek decreases as the damping increases for
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Fig. 2. Spectral energies for a semi-infinite beam of Fig. 1 given a force excitation at the free end: (a) Longitudinal motion of a lightly

damped system ðZ ¼ 0:08Þ; (b) longitudinal motion of a heavily damped system ðZ ¼ 0:2Þ; (c) flexural motion of a lightly damped system

ðZ ¼ 0:08Þ; (d) flexural motion of a heavily damped system ðZ ¼ 0:2Þ. Key: , Kinetic energy; , potential energy;

, dissipated energy.
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longitudinal or flexural motions. This observation is consistent with the result that was reported in our earlier
article [1].
4. Development of a new energy characterization method

The driving point mobility (ML0) and impedance (ZL0) of the semi-infinite beam in longitudinal motions are
written as follows where subscript L implies axial motions:

ML0ðoÞ ¼
1

S

ffiffiffiffiffiffi
reEq �

1

S
ffiffiffiffiffiffiffi
rE0

p 1� j
Z
2

� �h i
, (18)

ZL0ðoÞ ¼ S

ffiffiffiffiffiffi
reEq
� S

ffiffiffiffiffiffiffi
rE0

p
1þ j

Z
2

� �h i
. (19)

By using ML0 and ZL0, the damping loss factor can be estimated as follows where Re and Im represent
the real and imaginary parts of a complex quantity respectively and the superscript 4 denotes the
estimate:

bZ ¼ 2
ImðML0Þ

ReðML0Þ

���� ���� ¼ 2
ImðZL0Þ

ReðZL0Þ

���� ����. (20)
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The driving point mobility (MB0) and impedance (ZB0) of the semi-infinite beam in flexural motions are
expressed as follows where subscript B denotes the transverse motions:

MB0ðoÞ ¼
2oeEIek3Bð1þ jÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IE0o2ðrSÞ3
4

q 1�
Z
4

� �
� j 1þ

Z
4

� �h i
, (21)

ZB0ðoÞ ¼
eEIek3Bð1þ jÞ

2o
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IE0o2ðrSÞ3

4

q
2

1�
Z
4

� �
þ j 1þ

Z
4

� �h i
. (22)

Similar to the longitudinal motions, the damping loss factor is estimated as follows by using MB0 and ZB0:

bZ ¼ 2
ImðMB0Þ

ReðMB0Þ

���� ����� 1

� �
¼ 2

ImðZB0Þ

ReðZB0Þ

���� ����� 1

� �
¼

Z
1� Z=4

. (23)

By using the estimated damping loss factor, time-averaged kinetic and potential energies are approximated at
higher frequencies as follows where bE is the estimate of time-averaged energy:

Em � Ek �
bE4;m ¼

bE4;k ¼ Ed=bZ. (24)

Here, estimation (24) at high frequencies is designated as Method 4 and is denoted by subscript 4; refer to
Method 1, 2 or 3 in Ref. [1]. Further, note that the assumption made here, Em � Ek, is generally valid at
higher frequencies as observed in Fig. 2; it has been suggested by many researchers [4,7]. Further, since the
damping estimation formulation (23) for flexural motions differs from the one (20) for longitudinal motions,
Method 4 must be separately applied to longitudinal or flexural motions.

The energy estimates for the semi-infinite beam are calculated to examine the high frequency behavior.
Results are shown in Figs. 3(a,b) and (c,d) for longitudinal and flexural motions, respectively. Method 4 is also
compared in Fig. 3 with the energy estimates that have been proposed earlier by us (Method 3 in Ref. [1]) and
other researchers (Method 2 in Ref. [3]). Note that Method 2 predicts the following energies where subscripts
1, 2, M and Z indicate estimates using Methods 1, 2, mobility and impedance, respectively:bE2Z;mðoÞ þ

bE2Z;kðoÞ
h i

¼
bE1Z;mðoÞ þ

bE1Z;kðoÞ
h i

=aZðoÞ, (25)

bE2M ;mðoÞ þ
bE2M ;kðoÞ

h i
¼

bE1M ;m oð Þ þ bE1M ;kðoÞ
h i

=aMðoÞ, (26)

bE1Z;m ¼ V�
T

D Im ZD=oþ qZD=qo
	 


VD=4, (27)

bE1Z;k ¼ �V
�T

D Im ZD=o� qZD=qo
	 


VD=4, (28)

bE1M ;m ¼ F�
T

D Im MD=oþ qMD=qo
	 


FD=4, (29)

bE1M;k ¼ �F
�T

D Im MD=o� qMD=qo
	 


FD=4. (30)

Here, Z and M are the impedance and mobility matrices, and F and V are the force and velocity amplitude
vectors respectively. Further, the subscript D and the superscript T imply the driving point and the matrix
transpose, respectively. Further, aZ and aM are the correction factors for impedance and mobility,
respectively, that have been introduced in Method 2. Refer to the literature for further details of Methods 1 [2]
or 2 [3].

The energy estimates from Method 3, denoted by subscript 3, are summarized asbE3Z;m ¼ jeEZ;mj;
bE3Z;k ¼ j eEZ;kj, (31,32)

eEZ;m ¼
1

4j
n1

zD11

o
þ

qzD11

qo

� �
n1; eEZ;k �

1

4j
n1

zD11

o
�

qzD11

qo

� �
n1. (33,34)
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Fig. 3. Sum of time-averaged kinetic and potential energies of a semi-infinite beam of Fig. 1 given a force excitation at the free end: (a)

Lightly damped system ðZ ¼ 0:08Þ in longitudinal motion; (b) heavily damped system ðZ ¼ 0:2Þ in longitudinal motion; (c) Lightly damped

system ðZ ¼ 0:08Þ in flexural motion; (d) heavily damped system ðZ ¼ 0:2Þ in flexural motion. Key: , Exact; , Method

4; , Method 3; , Method 2. Here, the lines and almost overlap in (a)–(c).
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Here, eEm and eEk are the complex-valued spectral kinetic and potential energies respectively. Refer to Ref. [1]

for further details of Method 3. Figs. 3(a,b) shows that the estimates of Em þ Ek from Method 4 perfectly

match the exact values in longitudinal motions. But a small deviation in bE4m þ
bE4k from the exact one value is

observed for the high damping case in flexural motions, as shown in Fig. 3(d). Further, the estimates with
Method 2 or 3 deviate significantly from the exact energy in both longitudinal and flexural motions and the

deviations of bE2m þ
bE2k are larger than the ones of bE3m þ

bE3k, as shown in Fig. 3. Nonetheless, both bE2m þbE2k and bE3m þ
bE3k produce consistent results with mobility or impedance for the semi-infinite beam case.

Further note that bE2m þ
bE2k in longitudinal motion is zero and is not shown in Figs. 3(a,b) since the

longitudinal mobility and impedance of Eqs. (18,19) are constant with frequency and their derivatives (which

represent bE2m þ
bE2k) are zero.
5. High frequency energy behavior of a finite beam

Like the semi-infinite beam case, a finite beam of Fig. 4 (with clamped–free boundaries) is examined next at
higher frequencies. Longitudinal and flexural motions are separately considered by applying a harmonic force
(of amplitude f0) to the free end (at x ¼ 0) in the corresponding directions, as shown in Figs. 4(a) and (b),
respectively. Time-averaged kinetic, potential and dissipated energy inputs to the clamped–free beam in
longitudinal and flexural motions have been formulated in Ref. [1], thus, refer to that paper for details.
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The energy estimates and exact values are shown in Fig. 5 for longitudinal motions. The estimates of
Em þ Ek from Method 4 asymptotically approach the exact values and two curves become almost identical as
the frequency increases. Like the semi-infinite beam case, the estimates with both Methods 2 and 3 deviate

significantly from the exact energy. Fig. 5 shows that the bE2m þ
bE2k rapidly decrease as the frequency increases

and this asymptotic behavior of bE2m þ
bE2k is different from the exact ones, unlike the semi-infinite beam. It is

expected that bE2m þ
bE2k will approach zero, which represents the ideal asymptotic behavior of the semi-

infinite structure, as the frequency is increased further.
Flexural motions of the finite beam of Fig. 4(b) are also examined and calculated results are shown in Fig. 6.

Like the longitudinal motion case, Fig. 6 shows that predictions of Method 4 match well with the exact

Em þ Ek at higher frequencies. Similar to the semi-infinite beam case, both bE2m þ
bE2k and bE3m þ

bE3k



ARTICLE IN PRESS

100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

E
m
+

E
k(J

)

100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

E
m

+
E

k(J
)

100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

E
m

+
E

k(J
)

100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

E
m

+
E

k(J
)

Frequency (Hz) Frequency (Hz)

(a) (b)

(c) (d)

Fig. 6. Sum of time-averaged kinetic and potential energies for flexural motions of a finite beam of Fig. 4(b) given a force excitation at the

free end: (a) Lightly damped system ðZ ¼ 0:08Þ with impedance; (b) lightly damped system ðZ ¼ 0:08Þ with mobility; (c) heavily damped

system ðZ ¼ 0:2Þ with impedance; (d) heavily damped system ðZ ¼ 0:2Þ with mobility. Key: , Exact; , Method 4;

, Method 3; , Method 2. Here, the lines and almost overlap in (c) and (d).

S. Kim, R. Singh / Journal of Sound and Vibration 295 (2006) 1076–1084 1083
significantly differ from Em þ Ek but the deviation is larger for bE2m þ
bE2k than the one for bE3m þ

bE3k, as seen
in Fig. 6. In both longitudinal and flexural motions, Methods 3 and 4 yield the most consistent predictions
with mobility or impedance formulations at all frequencies, as shown in Figs. 5 and 6. Method 2 also predicts
the same asymptotic behavior with mobility or impedance at higher frequencies but some differences are
observed between the estimations in the resonance regions of Figs. 5 and 6. Note that negative values are not
displayed in logarithmic plots of Figs. 5 and 6, and thus the lines with the negative values for energy estimates
are discontinuous at some frequencies.

6. Conclusion

Energy characteristics over the high frequency regime have been examined, with applications to longitudinal
and flexural motions of semi-infinite and finite beam structures. Kinetic and potential energies match well but
discrepancy between them is relatively higher in flexural motion with high damping. Further, the dissipated
energy remains the same for low ðZ ¼ 0:08Þ and high ðZ ¼ 0:2Þ damping cases while the kinetic or potential
energy decreases as the damping is increased in longitudinal or flexural motions. The aforementioned
observation is consistent with the finite beam case that was reported in our earlier article [1]. A method has
been suggested to characterize the spectral energy of a beam structure over the high frequency regime. Our
energy estimates are very close to exact values. Like the low frequency method that was reported earlier [1],
our method is insensitive to the driving point mobility or impedance formulations and yields consistent results.
Finally, our method does not require a prior knowledge of the transfer functions.
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Further work is required to extend our methodology to complex structures at high frequencies and to
improve the energy characterization schemes over the middle frequency regime. Moreover, a method that
could quantify paths or sources needs to be developed along with the energy characterization scheme
especially when multiple inputs are applied to a vibratory system.
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