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Abstract

The aim of this paper is to introduce new spectral finite elements for damage detection in cracked rods. The four new

spectral elements are based on the elementary, Love, Mindlin–Herrmann, and three-mode theories of rods. For all the

models the crack is substituted by means of a dimensionless spring. Numerical examples show the influence of a fatigue,

non-propagating, open crack on wave propagation in rods. For the models analysed differences in behaviour of the

longitudinal waves are observed. The differences between signals reflected from the crack in the proposed models are

functions of the excitation signal frequency.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Structural health monitoring and damage detection has received a considerable amount of attention over
the last few decades. Previous approaches to non-destructive evaluation of structures, and assessing their
integrity, typically involved some form of human interaction. Recent advances in smart materials technology
have resulted in a renewed interest in developing advanced self-diagnostic methods for assessing the state of a
structure without any human interaction [1–3]. The goal is to reduce the human interaction while monitoring
the integrity of a structure. With this goal in mind, many researchers have made significant progress in
developing damage detection methods for structures based on traditional modal analysis techniques [4–9].
These techniques are often well suited for the detection of rather significant defects because small defects do
not influence changes in the lower frequencies, thus global behavior of the system is not affected. For this
reason new methods based on smart materials have been rapidly developed in last years.

New damage detection methods are based on analysing anomalies in elastic wave propagation in structures
[10–14]. Damage detection systems utilise the well-known fact that material discontinuities affect elastic waves
propagating in solids. Wave frequencies that are most sensitive to damage depend on the type of structure, the
material, and the form of damage. Elastic waves are generated and sensed by an array of transducers either
embedded in, or bonded to, the surface of a structure.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The main objective of the theoretical portion of this problem is to develop a model that can determine the
relationship between the power of a transducer, the frequency of a generated signal, the type of monitored
solid, and the range of effective signal transmission. The frequencies used in this technique are much higher
than those typically used in modal analysis based methods, but lower than in ultrasonic testing. At such high
frequencies, the responses are dominated by local modes and at the same time the wavelength of the excitation
is small enough to detect incipient-type damage.

Problems of longitudinal wave propagation in cracked rods have until now been studied using elementary
rod theory which assumes a constant longitudinal displacement along the cross-section of a rod, and also
neglects any transverse deflection [15,16]. The real deformation of the rod is more complicated, and in broad
terms three distinct behaviours can be identified. The first is that the longitudinal displacement has a non-zero
mean value, the second is that the transverse deflection is nearly linear, and the third is that the longitudinal
displacement has an almost parabolic distribution. It means that higher order rod theories should have two
additional deformation modes—the transverse deflection and the parabolic longitudinal displacement along
the rod.

For developing the spectral elements with cracks the approach presented in Ref. [19] is used. In all cases the
crack is substituted by a dimensionless spring of flexibility y and is modelled by Castigliano’s theorem and the
laws of fracture mechanics [17]. Using the proposed spectral element with the crack allows one to analyse high
frequency excitation signals for low computational times, and with high numerical accuracy. Applying the
spectral element with the crack also allows the element stiffness and mass distribution to be modelled in a
better and more exact way in comparison with treating the crack as a boundary in itself. The facts mentioned
above are undoubtedly important features and may have a big influence on modern damage monitoring
techniques.

A procedure for creating the dynamic stiffness matrix for all the models is described in detail. Numerical
examples illustrate the wave propagation process in cracked rods for all the models developed. Results from
numerical calculations show considerable differences in the behaviour of longitudinal waves in cracked rods
for the modified rod theories. The above differences are a function of the frequency of the excitation signal.
2. Spectral elements for cracked rods

The spectral finite elements developed for a rod with a transverse open and non-propagating crack are based
on the theories presented in Ref. [19], and are given in Fig. 1. The elements are of length L and the cross-
sectional area is equal to A. The crack is replaced by a dimensionless spring with flexibility y, which is
calculated by using Castigliano’s theorem and laws of fracture mechanics. A detailed description is given next
in Section 2.1.
2.1. Flexibility at the crack location

The flexibility at the crack location for the spectral rod elements can be represented by means of
Castigliano’s theorem:

cij ¼
q2U

qSiqSj

ðfor i ¼ j ¼ 1Þ, (1)

where U denotes the elastic strain energy of the element caused by the presence of the crack and the S values
are independent nodal forces acting on the element.

The following relation can express the elastic strain energy due to the appearance of the crack,

U ¼
1

E

Z
A

K2
I dA, (2)

where A denotes the area of the crack and KI is a stress intensity factor corresponding to the first mode of the
crack formation [18].
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Fig. 1. Cracked spectral element models for the elementary and Love rod theories (a), for the Mindlin–Herrmann rod theory (b) and for

the three-mode rod theory (c).
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The stress intensity factor can be expressed as follows:

KI ¼
S1

A

ffiffiffiffiffiffi
pa
p

f
a
h

� �
, (3)

where a and h are defined in Fig. 2, and f is a correction function in the form as given by [18]

f
a
h

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðpa=2hÞ

pa=2h

s
0:752þ 2:02ða=hÞ þ 0:37½1� sinðpa=2hÞ�3

cosðpa=2hÞ

� �
. (4)

After simple transformations the flexibility of the elastic element modelling the cracked cross section of the
spectral rod finite element can be rewritten as

c ¼
2

Eb

Z ā

0

āf 2
ðāÞ dā, (5)

where ā ¼ a=h; ā ¼ a=h ; with the details given in Fig. 2.
In non-dimensional form the flexibility c can be expressed as

y ¼ EAc. (6)
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Fig. 2. Cross section of the rod at the crack location.

M. Krawczuk et al. / Journal of Sound and Vibration 295 (2006) 479–490482
2.2. Spectral rod element based on elementary and Love theories

A spectral rod element based on elementary rod theory has been developed by Palacz and Krawczuk [16]
and the spectral element for a cracked rod based on Love rod theory is shown in Fig. 1a. The element has two
nodes and one degree of freedom per node. The longitudinal displacement u0 can be expressed for the left and
right part of the element as follows:

û0;1 xð Þ ¼ A1e
�ikx þ B1e

�ikðL1�xÞ for x 2 0;L1ð Þ, (7)

û0;2ðxÞ ¼ A2e
�ikðL1þxÞ þ B2e

�ik½L�ðL1þxÞ� for x 2 0;L� L1ð Þ (8)

where k is the wavenumber stated in Eq. (7) in Ref. [19].
The constants A1, B1, A2 and B2 can be found using the following boundary conditions:
�
 for the left end of the element (x ¼ 0):

û0;1ðxÞ ¼ q̂1, (9)
�
 at the crack location (x ¼ L1 for û0;1ðxÞ and x ¼ 0 for û0;2ðxÞ):

û0;2ðxÞ � û0;1ðxÞ ¼ y
qû0;1ðxÞ

qx
, (10)

qû0;1ðxÞ

qx
¼

qû0;2ðxÞ

qx
, (11)
�
 for the right end of the element (x ¼ L– L1):

û0;2ðxÞ ¼ q̂2, (12)

where q1, q2 denotes nodal axial displacements.
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Taking Eqs. (7) and (8) into account and the boundary conditions given by Eqs. (9)–(12) the constants A1,

B1, A2 and B2 can be expressed as functions of the nodal displacements in the following manner:

A1

B1

A2

B2

2
6664

3
7775 ¼W�1

q̂1

0

0

q̂2

2
66664

3
77775, (13)

where

W ¼

1 e�ikL1 0 0

ð�1þ ikyÞe�ikL1 ð�1� ikyÞ e�ikL1 e�ikðL�L1Þ

�ike�ikL1 ik ike�ikL1 �ike�ikðL�L1Þ

0 0 e�ikL 1

2
6664

3
7775. (14)

Nodal forces are given by the following expressions:
�
 for the left end of the element (x ¼ 0):

F̂1 ¼ EA
qû0;1 xð Þ

qx
� n2rJo2 qû0;1 xð Þ

qx
, (15)
�
 for the right end of the element (x ¼ L– L1):

F̂2 ¼ EA
qû0;2 xð Þ

qx
� n2rJo2 qû0;2 xð Þ

qx
. (16)
The relationship between the nodal forces and the nodal displacements denotes the dynamic stiffness matrix
Kdyn of the spectral element for the cracked rod, and is given by

F̂ 1

F̂ 2

" #
¼ Kdyn

q̂1

q̂2

" #
, (17)

with

Kdyn ¼ ðEA� n2rJo2Þ
ik �ike�ikL1 0 0

0 0 �ike�ikL ik

" #
W�1. (18)
2.3. Spectral rod element based on Mindlin– Herrmann theory

The spectral element for a cracked rod based on Mindlin–Herrmann rod theory is presented in Fig. 1b. The
element has two nodes and two degrees of freedom per node. The longitudinal displacement u0 and rotation c0

can be expressed for the left and right part of the element as follows:

û0;1 ¼ A1R1e
�ik1x þ B1R2e

�ik2x � C1R1e
�ik1ðL1�xÞ �D1R2e

�ik2ðL1�xÞ for x 2 ð0;L1Þ;

ĉ0;1 ¼ A1e
�ik1x þ B1e

�ik2x þ C1e
�ik1ðL1�xÞ þD1e

�ik2ðL1�xÞ for x 2 ð0;L1Þ;

û0;2 ¼ A2R1e
�ik1ðL1þxÞ þ B2R2e

�ik2ðL1þxÞ � C2R1e
�ik1ðL�ðL1þxÞÞ

�D2R2e
�ik2ðL�ðL1þxÞÞ for x 2 ðL1;L� L1Þ;

ĉ0;2 ¼ A1e
�ik1ðL1þxÞ þ B2e

�ik2ðL1þxÞ þ C2e
�ik1ðL�ðL1þxÞÞ þD2e

�ik2ðL�ðL1þxÞÞ for x 2 ðL1;L� L1Þ;

(19)
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with

Ri ¼
ikilA

�ð2mþ lÞAk2
i þ rAo2

; i ¼ 1; 2; (20)

where k1 and k2 denote the wavenumbers, which are a solution of Eq. (24) from Ref. [19].
In order to calculate unknown constants A1, B1, C1, D1, A2, B2, C2 and D2 the following boundary

conditions are used:
�
 for the left end of the element (x ¼ 0):

û0;1ðxÞ ¼ q̂1; ĉ0;1ðxÞ ¼ q̂2, (21)
�
 at the crack location (x ¼ L1 for û0;1ðxÞ; ĉ0;1ðxÞ and x ¼ 0 for û0;2ðxÞ; ĉ0;2ðxÞ):

û0;2ðxÞ � û0;1ðxÞ ¼ y�
qû0;1ðxÞ

qx
þ lĉ0;1ðxÞ, (22)

ð2mþ lÞA
qû0;1ðxÞ

qx
þ lAĉ0;1ðxÞ ¼ ð2mþ lÞA

qû0;2ðxÞ

qx
þ lAĉ0;2ðxÞ, (23)

ĉ0;1ðxÞ ¼ ĉ0;2ðxÞ, (24)

qĉ0;1ðxÞ

qx
¼

qĉ0;2ðxÞ

qx
, (25)
�
 for the right end of the element (x ¼ L– L1):

û0;2ðxÞ ¼ q̂3; ĉ0;2ðxÞ ¼ q̂4, (26)
where q̂1; q̂3 denote the nodal axial displacements, q̂2; q̂4 are the nodal rotations, and y� ¼ cð2mþ lÞA:
Applying Eq. (19) and the boundary conditions given by Eqs. (21)–(26) the constants A1, B1, C1, D1, A2, B2,

C2 and D2 can be expressed as functions of the nodal displacements.
The nodal forces are given by the following formulas:
�
 for the left end of the element (x ¼ 0):

F̂1 ¼ ð2mþ lÞA
qû0;1ðxÞ

qx
þ lAĉ0;1ðxÞ;

F̂ 2 ¼ mIK1

qĉ0;1ðxÞ

qx

 !
;

(27)
�
 for the right end of the element (x ¼ L– L1):

F̂3 ¼ ð2mþ lÞA
qû0;2ðxÞ

qx
þ lAĉ0;2ðxÞ;

F̂ 4 ¼ mIK1

qĉ0;2ðxÞ

qx

 !
:

(28)

Then using the expressions for calculating constants A1, B1, C1, D1, A2, B2, C2 and D2 as functions of the
nodal displacements, the relation between the nodal forces and the nodal displacements can be obtained. The
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square, symmetric matrix in this relation denotes the dynamic stiffness matrix Kdyn of the cracked spectral
element based on the Mindlin–Herrmann rod theory.

2.4. Spectral elements based on three-mode rod theory

The spectral element for a cracked rod based on three-mode rod theory is given in Fig. 1c. The element has
two nodes and three degrees of freedom per node. The longitudinal displacement û0 and rotations ĉ0; f̂0 can
be expressed for the left and right part of the element as follows:

û0;1 ¼ A1R4e
�ik1x þ B1R5e

�ik2x þ C1R6e
�ik3x þD1R4e

�ik1ðL1�xÞ

þ E1R5e
�ik2ðL1�xÞ þ F 1R6e

�ik3ðL1�xÞ,

ĉ0;1 ¼ A1R1e
�ik1x þ B1R2e

�ik2x þ C1R3e
�ik3x �D1R1e

�ik1ðL1�xÞ

� E1R2e
�ik2ðL1�xÞ � F 1R3e

�ik3ðL1�xÞ,

f̂0;1 ¼ A1e
�ik1x þ B1e

�ik2x þ C1e
�ik3x þD1e

�ik1ðL1�xÞ

þ E1e
�ik2ðL1�xÞ þ F 1e

�ik3ðL1�xÞ,

û0;2 ¼ A2R4e
�ik1ðL1þxÞ þ B2R5e

�ik2ðL1þxÞ þ C2R6e
�ik3ðL1þxÞ þD2R4e

�ik1ðL�ðL1þxÞÞ

þ E2R5e
�ik2ðL�ðL1þxÞÞ þ F2R6e

�ik3ðL�ðL1þxÞÞ,

ĉ0;2 ¼ A2R1e
�ik1ðL1þxÞ þ B2R2e

�ik2ðL1þxÞ þ C2R3e
�ik3ðL1þxÞ �D2R1e

�ik1ðL�ðL1þxÞÞ

� E2R2e
�ik2ðL�ðL1þxÞÞ � F2R3e

�ik3ðL�ðL1þxÞÞ,

f̂0;2 ¼ A2e
�ik1ðL1þxÞ þ B2e

�ik2ðL1þxÞ þ C2e
�ik3ðL1þxÞ þD2e

�ik1ðL�ðL1þxÞÞ

þ E2e
�ik2ðL�ðL1þxÞÞ þ F2e

�ik3ðL�ðL1þxÞÞ, ð29Þ

with

Ri ¼ �
ð2mþ lÞIk2

i þ 5mA� rIo2

0:2083 imAh
; i ¼ 1; 2; 3;

Ri ¼ �
ikjlA

ð2mþ lÞAk2
j þ rAo2

Rj ; i ¼ 4; 5; 6; j ¼ 1; 2; 3;
(30)

where k1, k2 and k3 denote the wave numbers which are a solution of Eq. (38) in Ref. [19].
In order to calculate the constants A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2 and F2 the following boundary

conditions are used,
�
 for the left end of the element (x ¼ 0):

û0;1ðxÞ ¼ q1; ĉ0;1ðxÞ ¼ q2; f̂0;1ðxÞ ¼ q3, (31)
�
 at the crack location (x ¼ L1 for û0;1ðxÞ; ĉ0;1ðxÞ; f̂0;1ðxÞ and x ¼ 0 for û0;2ðxÞ; ĉ0;2ðxÞ; f̂0;2ðxÞ):

û0;2ðxÞ � û0;1ðxÞ ¼ y�
qû0;1ðxÞ

qx
þ lĉ0;1ðxÞ, (32)

ð2mþ lÞA
qû0;1ðxÞ

qx
þ lAĉ0;1ðxÞ ¼ ð2mþ lÞA

qû0;2ðxÞ

qx
þ lAĉ0;2ðxÞ, (33)

ĉ0;1ðxÞ ¼ ĉ0;2ðxÞ, (34)
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qĉ0;1ðxÞ

qx
� 24

f̂0;1ðxÞ

h

 !
¼

qĉ0;2ðxÞ

qx
� 24

f̂0;2ðxÞ

h

 !
, (35)

f̂0;1ðxÞ ¼ f̂0;2ðxÞ, (36)

qf̂0;1ðxÞ

qx
¼

qf̂0;2ðxÞ

qx
, (37)
�
 for the right end of the element (x ¼ L– L1):

û0;2ðxÞ ¼ q̂4; ĉ0;2ðxÞ ¼ q̂5; f̂0;2ðxÞ ¼ q̂6, (38)

where q̂1; q̂4 denote the nodal axial displacements, q̂2; q̂3; q̂5; q̂6 are the nodal rotations, and
y� ¼ cð2mþ lÞA:Eq. (29), and the boundary conditions given by Eqs. (31)–(38), can be used to derive the
constants A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2 and F2 , which can be expressed as functions of the nodal
displacements.

The nodal forces are given by the following:
�
 for the left end of the element (x ¼ 0):

F̂1 ¼ ð2mþ lÞA
qû0;1ðxÞ

qx
þ lAĉ0;1ðxÞ;

F̂2 ¼ mI
qĉ0;1ðxÞ

qx
� 24

f̂0;1ðxÞ

h

 !
;

F̂3 ¼
48
5
ð2mþ lÞI

qf̂0;1ðxÞ

qx
;

(39)
�
 for the right end of the element (x ¼ L– L1):

F̂4 ¼ ð2mþ lÞA
qû0;2ðxÞ

qx
þ lAĉ0;2ðxÞ;

F̂5 ¼ mI
qĉ0;2ðxÞ

qx
� 24

f̂0;2ðxÞ

h

 !
;

F̂6 ¼
48
5
ð2mþ lÞI

qf̂0;2ðxÞ

qx
:

(40)

By using the equations for constructing the constants A1, B1, C1, D1, E1, F1, A2, B2, C2, D1, E1 and F2 as
functions of the nodal displacements, the relation between the nodal forces and the nodal displacements can be
calculated. The square, symmetric matrix in this relation denotes the dynamic stiffness matrix Kdyn of the
cracked spectral element based on the three-mode rod theory.

3. Numerical examples

The main idea of the numerical calculations is to observe how waves propagate in a cracked rod for the
different rod theories discussed above. Results from the numerical calculations for the elementary, Love,
Mindlin–Herrmann, and three-mode rod theories are presented and discussed below.

All the numerical calculations were carried out for a cantilever steel rod. The rod was modelled by one
spectral element with a crack and one throw-off element (see Ref. [19] for details). The length of the rod is 4m,
the width 0.02m and the breadth 0.02m. The following material properties are utilised; Young’s modulus
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210GPa, Poisson ratio 0.3 and density 7850 kg/m3. In all the numerical examples the depth of the crack is
equal to 20% of the rod breadth.

The analysis was carried out by exciting two out of three signals, as in Ref. [19]. Referring to that paper, the
signal shapes in the time and frequency domains are given such that the (a) signal in Fig. 2 in the paper allows
the excitation of vibration modes at around 80 kHz, whereas with the (b) signal vibration modes at around
160 kHz can be analysed. The results of the analysis in Ref. [19] clearly show that the (b) signal should excite
all modes of vibration, for the theories that have been investigated.

This understanding is extended within Figs. 3–5 in this paper, and these present a comparison of the
reflected signals obtained for the rod with a crack modelled by all of the theories discussed in this paper. For a
better illustration of the differences in signals, the accelerations calculated for all the models were normalised
according to their maximum value. In all cases the crack was located 2m from the free end of the rod and
responses were calculated at the free end. The first plot denoted by (a) in Fig. 3 illustrates the differences in the
reflected signal obtained for elementary and Love rod theories excited with a lower frequency signal (refer to
Fig. 2a in Ref. [19]) while the second one in Fig. 3b shows the differences achieved for the same theories but
excited with a higher frequency signal (and refer to Fig. 2b in Ref. [19]). One can notice additional reflections
that are not present in Figs. 7, 8, and 13 of Ref. [19]. These come from the crack location, where the signal
divides into two parts; the first part reflects, and the second goes through the crack and reflects from the
clamped end. It may be seen that the differences are functions of the excitation signal frequency. The higher
the frequency is, the more reflections appear. Nevertheless the relative location of additional reflections from
the crack position is the same for both the excitation signal cases that were analysed.

Fig. 4 summarises a comparison of results obtained for the elementary and Mindlin–Herrmann rod
theories. The rod under analysis was excited with the same signals as used in Ref. [19]. The composition of the
plots is similar to that of Fig. 3. The differences between the responses are bigger than for the Love model,
especially for a higher frequency excitation signal. This is because the model based on the Mindlin–Herrmann
theory takes two vibration modes of wave propagation into account. This conclusion may lead to a more
optimal application by means of the Mindlin–Herrmann theory for the analysis of high frequency excitation
signals, mainly because the result obtained for the rod modelled with that theory shows that the wave
propagates faster. This is closer to the behaviour of real physical systems.

The last graphs presented here illustrate the differences between the responses obtained for the elementary
and three-mode rod theories. The interpretation is the same as for Figs. 3 and 4. As may be seen on the graph
of Fig. 5a, the responses obtained for the lower frequency signal for the elementary and three-mode theories
Fig. 3. Comparison of signals obtained for elementary and Love rod theories with lower frequency signal (a) and higher frequency

signal (b).
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Fig. 4. Comparison of signals obtained for elementary and Mindlin–Herrmann rod theories with lower frequency signal (a) and higher

frequency signal (b).

Fig. 5. Comparison of signals obtained for elementary and three-mode rod theories with lower frequency signal (a) and higher frequency

signal (b).
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do not differ significantly. On the other hand responses obtained for the higher frequency signal are definitely
not similar. This happens due to the fact that the three-mode theory allows the consideration of three
vibration modes. If the signal is of very high frequency, the numerical model for the analysis of such systems
must be based on proper theory. It should take into account all of the modes of the propagating signal.

4. Conclusions

This paper presents new spectral elements for a rod with a non-propagating transverse open crack, and
these elements can be utilised for effective wave propagation analysis. The novelty of the approach presented
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here is associated with using several different rod theories for modelling the element; namely the Love,
Mindlin–Herrmann and three-mode theories. For the analysis the spectral element method was utilised
because this method allows the modelling of a real cracked rod with one element when the geometry is not
affected. The procedure for calculating the dynamic stiffness matrix is developed for each theory respectively.

The paper presents a comparison of results obtained for two specific high frequency signals for each theory.
The differences between the responses are significant with an increasing excitation signal frequency. It was
shown that models based on the Mindlin–Herrmann and three-mode theories give more reliable results
because the signal with higher frequency propagates faster. With the elementary theory one cannot detect this
effect. An important conclusion is also related to the fact that a good damage position indicator may be
obtained from the relative distance between the reflections from the crack places and the element end. Then,
the differences in wave propagation speed noticed for the theories tested do not affect the general damage
detection method. That might be an indication for future work related to creating proper and adequate
damage identification criteria based on the differences in propagating waves.

Another important conclusion is that before choosing a proper model, analysis is required of the
wavenumbers for a specific material and geometry. When the excitation signal frequency does not excite the
higher modes the Love rod theory gives very good results. For excitation signal frequencies which excite higher
modes the Mindlin–Herrmann or the three-mode rod theory should be applied.
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