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Abstract

Dynamic stability of a rotating ring subjected to harmonic perturbations in input angular rate is examined using an

asymptotic approach. The governing equations that represent the transverse and tangential in-plane motion of the ring are

derived via Hamilton’s principle. The equations of motion, after discretization and suitable linearization, represent a two-

degree-of-freedom time-varying linear gyroscopic system. Such a system can exhibit instability behaviour characterized by

exponential growth in response amplitudes. Employing the method of averaging, conditions for instability are obtained in

closed-form. Instability boundaries for the ring in the excitation intensity-frequency space are then established for small

excitation amplitudes. In addition, effects of damping, input angular rate variations, and imperfection due to the ring

asymmetry are discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional angular rate sensors such as mechanical and fibre-optic/laser gyroscopes have been
traditionally used in applications where emphasis is placed on precise measurement of angular motion or
angular rate of a rotating body. These systems typically lead to large, expensive and mechanically/electrically
sophisticated packages [1]. Thus, an alternative technology using vibrating structures to provide gyroscopic
torque from Coriolis acceleration had received noticeable attention owing to the potential for mass production
of these devices via micromachining processes. In this class of devices, elements such as beams, tuning forks,
spring-mass, and thin rings have been used to represent the vibratory structural element. In recent years, ring-
type structures have gained much acceptance due to inherent advantages such as minimal drift to temperature
fluctuation, high sensitivity to rotation, and less sensitivity to environment vibrations [2,3]. In practice, when
these devices are mounted on a rotating body, they can be influenced by a harmonic perturbation of small
intensity due to fluctuations in the system itself and/or from the surrounding environment. The purpose of the
present study is to investigate the stability behaviour, taking this fluctuation into consideration.

A significant number of studies on dynamics of rotating rings have been performed in the recent past.
Huang and Soedel [4] studied the in-plane vibrations of rotating rings, and Eley et al. [5] performed a study on
the effects of Coriolis coupling between the in-plane and out-of-plane motions. Stability investigations on
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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different forms of rotating mechanical systems have also received notable attention. Stability analysis of a
linear gyroscopic system that represents the motion of a rotating beam was performed by Kammer and
Schlack [6]. In this paper, effects of periodic perturbation in the spin rate on the stability behaviour of the
system were studied by employing the Krylov–Bogoliubov–Mitropolsky (KBM) method, while Van Doorn
and Asokanthan [7] used the method of averaging for studying the stability of a rotating dual-spin spacecraft.
Natsiavas [8] investigated the stability of rotating thin circular rings subjected to parametric angular velocity
excitation. In this study, nonlinear effects were included, and instability regions for the case of combination
parametric resonance were established via the method of multiple time scales.

In the present study, an approximate form of the equations of motion is first obtained from a rotating ring
model developed by Huang and Soedel [4] assuming that the ring is perfectly symmetric. In practice, however,
the ring may not be perfectly symmetric, and the asymmetry causes differences in either or both the mass and
stiffness of the ring [5]. Hence, for more accurate predictions of dynamics and stability characteristics,
inclusion of the above effects is warranted. Although both mass and stiffness asymmetries are caused by
asymmetry of the ring, both terms affect the non-rotating ring natural frequencies. In order to demonstrate the
effect of ring asymmetry, inclusion of one of these terms is adequate. Hence, in the present study, only a
difference in the mass is assumed for simplicity. Also, in the present study, the input angular rate is considered
time varying, and as a result the centrifugal terms appear explicitly in the approximated model. Closed-form
stability conditions are obtained via the Method of Averaging, and these conditions when plotted in a suitable
parameter space give much insight on the stability behaviour. Instability regions in the excitation intensity-
frequency space are established and discussed for varying parameter values of damping and input angular rate
with the effects due to ring asymmetry included. It is envisaged that the results from the present study may be
used for improving the design of this class of devices, so that they can be used in applications that demand
high accuracy and sensitivity.

2. Equations of motion

The ring used for the present study is assumed to possess isotropic and homogeneous material properties,
and the transverse shear deformation effects are considered negligible based on the Bernoulli–Euler theory [9].
Fig. 1 illustrates the ring supported internally with eight springs. The support springs are considered to possess
significantly low stiffness and hence assumed not to have significant effects on the ring dynamics.
Fig. 1. Schematic of rotating ring with support springs.
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A body fixed frame, X�Y�Z, has been used for representing the angular motion of the ring with respect to
the inertial frame R, and the locations of the neutral surface elements in the rotational coordinates can be
defined by introducing curvilinear surface coordinates a1, a2, and a3. In Fig. 1, r represents the mean radius of
the ring and ur and uy represent, respectively, the transverse and circumferential displacements. This form of
arrangement is typical in the design of an angular rate sensor that uses a ring-type structural element.

Considering that the ring rotates about the z-axis with an angular rate, OðtÞ, and neglecting the rotary
inertia effects, the kinetic energy of the rotating ring can be expressed by

T ¼
rAr

2

Z 2p

0

vj j2 dy, (1)

where r represents the material density of the ring and A represents the cross-sectional area of the ring. The
amplitude square of the velocity, jvj2, for the ring element in the X�Y�Z frame can be written by

vj j2 ¼ ð _u2
r þ _u2

yÞ þ O2ðu2
y þ u2

r þ 2rur þ r2Þ þ 2Oð _uyur � _uruy þ r _uyÞ. (2)

In order to obtain an expression for the strain energy, a relationship between the strain and the
displacement can be written as follows [10]:

er ¼ 0; ey ¼ eo
y þ a3Ky, (3)

eo
y ¼

1

r

quy

qy
þ ur

� �
; Ky ¼

1

r

qb
qy
¼

1

r2
quy

qy
�

q2ur

qy2

� �
, (4)

where er and ey, respectively, represent the radial and tangential strain components. The change of curvature is
denoted by Ky and is related to the rotation angle b. The membrane strain is denoted by eo

y while the relative
location from the neutral surface is represented by a3. In addition, the strain caused by the centrifugal forces
that result from the ring rotation must be considered and can be expressed in the following form [4]:

ei
y ¼

1

2r2
ur þ

quy

qy

� �2

þ
qur

qy
� uy

� �2
" #

. (5)

The strain energy of the ring can now be formulated using the expressions for the strains given in Eqs. (3) and
(5):

U ¼ br

Z h=2

�h=2

Z 2p

0

1
2
syðey þ ei

yÞ þ si
yðey þ ei

yÞ
� �

dy da3, (6)

where h denotes the radial thickness while b denotes the axial thickness of the ring as illustrated in Fig. 1. The
normal stress component in the circumferential direction is denoted by sy while the normal stress caused by
the centrifugal force is denoted by si

y which is approximately equal to rr2O2 [11].
The equations that govern the in-plane motion of the ring can be derived via the Hamilton’s principle [10]

d
Z t1

t0

ðU � TÞdt ¼ 0, (7)

where d represents the variational symbol and time variables t0 and t1 are arbitrary. The equations of
motion are

�
EA

br2
ðu00y þ u0rÞ �

EI

br4
ðu00y � u000r Þ þ rhO2ð�2u0r � u00yÞ þ kyuy þ rh €uy þ _Our þ 2O _ur

� �
¼ 0, (8)

EA

br2
ðu0y þ urÞ �

EI

br4
ðu000y � u0000r Þ þ rhO2 2u0y � u00r

� �
þ krur þ rh €ur � _Ouy � 2O _uy

� �
¼ 0, (9)

where E represents the Young’s modulus, and the area moment of inertia of the ring cross section about its
neutral axis is expressed as I ¼ bh3=12. In Eqs. (8) and (9) the time derivatives are indicated by ð�Þ, while the
spatial derivatives are indicated by ð Þ0. It is worth noting that the rotational rate O is assumed to be time-
dependent in this study, and as a result the equations of motion include terms that contain the angular
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acceleration term _O. Due to the periodic nature of solutions, the circumferential (extensional) and radial
displacement can be assumed as follows:

urðy; tÞ ¼
X1
n¼0

q1ðtÞ cosðnyÞ þ q2ðtÞ sinðnyÞ
� �

, (10)

uyðy; tÞ ¼
X1
n¼0

q3ðtÞ cosðnyÞ þ q4ðtÞ sinðnyÞ
� �

; (11)

where the generalized coordinates, q1 and q2, represent flexural modes of the in-plane ring vibration while the
coordinates, q3 and q4, represent extensional modes of the in-plane ring vibration. It may be noted that in
vibratory angular rate sensor applications, only one of the second flexural modes is excited since it provides
the largest angular-shift due to external rate input [3]. Thus, the second flexural modes are chosen for
investigating natural frequency variation with the input angular rate and for performing stability analysis via
suitable modelling. The second in-plane flexural mode shapes and the associated generalized coordinates of a
ring are shown in Fig. 2. The two degenerate modal configurations are separated by 451 due to ring symmetry
as depicted in the figure. Also, reversal of the nodes and the anti-nodes associated with the two configurations
are illustrated in this figure. Utilizing an approximate relationship between the extensional and the flexural
modes [4], the four generalized coordinates can be reduced to two generalized coordinates that are associated
with the flexural modes of the in-plane ring vibration:

q3 ¼ �ð1=nÞq1; q4 ¼ ð1=nÞq2, (12)

where n represents the mode number which in the present case is equal to a value 2 and the discretized
equation of motion in the flexural coordinate vector q ¼ q1 q2

� �T
is derived by

M€qþ ðGþDÞ_qþ Kq ¼ 0. (13)

In Eq. (13), the system matrices can be expressed by

M ¼
1 0

0 1þ dm

" #
; G ¼

0 �2Og

2Og 0

" #
,

D ¼
2zoo1 0

0 2zoo2

" #
; K ¼

k1 þ k2O2 � _Og
_Og k1 þ k2O2

" #
, (14)

with

g ¼
ð ~bþ n2 ~aÞ

nð ~aþ ~bÞ
; k1 ¼

~b~c� n2 ~a2

rAð ~aþ ~bÞ
; k2 ¼

n2ð ~bþ ~c� 4 ~aÞ

~aþ ~b
�
ð2þ n2Þð ~b~c� n2 ~aÞ

ð ~aþ ~bÞ2
,

Fig. 2. Second flexural mode shapes of a ring: K, node; , anti-node; � – � –, nodal line.
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~a ¼ n2 EI

r4
þ

EA

r2
; ~b ¼ n2 EI

r4
þ

EA

r2

� �
; ~c ¼ n4 EI

r4
þ

EA

r2
; n ¼ 2,

where M is the mass matrix in which a mass mismatch dm is added to represent the ring asymmetry, G is the
skew-symmetric gyroscopic matrix which results from Coriolis acceleration, D is the damping matrix, and K is
the stiffness matrix. The matrices M, D, and K are symmetric. The approximated parameters g, k1, and k2 are
constant values that depend on the mode number n and the physical properties of a ring. In the Damping
matrix, z represents the damping ratio, and oo1 and oo2, respectively, represent non-rotating ring fundamental
natural frequencies that are associated with the flexural generalized coordinates q1 and q2. Further details of
derivation of the equations can be found in the paper by Huang and Soedel [4].

3. Stability analysis

For the purpose of investigating the stability of a rotating ring subjected to periodic perturbation in the
angular rate, the input angular rate is assumed to take the form:

OðtÞ ¼ Ōð1þ m cos ntÞ; 0om51, (15)

where Ō is the amplitude of the input angular rate, m represents the small dimensionless amplitude of
fluctuation, and n represents the frequency of the imposed periodic excitation. For the purpose of investigating
the stability behaviour in a small neighbourhood around certain critical frequency oo, the excitation frequency
is written in the form

n ¼ o0ð1� lÞ; lj jp1, (16)

where l denotes a detuning parameter. When the system is under the specified periodic excitation, the motion
of the rotating ring can be represented by a parametrically excited gyroscopic system. It is known that closed
form solutions for this class of systems are not available. However, asymptotic methods such as the method of
multiple scales [12], and the method of averaging [13] can be employed to construct asymptotic solutions. The
method of averaging has been successfully employed for studying stability of rotating mechanical systems that
are of a similar class [7]. Before performing any analytical stability analysis, it is first necessary to decouple the
equations of motion, which are coupled via the gyroscopic and stiffness terms. It is known that the skew-
symmetric gyroscopic coupling in the equations cannot be removed using the classical point transformation. A
contact transformation [7] is used in the present paper to decouple the system, and for this purpose, the
equations are formulated in the Hamiltonian form.

To this end, Eq. (13) is rearranged to the following form:

M€qþGc _qþ Kcq ¼ Fðq; _q; tÞ (17)

with

F ¼ �D_q� f cðtÞðĜc _qþ K̂cqÞ � nf sðtÞK̂sq; f cðtÞ ¼ cos nt; f sðtÞ ¼ sin nt,

where Gc, Ĝc, Kc, K̂c, and K̂s contain the time-invariant portion of G and K matrices, and the right-hand side
of Eq. (17) contains smaller amplitude excitation and the damping terms which are considered small. Now, by
letting the right-hand side to be zero, the homogeneous equation can be obtained by

M€qþGc _qþ Kcq ¼ 0. (18)

Since the mass matrix M is positive definite, the corresponding Hamiltonian function H can be formulated
using the generalized coordinate vector q and by introducing the momentum conjugate vector P. A set of first-
order Hamilton’s equations that are equivalent to the original second-order form can be obtained in terms of
the variable �u where �u ¼ ½ q p �T [7]. A contact transformation of the form �u ¼ T � �v can then be employed to
decouple the system of equations that are now expressed in terms of the transformed variable �v that contains
the transformed generalized coordinate vector, Q, and the momentum conjugate vector, P. The transformed
equations are

�v0 ¼ JĤ
o
�vþ ½lJĤ

o
�Do � Ao cos t� B sin t��v; �v ¼ ½Q P�T, (19)
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where the non-dimensional time, t ¼ nt, is introduced for simplicity, and the prime denotes differentiation
with respect to non-dimensional time t. The system matrices associated with Eq. (19) are derived to be

Ĥ
o
¼ diagfK1;K2;K1;K2g and Ki ¼ oi=o0 ði ¼ 1; 2Þ,

Do ¼ ðT�1 ~DJHTÞ=o0; Ao
¼ ðT�1 ~̂GcJHTþ T�1 ~̂KcTÞ=o0; B ¼ T�1 ~̂KsT,

J ¼
0 I

�I 0

� �
; ~D ¼

0 0

D 0

� �
; ~̂Gc ¼

0 0

Ĝc 0

" #
; ~̂Kc ¼

0 0

K̂c 0

" #
; ~̂Ks ¼

0 0

K̂s 0

" #
,

where the terms oi (i ¼ 1,2) represent the rotating ring natural frequencies that are associated with the flexural
generalized coordinates q1 and q2. Martices I and 0 represent, respectively, 2� 2 identity matrix and null
matrix, while T denotes the transformation matrix. The details of the elements of matrices T, Do, Ao, and B are
given in Appendix A.

Since the method of averaging requires the system equations to be expressed in terms of the amplitude and
phase variables, generalized coordinates Q and momentum vector P in Eq. (19) are transformed to amplitude
and phase variables aðtÞ and fðtÞ via:

Qi ¼ aiðtÞ sin FiðtÞ; Pi ¼ aiðtÞ cos FiðtÞ; FiðtÞ ¼ Kitþ fiðtÞ; i ¼ 1; 2. (20a,b)

After this transformation procedure, the equations in the so called ‘‘standard form’’ can be expressed by

a0i ¼ gi sin Fi þ gðiþ2Þ cos Fi, (21a)

aif
0
i ¼ lKiai þ gi cos Fi � gðiþ2Þ sin Fi; i ¼ 1; 2, (21b)

where

gk ¼
X2
l¼1

�½Do
klal sin Fl þDo

kðlþ2Þal sin Fl �

n
� cos t½Ao

klal sin Fl þ Ao
kðlþ2Þal sin Fl �

� sin t½Bklal sin Fl þ Bkðlþ2Þal sin F l �

o
; k ¼ i; i þ 2. ð22Þ

Since Eqs. (21) are exactly equivalent to Eq. (17), by applying an averaging operator

Mð�Þ ¼ lim
T!1

1

T

Z tþT

t
ð�Þdt, (23)

the averaged amplitude and phase valuables can be obtained, where it is understood that the integration is
performed over explicit time t for one period T [13]. Examination of the averaged equations indicate that the
stability of the solutions depends on whether or not the excitation frequency n is in the neighbourhood of
certain critical frequencies. Omitting the higher-order resonances that are not of significance [14], in the
present study the method averaging was performed for three different cases.

3.1. Case I—non-resonance

The stability of solutions is examined for the conditions of Kiað1=2Þ and Ki � Kj

		 		a1 (i; j ¼ 1; 2) iaj.
Applying the averaging operator M to Eqs. (21), a set of averaged equations can be obtained as follows:

ā0i ¼ �
āi

2
Do

ii þDo
ðiþ2Þðiþ2Þ


 �
; f̄0i ¼ lKi �

1

2
Do

iðiþ2Þ �Do
ðiþ2Þi


 �
; i ¼ 1; 2, (24a,b)

Now inserting Eqs. (26) into Eq. (22), and then solving for Q and P results in

Qi ¼ āiC e
�1
2

Do
ii
þDo
ðiþ2Þðiþ2Þ


 �
t
sin oit�

1

2
Do

iðiþ2Þ �Do
ðiþ2Þi


 �
tþ f̄iC

� �
, (25a)
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Pi ¼ āiCe
�1
2

Do
ii
þDo
ðiþ2Þðiþ2Þ


 �
t
cos oit�

1

2
Do

iðiþ2Þ �Do
ðiþ2Þi


 �
tþ f̄iC

� �
; i ¼ 1; 2, (25b)

where āiC and f̄iC are arbitrary constants. When the non-dimensional time t approaches infinity, the variables
Qi and Pi approach zero meaning that the system is stable. Hence, in the non-resonance case, the periodic
parametric excitation cannot lead the system into instability.

3.2. Case II—sub-harmonic resonance

Under the sub-harmonic resonance conditions, Ki ¼ 1=2 (o0 ¼ 2oi, i ¼ 1; 2), the stability of the solution is
examined by employing the averaged equations:

ā0i ¼ āi Zi þ
1
2

Ui sin 2f̄i þ
1
2

V i cos 2f̄i

� �
, (26a)

f̄0i ¼ lKi þ �
1
2

V i sin 2f̄i � ð�1Þ
i1
2

Ui cos 2f̄i

� �� 

; i ¼ 1; 2 (26b)

where

Zi ¼ �
1

2
Do

ii þDo
ðiþ2Þðiþ2Þ


 �
; Ui ¼ �

1

2
Ao

iðiþ2Þ þ Ao
ðiþ2Þi þ Bii � Bðiþ2Þðiþ2Þ


 �
,

Vi ¼ �
1

2
�Ao

ii þ Ao
ðiþ2Þðiþ2Þ þ Biðiþ2Þ þ Bðiþ2Þi


 �
; i ¼ 1; 2.

In order to investigate the stability of solutions of Eqs. (21), new variables, xi and yi, are introduced via:

xi ¼ āi cos f̄i; yi ¼ āi sin f̄i; i ¼ 1; 2.

Solutions of the form ert are now sought which yields the characteristic equation for the exponent r as

r2 � 2Zirþ
1

4
l2 � V2

i �U2
i þ 4Z2

i

� �
¼ 0; i ¼ 1; 2. (27)

The system will be unstable when r1;240, and hence from Eq. (27), closed form instability conditions can be
derived by

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

i þU2
i � 4Z2

i

q
o

n
o0

o1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

i þU2
i � 4Z2

i

q
; o0 ¼ 2oi; i ¼ 1; 2. (28)

3.3. Case III—combination resonance

Applying the average operator for the sum-type combination resonance case, K2 þ K1j j ¼ 1,
(o0 ¼ o2 þ o1), the system Eqs. (21) are averaged to a set of four coupled first-order differential equations
in the amplitudes and phase:

ā01 ¼ Z1ā1 þ
1
2
ā2U3 sinðf̄2 þ f̄1Þ þ

1
2

ā2V 3 cosðf̄2 þ f̄1Þ
� �

, (29a)

ā02 ¼ Z2ā2 þ
1
2

ā1U4 sinðf̄2 þ f̄1Þ þ
1
2

ā1V 4 cosðf̄2 þ f̄1Þ
� �

, (29b)

ā1f̄
0

1 ¼ lK1ā1 þ �
1
2

ā2V3 sinðf̄2 þ f̄1Þ þ
1
2

ā2U3 cosðf̄2 þ f̄1Þ
� �

, (29c)

ā2f̄
0

2 ¼ lK2ā2 þ �
1
2

ā1V4 sinðf̄2 þ f̄1Þ þ
1
2

ā1U4 cosðf̄2 þ f̄1Þ
� �

, (29d)

where

U3 ¼ �
1
2
ðAo

14 þ Ao
32 þ B12 � B34Þ; U4 ¼ �

1
2
ðAo

23 þ Ao
41 þ B21 � B43Þ,

V3 ¼ �
1
2
ð�Ao

12 þ Ao
34 þ B14 þ B32Þ; V4 ¼ �

1
2
ð�Ao

21 þ Ao
43 þ B23 þ B41Þ.
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Employing a transformation in the complex plane, Eqs. (29), can be decoupled [14], and then by seeking the
solutions of the form ert, the characteristic equation is obtained. In the absence of damping this equation takes
the form

ðr� jlK1Þðrþ jlK2Þ �
1

2

� �2

ðV 3 þ jU3ÞðV 4 � jU4Þ ¼ 0. (30)

By setting r1;240 for system instability, the closed form instability conditions are obtained as follows for the
undamped case:

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV3V4 þU3U4Þ � jðU3V 4 � V 3U4Þ

p
o

n
o0

o1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV3V4 þU3U4Þ � jðU3V 4 � V3U4Þ

p
. (31)

Now, if damping is introduced in the system, the characteristic equation becomes

r2 � ðZ1 þ Z2 � jlK2 þ jlK1Þrþ ðZ1 þ jlK1ÞðZ2 � jlK2Þ �
1

2

� �2

ðU3U4Þ ¼ 0. (32)

Then, the instability condition for the damped case can be expressed by

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3U4

ðZ1 þ Z2Þ
2

4Z1Z2
� ðZ1 þ Z2Þ

2

s
o

n
o0

o1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3U4

ðZ1 þ Z2Þ
2

4Z1Z2
� ðZ1 þ Z2Þ

2

s
. (33)

Similarly, for the case of difference-type combination resonance, jK2 � K1j ¼ 1ðo0 ¼ o2 � o1Þ, by applying
the same procedure, the instability conditions for the undamped case,

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVo

3Vo
4 þUo

3Uo
4Þ � jðUo

3V
o
4 � Vo

3Uo
4Þ

p
o

n
o0

o1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVo

3Vo
4 þUo

3U
o
4Þ � jðUo

3V
o
4 � Vo

3Uo
4Þ

p
(34)

and for the damped case,

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uo

3Uo
4

ðZ1 þ Z2Þ
2

4Z1Z2
� ðZ1 þ Z2Þ

2

s
o

n
o0

o1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uo

3U
o
4

ðZ1 þ Z2Þ
2

4Z1Z2
� ðZ1 þ Z2Þ

2

s
(35)

are obtained, where

Uo
3 ¼ �

1

2
ð�Ao

14 þ Ao
32 � B12 � B34Þ; Uo

4 ¼ �
1

2
ðAo

23 � Ao
41 � B21 � B43Þ,

Vo
3 ¼ �

1

2
ðAo

12 þ Ao
34 � B14 þ B32Þ; V o

4 ¼ �
1

2
ðAo

21 þ Ao
43 þ B23 � B41Þ. ð36Þ

For a set of system parameters, the conditions given by Eqs. (28), (31), (33), (34) and (35) are computed so that
the onset of angular rate sensor instabilities can be characterized.

4. Results and discussion

In order to illustrate the applicability of the analytical results, typical parameters associated with a ring-type
angular sensor are considered. The parameters of a micromachined ring used are shown in Table 1. In the
present study, it is assumed that the ring is fabricated of nickel which has isotropic material properties.
Table 1

Ring parameters for numerical calculations

Density (Nickel) r ¼ 8800kg=m3

Young’s modulus (Nickel) E ¼ 210� 109 N=m2

Mean radius r ¼ 500mm
Radial thickness h ¼ 12:5mm
Axial thickness b ¼ 30mm
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Owing to the speed-dependent gyroscopic coupling and system stiffness, it is known that bifurcations of
natural frequencies can take place. In order to illustrate this effect, the second flexural mode is considered and
the variations of the corresponding natural frequencies with input angular rate are depicted in Fig. 3. As a
result of an assumed mass mismatch, dm, of 0.01%, it can be observed that the natural frequencies associated
with a non-rotating ring system (i.e., input angular rate is zero) are not identical: o01 ¼ 1:8918� 105 ðrad=sÞ
and o02 ¼ 1:8919� 105 ðrad=sÞ. It may be noted that this natural frequency variation with the input angular
rate as described above is essential for stability investigation since the instability regions are investigated near
certain combinations and multiple of these system natural frequencies.

Assuming a presence of a small mass mismatch ðdma0Þ, and absence of damping ðz ¼ 0Þ in the system, the
instability conditions obtained from Eqs. (28), (31) and (34) are plotted in the excitation frequency-amplitude
space ðn� mÞ in Fig. 4. It may be noted that m represents the small dimensionless amplitude of fluctuation, and
n represents the frequency of the imposed periodic excitation. The hatched parts represent the unstable regions
and the clear parts illustrate the stable regions. It can be seen that the instability region associated with the
sum-type combination resonance, jK2 þ K1j ¼ 1 (o0 ¼ o2 þ o1), obtained from Eqs. (31) is relatively larger
than the regions associated with the sub-harmonic resonances, Ki ¼ 1=2 (o0 ¼ 2oi, i ¼ 1; 2), obtained
from Eq. (28). Also, it may be noted that with the presence of some mass mismatch in the system, employing
Eq. (34) no instability region is found to exist for the difference-type combination resonance,
jK2 � K1j ¼ 1ðo0 ¼ o2 � o1Þ. When the ring is assumed to be perfect, i.e., dm ¼ 0, instability regions do
not exist as mentioned in the study of Kammer and Schlack [6].

The plots in Fig. 5 illustrate the variations of the instability regions when damping is considered. As
damping increases, the instability regions shift upwards in both the sub-harmonic and combination resonance
cases, which results in a more stable system. However, the damped instability region in the case of sub-
harmonic resonance appears narrower than the region associated with the corresponding undamped system as
shown in Fig. 5(a), while in the case of the combination resonance, the damped instability region is wider as
the region shifts upward as depicted in Fig. 5(b). Further, for the undamped system the instability regions for
the sum-type combination resonance case can be obtained using Eq. (31), which is derived for the case of z ¼ 0
and from Eq. (33) when the damping ratio approaches zero, i.e., limz!0Ziði ¼ 1; 2Þ. As shown in Fig. 5(b),
these two regions differ and the difference is illustrated by introducing a quasi-stabile region for the latter case.
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Fig. 3. Natural frequency variations for a rotating ring with non-zero mass mismatch (dma0).
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It may be noted that this phenomenon is only observable for the combination resonance case. Generally, the
damping in the micromachined gyros is generated from air and heat: air-damping and thermoelastic damping
affect the resonant frequency and quality factor. Although it is known that elimination of damping increases
the quality factor of the gyro, the presence of damping provides larger stable region thus stabilizing the
gyroscopic system.

In order to examine the effects the input angular rate and the mass mismatch have on the stability, the
variation of the associated regions with respect to the above two parameters are plotted. Figs. 6(a) and (b)
clearly illustrate that widening of regions take place with increasing angular rates and increasing mass
mismatch.
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For the choice of parameters considered in this paper, the instability behaviour predicted from the present
analysis clearly demonstrate the use of this analysis in the design of this class of devices. It may be noted that
the material used in this study is nickel since it is the most common choice until now. However, recent efforts
are going into producing structures using polysilicon which is known to have a certain degree of anisotropy.
Hence, future stability analyses will need to incorporate this property if accurate instability predictions are
warranted.
5. Conclusions

Dynamic stability analysis for a micromachined ring-type structure subjected to base rotation with periodic
perturbations is performed. The angular motion of the ring affects not only the gyroscopic coupling but also
the variation of the stiffness. Method of averaging has been employed for deriving the instability conditions in
closed-form. These conditions predict the onset of instability behaviour characterized by exponential growth
in response amplitudes, and are illustrated by plotting the instability regions in the excitation frequency-
excitation amplitude space. If the mass mismatch in the ring is considered, instability regions are observed
when the excitation frequencies are near the sub-harmonic or sum-type combination resonance frequencies. In
the case of no mass mismatch, instability regions do not exist. Instability regions associated with the damped
systems are found to be narrower in the case of sub-harmonic resonance and wider in the case of the
combination resonance. In addition, in all cases considered, the instability regions are observed to become
wider with increasing input angular rates and mass mismatch. The understanding of the instability behaviour
as predicted in the present study is expected to result in a better insight into the dynamic behaviour associated
with angular rate sensors that are of the rotating ring-type.
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Appendix A. System matrices

The system matrices are evaluated to be

Do ¼
1

o0

D11 D12 0 0

D21 D22 0 0

0 0 D33 D34

0 0 D43 D44

2
666664

3
777775; Ao

¼
1

o0

0 0 A13 A14

0 0 A23 A24

A31 A32 0 0

A41 A42 0 0

2
666664

3
777775,

B ¼

B11 B12 0 0

B21 B22 0 0

0 0 B33 B34

0 0 B43 B44

2
666664

3
777775; T ¼

X11
N1

X21
N2

0 0

0 0
Y11
N1

Y21
N2

0 0
Y12
N1

Y22
N2

X12
N1

X22
N2

0 0

2
666666664

3
777777775
,

Ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xT

i Jyi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X i1Y i2 � X i2Y i1

p
ði ¼ 1; 2Þ,

where xi ¼ X i1 0 0 X i2

� �T
and yi ¼ 0 Y i1 Y i2 0

� �T
represent, respectively, real and imaginary parts

of the eigenmodes of Eq. (18). The other components of the matrices can be written by

D11 ¼
2zo02ðgŌX 11X 21 � X 12X 21Þ

ð1þ dmÞL
; D12 ¼

2zo02ðgŌX 2
21 � X 21X 22Þ

ð1þ dmÞL
N1

N2
,

D21 ¼ �
2zo02ðgŌX 2

11 � X 11X 12Þ

ð1þ dmÞL
N2

N1
; D22 ¼ �

2zo02ðgŌX 11X 21 � X 11X 22Þ

ð1þ dmÞL
,

D33 ¼ �
2zo01ðgŌY 11Y 21 þ Y 12Y 21Þ

G
; D34 ¼ �

2zo01ðgŌY 2
21 þ Y 21Y 22Þ

G
N1

N2
,

D43 ¼
2zo01ðgŌY 2

11 þ Y 11Y 12Þ

G
N2

N1
; D44 ¼

2zo01ðgŌY 11Y 21 þ Y 11Y 22Þ

G
,

A13 ¼ �2mŌ
ðg2 þ k2ÞŌX 21Y 11 þ gX 21Y 12

L
; A14 ¼ �2mŌ

ðg2 þ k2ÞŌX 21Y 21 þ gX 21Y 22

L

� �
N1

N2
,

A23 ¼ 2mŌ
ðg2 þ k2ÞŌX 11Y 11 þ gX 11Y 12

L

� �
N2

N1
; A24 ¼ 2mŌ

ðg2 þ k2ÞŌX 11Y 21 þ gX 11Y 22

L
,

A31 ¼ �2mŌ
gðgŌY 21X 11 � Y 21X 12Þ

ð1þ dmÞG
þ

k2ŌY 21X 11

G

� �
,

A32 ¼ �2mŌ
gðgŌY 21X 21 � Y 21X 22Þ

ð1þ dmÞG
þ

k2ŌY 21X 21

G

� �
N1

N2
,

A41 ¼ 2mŌ
gðgŌY 11X 11 � Y 11X 12Þ

ð1þ dmÞG
þ

k2ŌY 11X 11

G

� �
N2

N1
,

A42 ¼ 2mŌ
gðgŌY 11X 21 � Y 11X 22Þ

ð1þ dmÞG
þ

k2ŌY 11X 21

G

� �
,
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B11 ¼ m
gŌX 21X 11

L
; B12 ¼ m

gŌX 2
21

L
N1

N2
; B21 ¼ �m

gŌX 2
11

L
N2

N1
; B22 ¼ �m

gŌX 21X 11

L
,

B33 ¼ �m
gŌY 21Y 11

G
; B34 ¼ �m

gŌY 2
21

G
N1

N2
; B43 ¼ m

gŌY 2
11

G
N2

N1
; B44 ¼ m

gŌY 21Y 11

G
,

L ¼ X 11X 22 � X 12X 21; G ¼ Y 11Y 22 � Y 12Y 21.
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