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Abstract

This paper deals with a semi-analytical finite element (SAFE) method for modeling wave propagation in waveguides of

arbitrary cross-section. The method simply requires the finite element discretization of the cross-section of the waveguide,

and assumes harmonic motion along the wave propagation direction. The general SAFE technique is extended to account

for viscoelastic material damping by allowing for complex stiffness matrices for the material. The dispersive solutions are

obtained in terms of phase velocity, group velocity (for undamped media), energy velocity (for damped media),

attenuation, and cross-sectional mode shapes. Knowledge of these properties is important in any structural health

monitoring attempt that uses ultrasonic guided waves. The proposed SAFE formulation is applied to several examples,

including anisotropic viscoelastic layered plates, composite-to-composite adhesive joints and railroad tracks.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Guided ultrasonic waves provide a highly efficient method for the non-destructive evaluation (NDE) and
the structural health monitoring (SHM) of solids with finite dimensions. Compared to ultrasonic bulk waves,
guided waves provide larger monitoring ranges and the complete coverage of the waveguide cross-section.
Compared to global vibrations, guided waves provide increased sensitivity to smaller defects due to the larger
frequencies. These advantages can be fully exploited only once the complexities of guided wave propagation
are unveiled and managed for the given test structure. These complexities include the existence of multiple
modes, the frequency-dependent velocities (dispersion), and the frequency-dependent attenuation. For
example, the knowledge of the wave velocity is important for mode identification. Similarly, the knowledge of
those mode–frequency combinations propagating with minimum attenuation losses helps maximizing the
inspection coverage.

Semi-analytical finite element (SAFE) methods, also referred to in the literature as spectral or waveguide
finite element methods, have emerged for modeling the guided wave propagation numerically as an alternative
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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to the ‘‘exact’’ methods based on the superposition of bulk waves—SPBW, that include the popular matrix-
based methods [1]. Motivations for the numerical methods include the necessity for modeling a large number
of layers such as composite laminates and that of modeling waveguides with arbitrary cross-section for which
exact solutions do not generally exist. In addition, when complex wavenumbers are part of the solution such as
in the case of leaky and/or damped waveguides, the exact SPBW methods require iterative bi-dimensional
root-searching algorithms that may miss some of the solutions [1].

The general SAFE approach for extracting dispersive solutions uses a finite element discretization of the cross-
section of the waveguide alone. The displacements along the wave propagation direction are conveniently
described in an analytical fashion as harmonic exponential functions. Thus only a bi-dimensional discretization
of the cross-section is needed, with considerable computational savings compared to a 3-D discretization of the
entire waveguide. The SAFE solutions are obtained in a stable manner from an eigenvalue problem, and thus do
not require the root-searching algorithms used in SPBW approaches. In addition, since polynomial
approximation of the displacement field along the waveguide is avoided, the method is applicable to predicting
waves with very short wavelengths, where a traditional 3-D approximation may fail.

A SAFE method for waveguides of arbitrary cross-section was demonstrated for the first time in 1973 [2,3].
In these works dispersive solutions were obtained for the propagative modes only (i.e. real wavenumbers
only). The same technique was used a decade later [4] to calculate both propagative modes and
nonpropagative, evanescent modes (complex wavenumbers) for anisotropic cylinders. While the evanescent
modes do not transport any energy along the structure, they are important from a theoretical viewpoint to
satisfy the boundary conditions. More recently, SAFE methods confined to obtaining the propagative
solutions were applied to thin-walled waveguides [5], railroad tracks [6] and wedges [7]. An approximation of
the method in Refs. [5,6] was also implemented in a standard finite element package by imposing a cyclic axial
symmetry condition [8]. An extension can be found in Ref. [9] which examined waveguides immersed in water.
Other versions of the general SAFE method, again for the propagative modes, were applied to
nonhomogeneous anisotropic beams [10], rods and rails [11]. Both propagative and evanescent modes in
twisted waveguides were studied by SAFE methods in Ref. [12]. Reflection phenomena from the end of a
waveguide were studied in Ref. [13]. Modes in built-up thin-walled structures, including a channel beam and a
plate in a wind tunnel, were examined in Ref. [14]. In this work an interesting formulation was presented for
obtaining the group velocity values from the individual solutions of the SAFE eigenproblem. This is
advantageous compared to the incremental calculations that are required in the conventional derivation of the
group velocity defined as cg ¼ qo=qx (o is the frequency and x is the wavenumber). Laminated composite
waveguides were studied by SAFE methods for the first time in Ref. [15] and, subsequently, in Refs. [16,17] for
laminated plates of both finite and infinite widths.

The focus of previous SAFE works was obtaining propagative and evanescent modes in undamped
waveguides. A need exists to extend this technique to account for material damping. One very recent work [18]
demonstrates a SAFE application to damped, viscoelastic composite laminates. In this reference a damping
loss factor was estimated indirectly from the power dissipated by the wave. However, the formulation in Ref.
[18] still does not allow for the calculation of the true wave attenuation since the governing stiffness matrix was
assumed real. In Ref. [19], another damping loss factor was considered in a complex formulation for the
material’s Young’s modulus. The focus of this reference was on global dynamic behavior of plate systems
rather than ultrasonic guided waves.

The present study extends the SAFE method for modeling dispersive solutions in waveguides of arbitrary
cross-sections by accounting for material damping. This extension is particularly relevant for NDE/SHM
applications on high-loss materials such as viscoelastic fiber-reinforced polymer composites. When accounting
for damping, the exact energy velocity, rather than the conventional group velocity, is calculated along with
the frequency-dependent attenuation of the modes. Various examples are shown, including isotropic plates,
composite laminates, composite-to-composite adhesive joints and railroad tracks.

2. Viscoelastic models for wave propagation

This section reviews the linear viscoelastic models that were used in the SAFE formulation proposed in the
present work. As well known, for time harmonic motion e�iot, linear viscoelasticity can be modeled by
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allowing complex components in the material’s stiffness matrix

~C ¼ C0 � iC00 (1)

where C0 contains the storage moduli and C00 contains the loss moduli.
In practice, the matrix ~C can be expressed as a combination of the elastic stiffness tensor, C, and the

viscosity tensor, g:

C ¼

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

Sym: C66

26666666664

37777777775
; g ¼

Z11 Z12 Z13 Z14 Z15 Z16
Z22 Z23 Z24 Z25 Z26

Z33 Z34 Z35 Z36
Z44 Z45 Z46

Z55 Z56
Sym: Z66

26666666664

37777777775
. (2)

The coefficients of the viscosity tensor are typically measured at a single-frequency value, f (characterization
frequency).

The Kelvin–Voigt model and the hysteretic model, both well-established in ultrasonic NDE, were
considered in this study to represent material damping. In the Kelvin–Voigt model [20,21] the imaginary
component of the stiffness matrix in Eq. (1) is frequency-dependent as C00 ¼ og. The complex stiffness
coefficients at a generic frequency, f, can be obtained by opportunely scaling the viscoelastic tensor coefficients
that are given at the characterization frequency, f :

~C ¼ C0 � i
o
o

g ¼ C0 � i
f

f
g. (3)

In the hysteretic model [20] the complex component of the stiffness matrix is independent of frequency, thus

~C ¼ C0 � ig. (4)

As a consequence, the hysteretic stiffness matrix has to be determined only once for the entire frequency range
examined.

The wave attenuation, defined as the loss per unit distance traveled, is commonly modeled as proportional
to the frequency times the imaginary part of the stiffness matrix C00 [20]. From Eqs. (3)–(4), the attenuation is a
quadratic function of the frequency in the case of the Kelvin–Voigt model, and a linear function of the
frequency in the case of the hysteretic model. It is also evident that both models predict the same attenuation
at the characterization frequency f . The difference between the models becomes increasingly significant as the
working frequency differs from the characterization frequency, with the Kelvin–Voigt model resulting in a
smaller attenuation than the hysteretic model below f , and in a larger attenuation above f .

3. SAFE mathematical framework

3.1. Problem definition

The mathematical model is presented here for the case of a waveguide immersed in vacuum, as shown in
Fig. 1(a). This figure refers to an infinitely wide plate; however, the formulation is applicable to arbitrary
cross-sections. The wave propagates along direction x with wavenumber x and frequency o. The cross-section
lies in the y–z plane. The waveguide can generally be composed of anisotropic viscoelastic materials. The
harmonic displacement, stress and strain field components at each point of the waveguide are expressed by

u ¼ ux uy uz

� �T
; r ¼ sx sy sz syz sxz sxy

� �T
; e ¼ ex ey ez gyz gxz gxy

� �T
. (527)
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Fig. 1. (a) SAFE model of wave propagation, (b) degrees of freedom of a mono-dimensional three-node element.
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The constitutive relations at a point are given by r ¼ ~C e, where ~C is generally complex as defined in Eq. (1).
The compatibility equations can be written in matrix form as

e ¼ Lx

q
qx
þ Ly

q
qy
þ Lz

q
qz

� �
u, (8)

where

Lx ¼

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0

2666666664

3777777775
; Ly ¼

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0

2666666664

3777777775
; Lz ¼

0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0

2666666664

3777777775
. (9)
3.2. Equations of motion

Equations of motion for the cross-section are formulated by inserting the kinetic and potential energies into
Hamilton’s equation. In general, the nonconservative form of Hamilton’s principle should be used to account
for dissipation. However, the following analysis adopts a simplified approach that assumes a conservative
waveguide; the resulting imaginary cross-sectional strain energy distribution is used to estimate the power
dissipated by the section via imaginary wavenumbers. The assumption is valid if the cross-sectional strain
energy distribution of a propagating wave is not significantly modified by increasing levels of damping [18].

The variation of the Hamiltonian of the waveguide, which vanishes at all material points, is

dH ¼

Z t2

t1

d F� Kð Þdt ¼ 0, (10)

where F is the strain energy and K is the kinetic energy. The strain energy is given by

F ¼
1

2

Z
V

eTeCedV , (11)

where the upper script T means a transpose vector and V is the volume. The result of this equation is complex:
the real component represents the elastic energy, while the imaginary component represents the dissipated
energy.

The kinetic energy is given by

K ¼
1

2

Z
V

_uTr_udV , (12)
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where r is the mass density and the dot represents a time derivative. By integrating by parts the kinetic term,
Eq. (10) can be written as Z t2

t1

Z
V

d eT
� �eCe dV þ

Z
V

d uT
� �

r€u dV

� �
dt ¼ 0. (13)

The displacement field is assumed harmonic along the propagation direction, x, and spatial functions are used
to describe its amplitude in the cross-sectional plane y–z:

uðx; y; z; tÞ ¼

uxðx; y; z; tÞ

uyðx; y; z; tÞ

uzðx; y; z; tÞ

264
375 ¼ Uxðy; zÞ

Uyðy; zÞ

Uzðy; zÞ

264
375eiðxx�otÞ, (14)

where i ¼ sqrtð�1Þ is the imaginary unit.

3.3. Finite element method

The waveguide’s cross-sectional domain, O, can be represented by a system of finite elements with domain
Oe. Mono- and bi-dimensional elements were considered in the examples that follow. When mono-
dimensional elements were used, an original routine was adopted to discretize O. Matlab’s ‘‘pdetool’’ and the
‘‘GID’’ software were used for the discretization by bi-dimensional elements [22].

The discretized version of the displacement expressions in Eq. (14) over the element domain can be written
in terms of the shape functions, Nk(y,z), and the nodal unknown displacements, (Uxk, Uyk, Uzk), in the x, y and
z directions (Fig. 1(b)):

uðeÞðx; y; z; tÞ ¼

Pn
k¼1

Nkðy; zÞUxk

Pn
k¼1

Nkðy; zÞUyk

Pn
k¼1

Nkðy; zÞUzk

2666666664

3777777775

ðeÞ

eiðxx�otÞ ¼ Nðy; zÞqðeÞeiðxx�otÞ, (15)

where

Nðy; zÞ ¼

N1 N2
. .
.

Nn

N1 N2
. .
.

Nn

N1 N2
. .
.

Nn

266664
377775, (16)

qðeÞ ¼ Ux1 Uy1 Uz1 Ux2 Uy2 Uz2 � � � � � � � � � Uxn Uyn Uzn

h iT
(17)

and n denotes the number of nodes per element. The strain vector in the element can be represented as a
function of the nodal displacements:

eðeÞ ¼ Lx

q
qx
þ Ly

q
qy
þ Lz

q
qz

� �
Nðy; zÞqðeÞeiðxx�otÞ ¼ B1 þ ixB2ð ÞqðeÞeiðxx�otÞ, (18)

where L is given by Eq. (9), B1 ¼ LyN;y þ LzN;z, B2 ¼ LxN, and N,y and N,z are the derivatives of the shape
function matrix with respect to the y and z directions, respectively.
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Indicating by nel the total number of cross-sectional elements, the discrete form of the Hamilton formulation
of Eq. (13) becomes Z t2

t1

[nel
e¼1

Z
V e

d eðeÞ
T

� �
~Cee
ðeÞ dVe þ

Z
Ve

d uðeÞ
T

� �
re €u
ðeÞ dV e

� �( )
dt ¼ 0, (19)

where eCe and re are the element’s complex stiffness matrix and density, respectively.
The substitution of Eq. (18) into the strain energy term in Eq. (19), followed by algebraic manipulations,

yields Z
V e

d eðeÞ
T

� �eCe eðeÞ dVe

¼

Z
Oe

Z
x

d qðeÞ
T

BT
1 � ixBT

2

� �
eiðxx�otÞ
� ��� �eCe B1 þ ixB2ð ÞqðeÞeiðxx�otÞ dxdOe

¼

Z
Oe

d qðeÞ
T

BT
1 � ixBT

2

� �h ieCe B1 þ ixB2ð ÞqðeÞ dOe

¼ dqðeÞ
T

Z
Oe

BT
1
eCeB1 � ixBT

2
eCeB1 þ ixBT

1
eCeB2 þ x2BT

2
eCeB2

h i
dOeq

ðeÞ, ð20Þ

where ()* indicates complex conjugate and iT ¼ �i. Thus the element stiffness matrix can be calculated by
integrating over the cross-sectional domain Oe only, since the integration over x reduces to a unity factor due
to the complex conjugate terms e7i(xx�ot). For viscoelastic materials, the strain energy defined by Eq. (20)
consists of a real component, describing the time-averaged elastic energy in the section, and an imaginary
component, related to the time-averaged power dissipated by the section.

As for the element kinetic energy contribution in Eq. (19), by using the displacement expressions of Eq. (15)
and simplifying the harmonic terms e7i(xx�ot), the following can be writtenZ

V e

d uðeÞ
T

� �
re €u
ðeÞ dV e ¼

Z
Oe

Z
x

d uðeÞ
T

� �
re €u
ðeÞ dxdOe ¼ �o2dqðeÞ

T

Z
Oe

NTreNdOeq
ðeÞ. (21)

Substituting Eqs. (20)–(21) into Eq. (19) yieldsZ t2

t1

[nel
e¼1

dqðeÞ
T

k
ðeÞ
1 þ ixkðeÞ2 þ x2kðeÞ3 � o2mðeÞ

h i
qðeÞ

( )
dt ¼ 0, (22)

where

k
ðeÞ
1 ¼

Z
Oe

BT
1
eCeB1

h i
dOe; k

ðeÞ
2 ¼

Z
Oe

BT
1
eCeB2 � BT

2
eCeB1

h i
dOe,

k
ðeÞ
3 ¼

Z
Oe

BT
2
eCeB2

h i
dOe; mðeÞ ¼

Z
Oe

NTreNdOe. ð23Þ

Applying to Eq. (22) standard finite element assembling procedures:Z t2

t1

dUT K1 þ ixK2 þ x2K3 � o2M
� �

U
	 


dt ¼ 0, (24)

where U is the global vector of unknown nodal displacements, and

K1 ¼
[nel
e¼1

k
ðeÞ
1 ; K2 ¼

[nel
e¼1

k
ðeÞ
2 ; K3 ¼

[nel
e¼1

k
ðeÞ
3 ; M ¼

[nel
e¼1

mðeÞ. (25)

Due to the arbitrariness of dU, the following homogeneous general wave equation is finally obtained

K1 þ ixK2 þ x2K3 � o2M
� �

M
U ¼ 0, (26)

where the subscript M is the number of total degrees of freedom (dof) of the system.
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3.4. Properties of the matrices

The stiffness matrices K1 and K3 in Eq. (26) are symmetric, while K2 is skew symmetric when undamped
motion is considered. For damped motion, the Ki are all generally complex. The ‘‘mass’’ matrix, M, is real
symmetric and positive definite regardless of the type of motion (undamped or damped).

K1 is related to the strain-transformation matrix B1 that pertains to generalized planar deformations, and
thus describes the generalized plane strain behavior or cross-sectional warpage. K3 models the out-of-plane
deformation behavior since it depends on the matrix B2. K2 contains both B1 and B2 and thus couples the
cross-sectional warpage to the out-of-plane deformations.

Without loss of generality, an M�M transformation diagonal matrix T is introduced to eliminate the
imaginary unit in Eq. (26). The elements of T corresponding to the uy and uz displacement components are
equal to 1, while those corresponding to ux are equal to the imaginary unit:

T ¼

i

1

1

. .
.

i

1

1

2666666666664

3777777777775
. (27)

This matrix has the properties TT
¼ T* and T*T ¼ TT*

¼ I, where I is the identity matrix. The terms in
Eq. (26) are pre-multiplied by TT and post-multiplied by T. This manipulation does not alter the matrices K1,
K3 and M since they do not mix ux with uy or uz:

TTK1T ¼ K1; TTK3T ¼ K3; TTMT ¼M. (28)

The matrix K2, instead, mixes ux with uy and uz but it does not mix uy and uz with each other. It follows that

TTK2T ¼ �iK̂2, (29)

where K̂2 is a symmetric matrix for undamped motion. The introduction of the matrix T is equivalent to
multiplying ux by the imaginary unit to force the quadrature with uy and uz as done in previous works [5,6].

The final form of the eigenvalue problem in Eq. (26) is

K1 þ xK̂2 þ x2K3 � o2M
h i

M
Û ¼ 0, (30)

where Û is a new nodal displacement vector. Nontrivial solutions can be found by solving a twin-parameter
generalized eigenproblem in x and o. The frequency o is a real positive quantity. The wavenumber x can be
either real or complex and can have both positive and negative signs.

3.5. Solutions for undamped media

For lossless materials the stress–strain relation is governed by a real stiffness matrix C. The use of the
operator T is particularly useful in this case since it simplifies Eq. (30) to a real and symmetric system. By
assigning real values to x, Eq. (30) can be solved as a standard eigenvalue problem in o(x). All the solutions
for this case correspond to propagative waves. Thus if the dimension of the system is equal to M, for each
wavenumber xm, M propagating modes (xm, om) are found along with the Ûm cross-sectional wavestructure or
mode shape.

If the full complex spectrum for both propagative and evanescent modes is of interest, the unknown
complex wavenumbers x(o) must be obtained for a given frequency o, solving Eq. (30) as a second-order
polynomial eigenvalue problem. The resulting complex wavenumbers x ¼ xRe+ixIm are used to describe the
velocity of the traveling waves through their real part, xRe, and their amplitude decay through the imaginary
part, xIm. A classic technique to solve the eigenvalue problem x(o) consists of recasting Eq. (30) to a first-order
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eigensystem by doubling its algebraic size

A� xB½ �2MQ ¼ 0, (31)

where

A ¼
0 K1 � o2M

K1 � o2M K̂2

" #
; B ¼

K1 � o2M 0

0 �K3

" #
; Q ¼

Û

xÛ

" #
. (32)

A and B are real symmetric matrices. From Eq. (31), at each frequency o, 2M eigenvalues xm and,
consequently, 2M eigenvectors are obtained. The eigenvectors are the M forward and the corresponding M

backward modes. The eigenvalues occur as pairs of real numbers (7xRe), representing propagative waves in
the 7x directions, as pairs of complex conjugate numbers (7xRe7ixIm), representing evanescent waves
decaying in the 7x directions, or as pairs of purely imaginary numbers (7ixIm), representing the
nonoscillating evanescent waves in the 7 x directions. The phase velocity can be then evaluated by cph ¼ o/
xreal and the attenuation, in Nepers per meter, by xIm.

It should be pointed out that if only the propagative modes in undamped waveguides are of interest, Eq.
(30) remains the preferred formulation, since it gives a stable numerical problem and it can be evaluated
roughly one hundred times faster that the linearized version in Eq. (31).

In the undamped case, the waves which are nonoscillating evanescent at low frequencies (i.e. purely
imaginary wavenumbers) become propagative (i.e. purely real wavenumbers) above their cut-off frequencies,
oc. The cut-off frequencies can be computed by letting x ¼ 0 in Eq. (30) and solving the eigenvalue problem

K1 � o2
cM

� �
M
Û ¼ 0. (33)
3.6. Solutions for damped media

When material damping is considered, the stiffness matrix eC is complex according to Eq. (1) and,
consequently, the matrices in Eqs. (30) and (31) are also complex. In this case the eigenvalue problem can only
be solved for a given frequency in the x(o) manner from Eq. (31). Since A and B are now complex, 2M

complex eigenvalues xm and, consequently, 2M complex eigenvectors are obtained for each input frequency o.
In this case there is no analytical distinction between propagative and evanescent modes due to the fact that
both types are now represented by complex wavenumbers.

If a Kelvin–Voigt model is used, eC needs to be scaled in accordance with Eq. (3) considering the
characterization frequency f . Thus this matrix must be updated at each iteration over the frequency domain of
interest. In the case of a hysteretic model, instead, eC can simply be set at the beginning of the simulation for
the entire frequency domain.

3.7. Group and energy velocity

In order to compute the group velocity by the conventional manner, the derivatives of the
frequency–wavenumber dispersion relations must be calculated based on the differences of the values for
adjacent points of the same mode, A and B, i.e. cg ¼ qo=qx ’ ðoB � oAÞ=ðxB � xAÞ. This implies that the
accuracy of the velocity solution is sensitive to that of the (x, o) solutions. Also, in this case the (x, o) solutions
must be categorized for the different modes (mode tracking). Tracking the modes is not straightforward when
one mode approaches another. One technique to track the same mode consists of monitoring the cross-
sectional mode shapes in proximity of the overlap between two modes [23]. A method that avoids the necessity
for tracking the modes was proposed in Ref. [11]; however, in this work the group velocity accuracy remains
dependent on the resolution of the frequency steps.

The necessity for mode tracking, as well as the dependency on the frequency step resolution, can be avoided
by calculating the group velocity directly at each (x, o) solution point without any contribution from adjacent
points. This approach, recently proposed in Refs. [14,24], was used for the results presented here relative to
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undamped waveguides. The procedure starts by evaluating the derivative of Eq. (30) with respect to the
wavenumber:

q
qx

KðxÞ � o2M
� �

ÛR

� �
¼ 0; (34)

where KðxÞ ¼ K1 þ xK̂2 þ x2K3 and ÛR represents the right eigenvector. Pre-multiplying Eq. (34) by the
transpose of the left eigenvector, Û

T

L:

Û
T

L

q
qx

KðxÞ � 2o
qo
qx

M

� �
ÛR ¼ 0: (35)

Since qo=qx is a scalar, the group velocity can be now written as

cg ¼
qo
qx
¼

Û
T

L K̂2 þ 2xK3

� �
ÛR

2oÛ
T

LMÛR

. (36)

From this relation the group velocity can be evaluated for each individual solution (o,x) of the dispersion
relations at a time independently of any adjacent solution.

As reported in Refs. [25,26], the group velocity definition is not valid in damped waveguides. In this case the
wavenumber become complex and the differentiation cg ¼ qo=qx is no longer possible. If the differentiation is
made with respect to the real part of the complex wavenumber, then the group velocity calculation yields
nonphysical solutions such as infinite velocities at some locations of the dispersion curves. The energy velocity,
Ve, is the appropriate property for damped media. The definition of the energy velocity can be found in
classical textbooks [27]. The expression used in the present work is

V e ¼

1
O

R
O P � x̂dO

1
T

R
T

1
O

R
O etot dO

� �
dt

, (37)

where x̂ is the unit vector along the wave propagation direction, 1/T
R

T (..) dt denotes the time average over
one period T, etot is the total energy density (kinetic and potential), and P represents the time averaged
Poynting vector (real part only). The time-averaged Poynting vector can be calculated from

P ¼ �
1

2
Reðr_unÞ, (38)

where r is the classical 3� 3 stress tensor, and _un is the complex conjugate of the particle velocity vector. The
numerator in Eq. (37) is the average power flow carried by a mode in the wave propagation direction over a
unit period of time.

The denominator in Eq. (37) can be evaluated by introducing the expressions of the time-averaged energy
for the kinetic component, ekh it, and the potential component, ep

� �
t
, following the formulation in Ref. [20]:

ekh it ¼
o2

4
ruTu; ep

� �
t
¼

1

4
eTC0e, (39,40)

where the constants 1
4
result from the time integration over the period T. Eqs. (39) and (40) can be evaluated

once the element nodal displacements are calculated from the eigenvalue problem in Eq. (31), and the
displacement and strain fields are then reconstructed from Eqs. (15) and (18), respectively.

4. Results

4.1. Plate systems

The general plate system consists of an arbitrary number n of orthotropic layers stacked along the z direction
(Fig. 1(a)). The origin of the reference Cartesian system (x, y, z) is located at the top of the layered plate and each
layer lies parallel to the x– y plane. The plates considered in this study have an infinite length in the width direction,
y. Thus the 2-D cross-section that needs to be interpolated by finite elements reduces to a single line through the
plate thickness (Fig. 1). Mono-dimensional quadratic elements were used for the line discretization.
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In general, each element can have 3 dof per node, associated to the displacements ux, uy and uz. For isotropic
plates, the Lamb modes polarized in the x–z plane are de-coupled from the shear horizontal (SH) modes that
are, instead, polarized in the x–y plane. The de-coupling holds for orthotropic plates when the wave
propagation direction is along a direction of principal material symmetry. Consequently, in these cases the
number of dof of each analysis can be reduced by solving for the Lamb modes and for the SH modes
separately (thus considering only ux and uz for the former modes, and only uy for the latter modes). For
orthotropic plates with an arbitrary wave propagation direction or for laminated composite plates, the Lamb
and the SH modes are coupled and thus these solutions must be found simultaneously.

The mesh refinement used in all of the examples that follow was determined after convergence studies for
the dispersive solutions in the frequency range of interest. Clearly, frequencies higher that those examined
would require more refined meshes.

4.1.1. Viscoelastic isotropic plate

The first system examined is a viscoelastic isotropic high performance polyethylene (HPPE) plate in
vacuum. This plastic material has a relatively high damping. This example was chosen because it was fully
studied in Refs. [25,26] by using the software DISPERSE that is based on a SPBW method. The physical and
geometric characteristic of the HPPE plate are the same as those in Refs. [25,26]: density r ¼ 953 kg/m3,
thickness h ¼ 12:7mm, longitudinal bulk velocity cL ¼ 2344m=s, shear bulk velocity cT ¼ 953m=s, longi-
tudinal bulk wave attenuation kL ¼ 0.055Np/wavelength and shear bulk wave attenuation kT ¼ 0.286Np/
wavelength.

For the SAFE modeling, the complex bulk velocities for the viscoelastic material must be first calculated as

~cL;T ¼ cL;T 1þ i
kL;T

2p

� ��1
. (41)

The complex Young’s modulus, eE, and Poisson’s ratio, en, can be obtained as

eE ¼ rfcT
2 3 ecL

2
� 4fcT

2

ecL
2
�fcT

2

 !
; en ¼ 1

2

ecL
2
� 2fcT

2

ecL
2
�fcT

2

 !
. (42)

The complex Lame’ constants can be calculated as

el ¼ eEen
ð1þ enÞð1� 2enÞ ; em ¼ eE

2ð1þ enÞ . (43)

Finally, the complex viscoelastic stiffness matrix is given by

eC ¼
elþ 2em el elel elþ 2em elel el elþ 2em em em em

26666666664

37777777775
. (44)

In this case the viscoelastic stiffness matrix is based on the complex bulk wave velocities that are kept
constant throughout the frequency range examined. Consequently eC is independent of frequency and needs to
be defined only once at the beginning of the analysis. This procedure is equivalent to an assumption of a
hysteretic viscoelastic model.

Forty, quadratic mono-dimensional elements, Fig. 1(b), were used for the SAFE discretization. For the
Lamb wave solutions, only the ux and uz dof were used. These corresponded to 162 of the total
[nel� (nn�1)+1]� ndof ¼ 243 dof. In the previous equation nel is the number of finite elements, nn ¼ 3 is the
number of nodes per element and ndof is the number of dof per node.

The resulting Lamb wave solutions are shown in Figs. 2(a)–(d). The energy velocity values, Fig. 2(b), were
obtained from Eq. (37). The attenuation values are shown up to 500Np/m in Fig. 2(c) and up to 3500Np/m in



ARTICLE IN PRESS

Fig. 2. Dispersion results (Lamb modes) for a 12.7mm thick, viscoelastic HPPE plate in vacuum: (a) phase velocity, (b) energy velocity, (c)

attenuation below 500Np/m, (d) attenuation below 3500Np/m. ——, Low-attenuation symmetric mode m.
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Fig. 2(d). The frequency range presented is coincident with the one considered in Refs. [25,26]. In these
references, however, some of the solutions of the attenuation curves are missing resulting in interrupted or
discontinuous branches. This is a consequence of the difficulty of the searching algorithm based on the SPBW
method to converge. The SAFE results in Fig. 2 show no missing roots.

Compared to an undamped elastic plate where no solutions exist below the cut-off frequencies, all modes in
Fig. 2 have solutions that extend to the origin of the frequency axis. This is the result of the real wavenumber
that is now associated to the formerly nonpropagative roots of the undamped case. Below the undamped cut-
off frequencies, the damped solutions are characterized by large attenuation values and small energy velocity
values. Although these portions have an interesting theoretical significance, they have little practical use in
NDE/SHM. If needed, the ‘‘nonpropagative’’ branches can be easily deleted from the dispersion curves by
thresholding either the attenuation or the energy velocity values.

Highlighted in Fig. 2 is the symmetric mode, m, that has the lowest attenuation above 165 kHz. Because of
the low attenuation, this mode was examined in detail in Ref. [25]. As confirmed in this reference, both phase
and energy velocities for m tend to the bulk longitudinal velocity as the frequency increases, since the
dominant displacements are along the wave propagation direction.

SAFE solutions for the SH modes are presented in Fig. 3. In this case only 81 dof, corresponding to the uy

displacements, were used in the model. SH modes were not presented in Refs. [25,26], and thus no comparison
was possible. All SH solutions are found in the frequency range examined. As expected, the velocities now
tend to the shear bulk wave velocity at high frequencies. As found for the Lamb modes, the ‘‘nonpropagative’’
SH modes (i.e. below the undamped cut-off frequencies) have large attenuation values and small energy
velocity values.

4.1.2. Elastic transversely isotropic plate

This example examines a 1-mm-thick, unidirectional laminate made of 32, T300/914 carbon-epoxy laminae.
The material is considered elastic (undamped). This case was previously studied by using the DISPERSE
software based on the SPBW method [23]. The material density is r ¼ 1560 kg=m3 and the elastic properties in
the principal directions of material symmetry are given in Table 1, where 1 is the fiber direction, 2 is the
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Fig. 3. Dispersion results (SH modes) for a 12.7mm thick, viscoelastic HPPE plate in vacuum: (a) phase velocity, (b) energy velocity,

(c) attenuation up to 500Np/m, (d) attenuation up to 3500Np/m.

Table 1

Elastic properties for the T300/914 laminate examined in Ref. [23] and in the present study (elastic constants in GPa)

C11 C12 C13 C22 C23 C33 C44 C55 C66

143.8 6.2 6.2 13.3 6.5 13.3 3.6 5.7 5.7
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direction perpendicular to the fibers in the laminate plane, and 3 is the through-thickness direction. The
laminate can thus be treated as transversely isotropic, with five independent elastic constants remembering
that

C44 ¼ 0:5� ðC33 � C12Þ. (45)

For waves propagating along a direction x oriented at any angle y with respect to the fiber direction 1, the
SAFE model simply requires the rotation of the stiffness matrix of each lamina through

Cy ¼ R1CR
�1
2 , (46)

where C is the stiffness matrix in the lamina’s principal directions (that can generally be complex), and R1 and
R2 are the rotation matrices

R1 ¼

m2 n2 0 0 0 2mn

n2 m2 0 0 0 �2mn

0 0 1 0 0 0

0 0 0 m �n 0

0 0 0 n m 0

�mn mn 0 0 0 m2 � n2

2666666664

3777777775
; R2 ¼

m2 n2 0 0 0 mn

n2 m2 0 0 0 �mn

0 0 1 0 0 0

0 0 0 m �n 0

0 0 0 n m 0

�2mn 2mn 0 0 0 m2 � n2

2666666664

3777777775
, (47)
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with m ¼ cos y and n ¼ sin y. The governing eigenvalue problem is then solved by using the rotated stiffness
matrix in the constitutive relations r ¼ Cye.

The results are shown in Fig. 4 in terms of phase velocity and group velocity. The latter result was computed
from Eq. (36). Since an elastic material is being considered, the group velocity is now appropriate. Solutions
were found for a wave propagation direction oriented at 01 (Figs. 4(a) and (b)), at 451 (Figs. 4(c) and (d)) and
at 901 (Figs. 4(e) and (f)) with respect to the fiber direction 1. In the 451 case, the option of tracing the Lamb
and the SH modes separately is no longer possible due to the coupling effects between them. This option is
instead viable in the 01 and 901 propagation directions. For purposes of comparison, both Lamb and SH
modes are shown in all plots of Fig. 4. That Lamb and SH modes are coupled in the 451 direction can be
readily seen in Figs. 4(c) and (d) by noticing that the lowest-order SH0 mode has some degree of dispersion.
The same SH0 mode is, instead, perfectly nondispersive in the 01 and 901 plots. It can also be seen that the
velocity values for the Lamb modes tend to decrease with increasing wave propagation angle as expected,
particularly for the symmetric modes. The results are coincident with those obtained in Ref. [23] by the SPBW
method for the 01 and the 451 directions; this reference, however, did not report the SH modes in the 01
direction and the A0 mode in the 451 direction.

4.1.3. Viscoelastic orthotropic plate

The next example is a viscoelastic orthotropic plate that was examined in Ref. [20]. The plate is a 3.6-mm-
thick carbon-epoxy with density r ¼ 1560 kg/m3. The elastic (Cij) and viscoelastic (Zij) properties are given in
Table 2 in the principal directions of material symmetry. The hysteretic viscoelastic model was used here.

The results are shown in Fig. 5 in terms of phase velocity and attenuation for the symmetric modes (plots (a)
and (b)) and for the antisymmetric modes (plots (c) and (d)), for a propagation direction at 601 from principal
direction 1. Since damping is being considered, the solutions exist in the entire frequency range. When
damping is small, the existence of solutions below the undamped cut-off frequencies has little effect on the
phase velocity above these frequencies. Nevertheless, branches of the phase velocity curves that would be
distinct in the undamped case may become connected in the damped case. An example of a branch connection
is shown in the inset of Fig. 5(a) that zooms into the 800–820 kHz range. Similar branch connection
phenomena were observed in damped isotropic plates [25,26].

It can also be clearly seen in Fig. 5 that the mode attenuation is strongly related to the phase velocity
dispersion, with strong dispersion corresponding to rapidly changing attenuation. As the frequency tends to
infinity, the modes converge to the bulk wave solutions. Accordingly, their attenuation becomes a linear
function of the frequency.

The results are coincident with those obtained in Ref. [20] by the SPBW method. This reference, however,
reports fewer modes than those presented in Fig. 5. In both Ref. [20] and the present work, the number of
modes being shown is generally determined by the upper-bound threshold chosen for the attenuation values.

4.1.4. Elastic composite laminate

A quasi-isotropic composite laminate made of unidirectional T800/924 graphite-epoxy laminae with a
stacking sequence of [745/0/90]S was considered next. Each lamina has a thickness of 0.125mm resulting in a
total laminate thickness of 1mm. The elastic constants for the material were taken from Ref. [28]:
E11 ¼ 161GPa, E22 ¼ 9:25GPa, G12 ¼ 6:0GPa, u12 ¼ 0:34 and u23 ¼ 0:41. The material density was
r ¼ 1500 kg/m3. The corresponding terms of the stiffness matrix are shown in Table 3.

Two, quadratic mono-dimensional finite elements were used to model each of the eight laminae. Fig. 6
presents the phase and group velocity results for waves propagating along the fiber direction of the 01 lamina.
The C matrices of each lamina were opportunely rotated according to Eq. (46). Also shown in Fig. 6 are the
displacement cross-sectional shapes extracted from the SAFE analysis for modes m1, m2 and m3 at 800 kHz
and m4, m5 and m6 at 1.6MHz. The reference system is consistent with Fig. 1(a). It can be clearly seen that the
mode shapes for a laminated composite are generally quite different from the analogous mode shapes of an
isotropic homogeneous plate. Abrupt changes can occur at the interface between two laminae.

The mode shape predictions can be exploited in NDE/SHM applications to enhance the sensitivity to a
particular structural defect and/or to minimize the losses due to leakage in the surrounding medium. For
example, an internal defect would be most efficiently detected by a mode such as m2 in Fig. 6 with large
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Table 2

Elastic and viscous properties of the orthotropic plate examined in Ref. [20] and in the present study (elastic constants in GPa; viscosities

given at 2.0MHz)

C11 C12 C13 C22 C23 C33 C44 C55 C66

86.60 9.00 6.40 13.50 6.80 14.00 2.72 4.06 4.70

Z11 Z12 Z13 Z22 Z23 Z33 Z44 Z55 Z66
7.50 0.30 0.60 0.60 0.25 0.28 0.10 0.12 0.28

Fig. 4. Dispersion results for a 1mm thick, elastic transversely isotropic carbon-epoxy laminate in vacuum: (a) phase velocity for waves

propagating along principal direction 1, (b) group velocity for waves propagating along principal direction 1, (c) phase velocity for waves

propagating at 451 from principal direction 1, (d) group velocity for waves propagating at 451 from principal direction 1, (e) phase velocity

for waves propagating along principal direction 2, (f) group velocity for waves propagating along principal direction 2. –J–, SH0 mode.

I. Bartoli et al. / Journal of Sound and Vibration 295 (2006) 685–707698
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Fig. 5. Dispersion results for a 3.6mm thick, viscoelastic orthotropic carbon-epoxy plate in vacuum for waves propagating at 601 from

principal direction 1: (a) phase velocity for the symmetric modes (inset: JJJJ, undamped case; yy, damped case); (c) attenuation for

the symmetric modes, (b) phase velocity for the antisymmetric modes, (d) attenuation for the antisymmetric modes.

Table 3

Elastic properties of the T800/924 lamina (elastic constants in GPa)

C11 C12 C13 C22 C23 C33 C44 C55 C66

168.4 5.45 5.45 11.3 4.74 11.3 3.28 6.0 6.0
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displacements at the laminate’s mid-plane. Acoustic losses from leakage into a surrounding fluid medium
would be severe for modes with large out-of-plane displacements at the laminate’s surface such as m1 in Fig. 6.
Clearly these trends will depend on the particular frequency used to probe the structure.

4.1.5. Viscoelastic orthotropic plate: comparison between hysteretic and Kelvin-Voigt models

In this section the viscoelastic orthotropic plate studied in Ref. [29] is examined. The plate is a unidirectional
lamina of 1mm in thickness. The material’s properties are shown in Table 4. The viscosities are given at
2.242MHz.

SAFE results were obtained for both the hysteretic and the Kelvin–Voigt viscoelastic models for the
purpose of comparing the two solutions. Eqs. (3) and (4) were used to define the complex stiffness matrix in
the two models, where f was set equal to 2.242MHz in Eq. (3). Ten, quadratic mono-dimensional elements
were used for the discretization. The wave propagation direction coincided with the fiber direction 1. Thus the
Lamb and SH modes could be solved separately. Fig. 7 presents the Lamb wave results obtained by using the
hysteretic model in the left column, and by using the Kelvin–Voigt model in the right column. Fig. 8 presents
the corresponding plots for the SH modes. It can be seen in both figures that changing the viscoelastic model
has little effect on the phase or the energy velocity results in the frequency range considered. Appreciable
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Fig. 6. Dispersion results for a 1mm thick, elastic [745/0/90]S composite laminate in vacuum for waves propagating along principal

direction 1 of the 01 lamina: (a) phase velocity, (b) group velocity. Cross-sectional displacement mode shapes shown for: J, mode m1; &,

mode m2; n, mode m3; K, mode m4; ’, mode m5; m, mode m6.

Table 4

Elastic and viscous properties of the orthotropic plate examined in Ref. [29] and in the present study (elastic constants in GPa; viscosities

given at 2.242MHz)

C11 C12 C22 C13 C23 C33 C44 C55 C66

132 6.9 5.9 12.3 5.5 12.1 3.32 6.21 6.15

Z11 Z12 Z13 Z22 Z23 Z33 Z44 Z55 Z66
0.40 0.001 0.016 0.037 0.021 0.043 0.009 0.015 0.02
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effects are instead seen in the attenuation plots (Figs. 7(e) and (f) and 8(e) and (f)). In particular, both models
give the same solution at the characterization frequency of 2.242MHz as expected. Above and below this
frequency, the Kelvin–Voigt model results in respectively larger and smaller attenuation values compared to
the hysteretic model.

4.1.6. Composite-to-composite adhesively bonded joint

This section presents SAFE results relative to ongoing efforts at UCSD aimed at the development of an on-
board SHM system for Unmanned Aerial Vehicles (UAVs) based on integrated sensors and ultrasonic guided
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Fig. 7. Dispersion results (Lamb modes) for a 1mm thick, viscoelastic orthotropic plate in vacuum: (a), (c), (e) case of hysteretic

viscoelastic model; (b), (d), (f) case of Kelvin–Voigt viscoelastic model.
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waves [30]. The monitoring is being targeted to the adhesive bond between the UAV composite wing skin and
the tubular composite spar shown in the drawing of Fig. 9. The spar runs along the lengthwise direction of the
wing.

The wing skin under investigation is a T300/5208 carbon-epoxy laminate with a stacking sequence [0/745/
0]S and a thickness of 0.133mm per lamina. The 01 direction is parallel to the spar lengthwise direction. The
wing skin was modeled by the usual rotation of the stiffness matrix according to Eq. (46). The spar is a cross-
ply tubular section made of T800/924 and having a total wall thickness of 5.235mm. In the model, the spar
was considered as one equivalent viscoelastic orthotropic layer without loss of accuracy [30]. The adhesive
layer had a typical thickness of 0.203mm. One quadratic element was used for each lamina of the skin and for
the bond layer, whereas five elements were used for the spar wall. The hysteretic viscoelastic model was used
for each of the components.
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Fig. 8. Dispersion results (SH modes) for a 1mm thick, viscoelastic orthotropic plate in vacuum: (a), (c), (e) case of hysteretic viscoelastic

model; (b), (d), (f) case of Kelvin–Voigt viscoelastic model.
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The on-board sensor disposition is such that the wave is generated and detected on the wing skin on either
side of the joint. The wave propagation direction is perpendicular to the spar, along direction x in the drawing
of Fig. 9. Any degradation in the bond condition can then be monitored by measuring changes in the strength
of the ultrasonic transmission through the joint.

SAFE dispersion results are presented in Fig. 9 for the disbonded skin-to-spar interface, the most extreme
bond degradation that was considered in this study. The specific material properties assumed for the various
layers of the joint are summarized in Table 5. Densities were 1530 kg/m3 for the skin and the spar, and
1421 kg/m3 for the adhesive layer. Table 6 compares the ultrasonic properties assumed for the disbonded layer
to those assumed for the regular adhesive layer. It can be seen that the largest degradation was imposed to the
shear wave velocity to reflect the inability of the disbond to transfer shear stresses.

The weak properties of the disbonded interface essentially de-couple the dispersive behavior of the wing skin
from that of the spar. Accordingly, the solutions in Fig. 9 show modes whose energy is mainly concentrated
within the wing skin above the bondline (identified in the figure by S0,plate, A0,plate, SH0,plate , etc.), and modes
whose energy is mainly concentrated within the spar below the bondline (identified by S0,spar, A0,spar, SH0,spar,
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Fig. 9. Dispersion results for UAV wing skin-to-spar adhesive joint with a disbonded interface for waves propagating perpendicularly to

the spar lengthwise direction: (a) phase velocity, (b) energy velocity, (c) attenuation. JJJJ, single skin modes.

Table 6

Bulk ultrasonic velocities and attenuations of the UAV wing skin-to-spar interface layer

Layer cL (m/s) cT (m/s) kL (Np/l) kT (Np/l)

Regular bond 2410 1210 0.149 0.276

Disbond 241 12.1 1.497 2.763

Table 5

Elastic and viscous properties for the UAV wing skin-to-spar joint (elastic constants in GPa. �from Ref. [31])

Layer C011 C012 C013 C022 C023 C033 C044 C055 C066
(C0011) (C0012) (C0013) (C0022) (C0023) (C0033) (C0044) (C0055) (C0066)

Wing skin 135 5.70 5.70 14.2 8.51 14.2 2.87 4.55 4.55

lamina (8.23)� (0.65)� (0.60)� (0.34)� (0.25)� (0.65)� (0.24)� (0.28)� (0.25)�

Spar 88.0 5.45 5.09 88.0 5.09 11.3 4.64 4.64 6.00

wall (4.28) (0.65) (0.425) (4.28) (0.425) (0.65) (0.26) (0.26) (0.25)

Disbond 0.070 0.069 0.069 0.070 0.069 0.070 0.00012 0.00012 0.00012

(0.035) (0.035) (0.035) (0.035) (0.035) (0.035) (0.00013) (0.00013) (0.00013)
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etc.). The former modes closely match those that would be supported by the wing skin alone (identified by s0,
a0, sh0 and represented by open dots in Fig. 9). The match between the ‘‘skin’’ modes of the disbonded joint
and the pure single-skin modes becomes closer as the frequency increases (compare, for example, A0,plate and
a0). One implication is that waves generated on the wing skin outside of the joint will be transferred very
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efficiently across the disbonded interface through one of the ‘‘skin’’ modes. Consequently, the occurrence of a
disbond can be detected by an increased strength of ultrasonic transmission compared to a regularly bonded
joint.

4.2. Arbitrary cross-sections: viscoelastic railroad track

The purpose of this section is to demonstrate the applicability of the SAFE approach to waveguides of
arbitrary cross-sections that cannot be solved by exact methods. The case treated is that of a railroad track.
Knowledge of the dispersive behavior of guided waves in rails is relevant for the purpose of train noise
reductions at low frequencies, below 6 kHz [32], and for long-range NDE defect detection at high frequencies,
up to 50 kHz [33,34].

The rail considered is a typical 115-lb A.R.E.M.A. section, modeled as an isotropic material with hysteretic
damping, and having the following properties: r ¼ 7932 kg/m3, cL ¼ 5960m/s, cT ¼ 3260m/s, kL ¼ 0.003Np/
wavelength and kT ¼ 0.043Np/wavelength. The rail cross-section has a complex geometry with one vertical
axis of symmetry. The mesh, shown in Fig. 10 and generated by Matlab’s ‘‘pdetool,’’ used 81 nodes for 106
triangular elements with linear interpolation displacement functions. Compared to the plate systems, a
compromise was made by decreasing the order of the interpolation function with the increased number of dof
necessary to move from a 1-D discretization to the bi-dimensional discretization of the rail track.

The dispersion results are shown in Fig. 10 up to a frequency of 50 kHz. The complexity of the modes is
evident in these plots. Notice that no prior solutions for the attenuation values are available from the literature
in this frequency range, since previous wave propagation models of rails did not include damping, with the
exception of low-frequency (o 6 kHz) studies [35,36]. Knowledge of the high-frequency attenuation, however,
is important to identify low-loss mode-frequency combinations that can provide truly long-range defect
detection. A zoom into the low-frequency phase velocity curves is shown in Fig. 11 along with the first five
Fig. 10. Dispersion results for a 115-lb A.R.E.M.A., viscoelastic rail for waves propagating along the rail running direction: (a) phase

velocity, (b) energy velocity, (c) attenuation.
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Fig. 11. Dispersion results for a 115-lb A.R.E.M.A., viscoelastic rail: phase velocity for frequencies below 10kHz, and first five cross-

sectional mode shapes at 5 kHz. ’, mode m1; &, mode m2; K, mode m3; J, mode m4; n, mode m5; JJJJ, symmetric modes; yy,

antisymmetric modes.
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cross-sectional mode shapes at 5 kHz. It can be seen that modes m1, m2 and m4 are antisymmetric with respect
to the x– z plane, while modes m3 and m5 are symmetric. It can also be seen that some of the modes excite
preferably a certain portion of the rail, whether the head or the base. This information can be used in practical
NDE tests to target defects at various locations in the rail section. Similarly, knowledge of the mode shapes is
necessary to design the appropriate wave excitation/detection approach.

5. Discussion and conclusions

In this paper a general SAFE method was proposed and derived for modeling wave propagation in
waveguides of generally arbitrary cross-sections. The main innovation over SAFE models proposed in the past
is accounting for viscoelastic material damping, and thus representing the energy velocity and the attenuation
curves. The hysteretic viscoelastic model (frequency independent) and the Kelvin–Voigt viscoelastic model
(frequency dependent) were used in the formulation. The energy velocity values (for damped waveguides) and
the group velocity values (for undamped waveguides) are obtained at each individual wavenumber–frequency
solution, without the need for tracking the modes and without considering adjacent solutions in finite
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difference calculations. The knowledge of the dispersive wave properties is relevant for NDE/SHM testing for
identifying propagating modes, locating defects, as well as exciting low-loss mode-frequency combinations for
increased ranges.

The method was validated on various examples, some of which were examined previously by SPBW
methods. The examples included viscoelastic orthotropic plates, laminated composite plates, composite-to-
composite adhesive bonds in UAV wings, and railroad tracks.

The approximation of any SAFE method depends only on the discretization of the waveguide’s cross-
section. In the absence of rigorous convergence criteria, the rule of thumb should be having the necessary
number of elements to properly represent the cross-sectional mode shapes of the problem for the highest
frequency of interest.

The solutions of the SAFE eigenvalue problem are the displacement components. Consequently, if strain
and stress components are of interest, the mesh should be refined further to compensate for the loss of
accuracy of the differentiation process. This aspect is also important in the evaluation of the energy velocity.
Energy velocity is, in fact, a function of the Poynting vector, Eq. (37), thus, in turn, is a function of the stress
and the displacement derivatives, Eq. (38). Thus the accuracy of the energy velocity solutions depends on the
accuracy of the displacement derivatives. Alternatively, the group velocity is a function of the displacement
eigenvectors, Eq. (36). In summary, the phase velocity, the group velocity and the attenuation curves are
calculated with the same order of accuracy, while the energy velocity curves require a more refined
discretization to achieve the same accuracy.
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