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Abstract

Even though the nonlinear damping characteristics inherently pertain to most structural systems, many useful dynamic

models are still linear. As a consequence, a method that is able to equivalently linearize (EQL) the nonlinear damping so

that it can be directly applied in these existing linear models is essential. In the present paper, a novel EQL method for

nonlinearly damped and single-degree-of-freedom systems is developed. The method is theoretically derived by modulating

the steady-state responses of the original nonlinear system. During the linearization, the new EQL method requires the

dissipated energy of the target linear system to equal that of the original nonlinear one. In effect, this criterion is equivalent

to forcing both the phase angles and amplitudes of the two systems to be equal, or at least to within a small allowable error.

Furthermore, the present paper proves that it is possible for the dissipative energy to be expressed in terms of the Fourier

coefficients of the modulated signal. Thus, the equivalent viscous damping ratio can be computed from these Fourier

coefficients. This new EQL method is numerically tested using examples of bi-linear damping models, and subjected to

experimental measurements. Both the simulation results and the experimental data verify the validity of the method. They

also prove that the current method gives the equivalent viscous damping with good accuracy. In addition, a quality index

that signifies how well the EQL system reaches is appropriately added.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In most engineering practice, the use of a linear model for the application leads to fairly simple and useful
results. And, there is a comprehensive linear theory for treating problems of this type for quite some time
already. Unfortunately, there is no actual problem that is exactly linear. Thus, the easiest way is to assume that
the system is almost linear or the nonlinearity is negligibly small to be able to apply the linear theory. In general,
nonlinearity of a system becomes more significant as vibration increases. As soon as the nonlinear effect is too
large to be neglected, one is faced with the problem of predicting the responses of more complicated nonlinear
systems. A simple way of attacking these nonlinear problems is to replace the nonlinear elements by linear ones,
which in some cases give approximately the same responses, so that the linear theory can be reasonably applied.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b Fourier coefficients of g(t)
f(t) excitation forcing function in time domain
fs signal sampling frequency in Hz
g.(t) modulated response in time domain
F amplitude of the external forcing function
L, L length in time domain
n number of points of a sampled signal
r frequency ratio ¼ O/on

Dts sampling resolution ¼ 1/fs

T period in time domain
wd average dissipated energies per radian

(J/rad)

y(t) responses of the equivalent linear system
in time domain

Y amplitude of the linear system response
z(t) responses of the original nonlinear sys-

tem in time domain
Z amplitudes of the nonlinear system re-

sponse
e,e* allowable errors
f lag angle due to system damping
on natural frequency in rad/s
O excitation frequency in rad/s
z damping ratios of nonlinear systems
zEQL equivalent damping ratio
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Mathematically, any criterion of linearization must preserve the characteristics of the original nonlinear
system as much as possible [1]. There is no way to know exactly who is the first to introduce the so-called
linearization method, as far as the authors knowledge goes. Nevertheless, almost all investigation reports in
engineering practices concerning linearization directly or indirectly cite the paper from Krylov and Bogoliulov
[2] of 1937, regardless of whether the reports are in deterministic or stochastic systems. The asymptotic method
given by Krylov–Bogoliulov [2] is also known later on as the averaging method. Since then, several different
versions of linearization methods have been developed. For example, the techniques for deterministic
dynamics include steps like those of the perturbation methods (See for e.g. Refs. [3,4]), the harmonic balancing
methods (See for e.g. Ref. [5]) and the methods of multiple scales [6], etc. These methods are analytical rather
than numerical and provide an alternative to computer solutions. In addition, there are also linearization
methods that combine both analytical and numerical techniques. These algorithms [7] include the so-called
phase-space linearization method [8], which is based on replacing the nonlinear vector field by a set of linear
ones and are valid over a sufficiently small interval of time. Thus, it is actually a method that decomposes the
nonlinear governing equation into a set of linear equations, each valid and evolving over a segment of
trajectory. This linearization idea was later generalized and reported in Ref. [9].

On the other hand, there are significant numbers of researches devoted to the study of linearization
techniques for stochastic systems during the last two decades. The pioneering works include (See for e.g.
Refs. [10,11]). Their methods for stochastic nonlinear systems are later called the statistical linearization [12],
since the nonlinear function of the original system is replaced by a linear function. In addition, the work on the
equivalent linearization (EQL) of Ref. [13] is a suggestion from Ref. [12] to replace the nonlinear system by an
equivalent one. Extensive literature reviews concerning EQL with different criteria can be found in Roberts
and Spanos [14], or Socha and Soong [15].

Based on the linearization knowledge from single-degree-of-freedom (sdof) systems, the method has been
generalized to multi-dof (mdof) ones. For example, the studies [16–18] are proposed taking computational
efficiency into consideration. Besides, there are also group of researchers who developed linearization
techniques incorporating numerical methods. The elegant work [17] even employed the linearization idea to
decompose the non-Gaussian distribution into a sum of Gaussian ones for statistical systems. By doing so, the
method [17] is becomes applicable to statistical problems with larger dimensions.

Amongst all these aforementioned linearization methods, the system nonlinearity, which the most methods
are faced with, are focused either in localized or small areas, or in stiffness. Only few reports specifically
mention the applicability of their methods on nonlinear damping. Apparently, damping or friction induces
many nonlinear dynamic phenomena [1,15,19,20]. However, to the authors’ knowledge, there exist only a few
reports that discuss the linearization of this kind. The main reason may stem from the fact that the true
damping of system is very difficult to obtain accurately. Unlike its counterparts, mass and stiffness properties
can be directly measured or analytically computed by numerical models such as the finite element methods
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through computer-aided tools. In general, damping characteristics, whether they are internal (material, micro-
structural effects, friction, etc.) or external (boundary, fluid contact, fluid/structure interaction, etc.) can be
observed only by experimental measurements. As a result, only those linearization methods that are able to
physically incorporate measured signals can be used in engineering practices.

Motivated by this, the present study attempts to give a novel EQL method specifically for nonlinearly
damped structural systems. Nevertheless, a method [21] is provided to evaluate the system damping when it is
viscous. However, there is no way to determine if the damping of a system is linear or nonlinear before actual
measurements are made. In addition, the system is still restricted to be deterministic and sdof in the present
report. For this reason, the present method is yet to be verified for random or mdof systems.

2. Derivation of the method

In general, a unit mass, sdof system with nonlinear damping can be represented together with the initial
conditions by

€zþ f dðz; _zÞ þ o2
nz ¼ f ðtÞ, (1)

where f dðz; _zÞ denotes the nonlinear damping function, on is the undamped circular natural frequency, and f(t)
the externally applied forcing function, respectively. If the system is excited by a harmonic forcing function,
without loss of the generality, one can express the function as

f ðtÞ ¼ F sinðOtÞ. (2)

Thus, the solution of system (1) can be written as

zðtÞ ¼ z0ðtÞ þ zpðtÞ, (3)

in which z0(t) is the free or zero-input response characterized by the system itself and the initial conditions, and
zp(t) is the forced or zero-state response. It is also clear that the latter depends mainly on the characteristics of
excitation. Furthermore, zðtÞ � zpðtÞ if the system is stable and the steady-state responses only are of interest.
Since the external forcing function is periodic, as shown in Eq. (2), the total work done by/to system (1) for the
response per cycle can be represented by integrating both sides of Eq. (1) to obtainI

ð€zþ f dðz; _zÞ þ o2
nzÞdz ¼

I
f ðtÞdz; (4)

where the circle-integral denotes the integration for one complete cycle. Note that the expression on the RHS
of Eq. (4) actually represents the energy input to the system by the mechanism of the forcing function f(t).
Because of the energy conservation in each cycle, the total work done by them is zero. Thus, the averaged
dissipated energy per radian can be evaluated from the LHS of Eq. (4) to give

wd;z ¼
1

2p

I
f dðz; _zÞdz ¼

1

2p

Z tþT1

t

f d ðz; _zÞ _zdt; (5)

in which T1 is the period of the f(t). Notice from Eqs. (4) and (5) that wd,z is also equal to the averaged energy
input to the system. Or, the energy loss due to the damper is equal to the one supplied by the excitation under
the steady state [22]. Since the external excitation is assumed to be sinusoidal, it is then reasonable to write the
nonlinear responses in two parts: the time invariant and periodically alternating parts. In other words, one
writes the steady state of z(t) as

zðtÞ ¼ Z0 þ zaðtÞ ¼ Z0 þ Za sinðOt� fÞ, (6)

where f is the phase angle which is mainly due to the nonlinear damping forces. Substituting Eq. (6) back to
Eq. (4), one computes the input energy per radian from the RHS of Eq. (4) and obtains

wd;z ¼
1

2p

Z tþT1

t

f ðtÞ_zðtÞdt ¼
FZa

2
sinf. (7)

That is, one can compute the dissipated energy of the nonlinearly system from its input energy, Eq. (7), instead
of directly computing from Eq. (5).
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One applies the input modulation concept [21,23], or modulates the steady state of z(t) by its input. In other
words, the product modulation of f(t) and z(t) has the form

gzðtÞ ¼ f ðtÞ zðtÞ

¼
F Za

2
cosfþ Z0F sinðOtÞ �

F Za

2
cosð2Ot� fÞ. ð8Þ

Notice that the first term on the RHS of Eq. (8) is time-invariant, and others sinusoidal with frequencies of 1 O
and 2 O, respectively. And, in fact, Eq. (8) is the weak form of Eq. (7). Referring to the Fourier series, the
coefficients of gz(t) in Eq. (8) can be denoted a0, b1 and a2, respectively. And the last coefficient a2 can be
expressed as

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
2 � b2

2

q
, (9)

in which a0, a2, b1 and b2 are known as the Fourier coefficients associated with the cosine and sine functions.
Substituting these Fourier coefficient notations back to Eq. (7), the averaged input energy wd,z can now be
represented by

wd;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � a2

0

q
. (10)

By comparing Eq. (8) with Eq. (10), one can conclude that the second term (b1) on RHS of gz(t) does not
dissipate energy. It may be regarded as a sort of elastic strain energy resulting from the nonlinear damping
force.

On the other hand, one assumes that there exists a linear system that is considered equivalent to system (1)
and has the governing equation

€yþ 2zEQLon _yþ o2
ny ¼ f ðtÞ, (11)

subjected to the same initial conditions as the nonlinear one. zEQL in Eq. (10) is considered as the equivalent
viscous damping ratio to be determined. Note that the forcing function and the undamped natural frequency
of systems in (1) and (10) are all kept the same. Similar to the nonlinear system (1), the response of the linear
one takes the form

yðtÞ ¼ y0ðtÞ þ ypðtÞ. (12)

In addition, the steady state of y(t) is considered to have the form

yðtÞ � ypðtÞ ¼ Y sinðOt� fLÞ, (13)

where fL represents the phase angle due to the existence of the equivalent viscous damping. Applying the same
modulation as that in the nonlinear case, the modulated responses of the equivalent linear system is

gyðtÞ ¼ f ðtÞ yðtÞ

¼
FY

2
cosfL �

FY

2
cosð2Ot� fLÞ. ð14Þ

Again, the first term on RHS of Eq. (14) is time-invariant. Analogous to Eq. (8), Eq. (14) can be expressed in
terms of the Fourier coefficient notations as

gyðtÞ ¼ ða
0
0Þ � a02 cosð2Ot� fLÞ, (15)

where the prime is added to distinguish those coefficients of the linear from the nonlinear. Correspondingly,
the averaged dissipated energy per cycle of the EQL system can be written in terms of these coefficients as

wd ;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða02Þ

2
� ða00Þ

2
q

. (16)

In order to establish the equivalent relation between the nonlinear and linear systems, which are governed
by Eqs. (1) and (11), respectively, one considers that the differences in their amplitudes at some t are within a
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small tolerance e, or

zðtÞ � yðtÞ
�� ��pe. (17)

However, Eq. (17) may be generalized and equivalently written as

1

2p

I
f ðtÞ½zðtÞ � yðtÞ�dt

����
����pe � , (18)

if the computation is carried out in terms of complete number of cycles from the steady states. Note,
parameter e* in Eq. (18) also represents a small tolerance similar to e since f(t) is a bounded periodic function.
Furthermore, one may simply compute the differences between the square of these two dissipative energies.
Using Eqs. (10) and (16) to Eq. (18), one has

ðwd;zÞ
2
� ðwd;yÞ

2
�� �� ¼ a2

2 � a2
0

� �
� ða02Þ

2
� ða00Þ

2
� ��� ��pe � . (19)

To satisfy Eq. (19), a sufficient condition can be easily found, which is

a02! a2 together with a00! a0. (20,21)

Both conditions must be valid at the same time. However, if one looks closely, the former condition indirectly
suggests Y-Za. That is to require the output amplitudes of the two systems to be equal. In the meantime, the
latter condition in Eq. (21) implies that

cosfL !
a0

a2
. (22)

Or, the condition is to force the two-phase angles, f and fL, to be equal. Notice that if a0 ¼ 0 from Eq. (22),
fL ¼ p=2 or 901. Readers are referred to Ref. [23] for the detailed discussion in this case. The tangent of the
phase angle for the linear system is well known and can be expressed as (See for e.g. Ref. [20])

tanfL ¼
2rzL

1� r2
. (23)

Thus, one is able to solve the equivalent viscous damping ratio (zL) from Eqs. (23) and (22), obtains

zEQLðrÞ ¼
ð1� r2Þ

2r

a2

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða0=a2Þ

2

q� �
when a0a0, (24)

where r ¼ O=on. Using Eq. (10) to Eq. (24), the upper equation is in fact equivalent to

zEQL ¼
ð1� r2Þ

2r

wd ;z

a0

� �
. (25)

Thus, if one directly measures the dissipative energy from the nonlinear system, only one coefficient a0 is
enough to compute the equivalent viscous damping ratio. In addition, only the positive value of Eq. (25) can
be taken in accordance with the definition of the damping ratio.

3. Evaluation of the Fourier coefficients

3.1. Coefficient a0

The relation in Eq. (24) or Eq. (25) shows that the equivalent linear damping ratio of the EQL system can be
expressed in terms of the Fourier coefficients or the dissipated energy of the original nonlinear system. Now,
the main problem is how to correctly evaluate these coefficients so that the relation can be properly applied.
Notice that the first Fourier coefficient, a0, is time-invariant, which is dc of the modulated signal. The easiest
way to obtain its value is to design a low-pass filter (LPF) and to get rid of those periodic terms from the signal
gz(t). By doing that, one obtains

a0 ¼ gzðtÞ
�� ��

LPF
¼

FZa

2
cosf, (26)
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Fig. 1. Schematic diagram for obtaining the Fourier coefficients.
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where � � �k k denotes the filtered value from the RHS of Eq. (8). Fig. 1 graphically shows the concept of using
filters to obtain the Fourier coefficients.

Alternately, one may compute the following integration from RHS of Eq. (8), or

1

L

Z L0þL

L0

ðRHSÞdt ¼
1

L

FZa

2

Z L0þL

L0

cosfdt

�

þ Z0F

Z L0þL

L0

sinðOtÞdt�
FZa

2

Z L0þL

L0

cosð2Ot� fÞdt

	

¼
FZa

2
cosf. ð27Þ

In the above equation, all terms in RHS are zero except the first time-invariant one if L is taken in terms of
complete cycles of Ot. If the signals are discrete, one can practically compute the value of the LHS of Eq. (8)
from the modulated signal gz(t) similar to that of its RHS. In other words, the result takes the form

a0 ¼
1
L

Z L0þL

L0

gzðtÞdtffi
1

n

Xn

j¼1

gzðjDtsÞ, (28)

where Dts ¼ ð1=f sÞ and fs is the sampling frequency, n the number of sampling points in L. In fact, a0 in
Eq. (28) is the averaged value or the dc offset of the modulated signal gz(t) in [L0, L0+L]. During the
averaging, one may just take L to be large enough, instead of determining if the sampling is in complete cycles.
By doing so, the error is bounded and proved in Ref. [21]. And, the longer the L takes, the smaller is error a0.

3.2. Coefficient a2

The evaluation of the coefficient a2 is not as easy as its counterpart a0. However, one still has very useful
tools available. Consider the Fourier transform of Eq. (8) from the modulated signal, one gets

FT ½gzðtÞ�

2p
¼ a0dðoÞ þ iðb1=2Þ½dðoþ OÞ � dðo� OÞ�

þ ða2=2Þ½dðoþ 2OÞe�if þ dðo� 2OÞeif�, ð29Þ

where FT[.] denotes the Fourier transform from t into o, d(.) the delta (or impulse) function. Therefore, the
first method of obtaining a2 is from the Fourier transform of gz(t). One is thus able to identify the value at 2O
after it is transformed into the frequency domain. That value is actually one-half of a2, based on Eq. (29).

In addition to the above-mentioned method, by examining Eq. (29), it is also possible to design a band pass
filter (BPF) similar to Eq. (26), i.e., to obtain a2 by a BPF

a2 ¼ gzðtÞ
�� ��

BPF
, (30)

with its central frequency at 2O. Refer to Fig. 1 for detail.
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3.3. The quality index

It is also worthwhile to emphasize that the aforementioned linearization procedure is actually based on the
equivalence of the dissipated energies. In other words, the accuracy of the equivalent viscous damping ratio in
Eq. (25) depends completely on how accurately Wd,y can represent wd;z. This also means that the ratio of wd ;z

to wd;y, or

SEQL ¼
wd;z

wd;y
, (31)

can be used as the quality index to signify how well the nonlinearly damped system is represented. The ratio
index has a value of unity if the two systems are precisely identical. If SEQL 41.0 implies the present EQL
method under-estimates the original dissipated energy, or wd ;yowd;z.

4. Numerical examples

In order to verify the validity of the present EQL method, numerical simulations are conducted. The
nonlinearly damped system is considered to possess a bi-linear damping, or z ¼ z1if _zj j � Zc and z ¼ z2 if
_zj j4Zc, as shown in Fig. 2. The nonlinearities of simulations can be controlled by specifying the combination
of the two different damping ratios. Moreover, in the case of z1 ¼ z2, the system becomes linear with a viscous
damping ratio z1. During the simulations, the following parameters are employed:
�
 on ¼ 10p (or 5Hz),

�
 O ¼ 0.95on (or 4.75Hz),

�
 F ¼ 10,

�
 _Zc ¼ 1:0
with consistent units, and the sampling frequency is set to 200Hz.
Once the EQL method is checked with the case of z1 ¼ z2, several bi-linear simulations are conducted.

However, in order to delve further into the results predicted by the current EQL method, a typical time
response is presented in Fig. 3(a). This figure is selected because z2/z1 ¼ 3 and the quality index, SEQL, is
approximately 1.1. In other words, the original nonlinearly damped system dissipates 10% higher energy than
the EQL one. As can be clearly seen from Fig. 3(a), the time-domain response indicates that the EQL system
response (shown by solid line) is somewhat smaller than the original nonlinear one (dotted line). Actually, this
is already indicated by the quality index. SEQL41 means that the new EQL method underestimates the
z(t)
.

ζ1

ζ2

ζ1 ζ2ζ2

Fd

Zc

.

−Zc

.

ζEQL

t 

Fig. 2. A nonlinearly damped system with a two-sided, bi-linear damping function.
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Fig. 3. Typical z(t) and y(t) for z1 ¼ 0.05, z2 ¼ 0.15, zEQL ¼ 0.1326, and SEQL ¼ 1:1: (a) time history; (b): phase portrait.
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average dissipated energy. The phase portraits of Fig. 3(a) are shown in Fig. 3(b), wherein the portrait of the
EQL system is completely enclosed within the original one. As a consequence, the amplitude of y(t) is smaller
than that of z(t). However, the phase angles of the both systems coincide precisely with each other even from
the beginning of the transient response, shown in Fig. 3(b). In other words, this method has correctly forced
the EQL system to have the same lag phase angle as the original one. However, the amplitude of the EQL
system is somewhat sacrificed for the sake ofwd ;yowd;z.

The fast Fourier transform (FFT) is performed to the modulated steady state response, gz(t), of the time
responses shown in Fig. 3 to further study the modulated signal. The transformed result is shown in Fig. 4. It
can be seen from the figure that there are two high peaks located at o equals to 0 and 2O. The former is the
one that is denoted by a0, while the latter one-half of a2 when referred to Eq. (29). Not surprisingly, this result
is exactly the same as that given in Eq. (8). At the same time, it also indicates that the appropriate values
of LPF and BPF from gz(t) can be used to get a0 and a2. However, one cannot see any peak at O since Z0 in
Eq. (8) is zero or too small to be seen. Besides, z(t) in Fig. 3(a) does not appear dc offset either.

If the nonlinear system is slightly altered by relaxing the nonlinear damping to one-sided bilinear, i.e., the
system damping is changed to z ¼ z1 when _zpZc and z ¼ z2 when _z4Zc. The FFT result of the modulated
signals is shown in Fig. 5. Comparing Fig. 5 with Fig. 4, the change of damping is accompanied with an
increasing in a0. In the meantime, the peak located at O can now be clearly seen. The height of this peak is one-
half of b1. One can notice that the coefficient b1 does not play any role in the EQL procedures. However, it can
be used as an index to signify how strong the nonlinearity can bring the system away from zero mean. The
larger b1 indicates that the system will behalf a stronger nonlinear characteristics and have a larger dc offset, as
in Eq. (8). Fig. 6 substantiates this argument in which the dc offset Z0 can be clearly noticed. Obviously, there
is no dc offset response for the EQL system response y(t) since the external excitation has the zero mean and
the system is linear. However, a non-zero response may exist for a nonlinearly damped system even though the
excitation has a zero mean. This dc offset becomes zero if z1 ¼ z2, which is linear.
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5. Experiments

In addition to the numerical verifications given in the last section, several experimental measurements are
carried out. The main objective of the experiments is to verify the validity of Eq. (8). The experimental setup
for the measurements is shown in Fig. 7. The test specimen is an austenite stainless-steel cantilever with
dimensions 1.0T

	 21.5W
	 194L mm (ca. 35.6 g) directly mounted to a shaker. At the end of the beam is a

plastic straw with the length 96mm and the outer diameter 8.6mm (ca. 2 g) firmly glued to the beam.
Meanwhile, in order to simulate the damping forces acting on the beam, the straw is inserted into a cup of
viscid liquid during the experiments. The inserted depth is set in such a way that the straw is at the depth d

when the beam is at its static equilibrium position. For example, in the case of d ¼ 0mm, the tip of the straw is
just about to contact the liquid surface before the beam starts oscillating. On the other hand, the tip
completely immerses in the liquid during the oscillations if d ¼ 20mm. Since the damping force is proportional
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to the depth inside the liquid, the straw thus acts as the nonlinear damper in the experimental system. Refer to
Fig. 7 for the details of the set-up.

During the experiments, the sampling frequency is set to 200Hz, and sinusoidal excitations with the
constant frequency (O) are applied from the controller to the shaker and detected by accelerometer 1 (S1),
which is directly mounted on the base of the cantilever. The amplitudes of these excitations are all kept the
same while its frequency may be changed if so desired. The system responses are then detected and acquired by
accelerometer 2 (S2), which is located at the tip of the beam. Both signals are then acquired and sent to the
laptop computer for the later analyses.

Figs. 8(a) to (c) show the typical results in which the modulated signals are transformed into the frequency
domains. The peaks appear at both 1O and 2O can be clearly seen in these plots. Note that the peak heights at
2O are corrected since the original value can be realized as one-half of the coefficient a2, as shown in Eq. (10).
However, care must be taken when measuring b1 from the plot, since there is also another way of affecting the
peak at 1O. Experimentally, the digital filter that is applied during the data acquisition may also create an
extra peak at the frequencies like 1O. This phenomenon is also known as the signal leakage [24]. Nevertheless,
the experimental results further verify the validity of Eq. (10), which is the core of the present EQL method.

The three plots in Fig. 8 are intentionally shown in the same scales for comparison. The dissipative energies
corresponding to the three cases are tabulated in Table 1. From the first two cases, namely (a) and (b) where
d ¼ 0mm, one can find that the increase of energy loss may be due mainly to the increase of a2, after
comparing the first two plots where a0 remains almost unchanged. Meanwhile the increase of a2 is relatively
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Fig. 8. A typical modulated response in the frequency domain: (a) d ¼ 0mm, O ¼ 13.6Hz; (b) d ¼ 0mm, O ¼ 14.5Hz; and (c) d ¼ 20mm,

O ¼ 13.6Hz.
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apparent. On the other hand, one allows the straw damper to provide a larger damping force by immersing it
deeper into the liquid. The result is shown in Fig. 8(c) for the case of d ¼ 20mm. More dissipative energy is
observed in this case from Table 1. However, it is also accompanied by a smaller coefficient b1, as shown in
Fig. 8(a) and (c). As mentioned earlier, this means that the value of this coefficient can be regarded as an index
signifying how strong the nonlinear damping force is. Accordingly, one can conclude that the case shown in
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Table 1

The measured dissipative power

d (mm) O (Hz) wd 10�4 j/rad power mW zEQL % Fig.

0 13.6 0.0120 (0.0019) 0.1023 (0.0159) – 8(a)

14.5 0.2480 (0.0004) 2.3 10.99 (0.3) 8(b)

20 13.6 0.1166 (0.0002) 1.0 8.54 (0.13) 8(c)

(y), std. deviation.
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Fig. 8(a) has a stronger nonlinearity than the one in 8(c), i.e., the coefficient b1 of Fig. 8(a) is larger than that of
8(c). More importantly, the tabulated data assure that measuring the dissipative energy from the Fourier
coefficients of the modulated signal is easy and practical.
6. Conclusions

A novel equivalent linearization method for nonlinearly damped sdof systems is developed and presented in
this paper. The method is derived by modulating the steady state responses of the original nonlinear system.
During the linearization, the present EQL method requires the dissipated energy of the nonlinear system to
equal to that of the target linear one. As a consequence, this criterion is equivalent to forcing both the phase
angles and amplitudes of the two systems to be equal, or at least within a small allowable error. The equivalent
viscous damping ratio can be then computed from the modulated signal.

In addition, the present report also theoretically explains the validity of the method, i.e., the EQL method is
de facto closely related to the Fourier coefficients of the modulated responses. In other words, the dissipated
energy of the nonlinear system can be expressed in terms of these Fourier coefficients. As a result, the core
problem of this linearization method is to correctly obtain these coefficients from the modulated signal. A few
approaches are discussed in the present paper, including averaging the signals, applying the filters and the FFT
methods. The last one is clearly demonstrated and shown by examples. The results of the examples indicate
that the new linearization method gives the equivalent viscous damping with good accuracy. Moreover,
carefully designed experiments are carried out after the numerical simulations. The experimental data also
validate that the finding of the Fourier coefficients from the modulated signal is feasible. Thus, the dissipative
energy of the nonlinear system damper can be computed from these Fourier coefficients of the modulated
signal.
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