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Abstract

A new method for simulating nonlinear motion of cracked crankshaft is proposed, and the transient vibration response

of a cracked crankshaft is evaluated and analyzed. First, the crankshaft without crack is simplified as a finite element

model based on spatial Timoshenko beam element, and the vibration modes of the crankshaft are calculated and compared

with the results presented in other published literatures. Then, the frequently occurred crack in crankpin-web fillet region is

studied. According to the characteristic of this kind of crack, a new spatial crack beam element is developed, and a cracked

crankshaft model, which combines crack beam element and Timoshenko beam elements, is established. Subsequently, the

breathing behavior of the crack under operating condition is discussed, and the nonlinear equation of motion of cracked

crankshaft is set up. Finally, the transient vibration response of the cracked crankshaft under fire condition is evaluated,

and the influence of the crack depth on the vibration response of torsion, translation and bending are analyzed. The

modeling and analysis procedures are applied to a crankshaft system of a four in-line cylinder engine. This investigation

provides a useful tool for the vibration analysis and crack detection of cracked crankshaft system.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The crack in crankshaft is one of the most frequently occurred faults for Internal Combustion Engines.
According to a survey on the shipwreck during 1976–1980 in Japan, 18.6% of the causes is the crankshaft
broken [1]. Many researchers have investigated the dominant mechanism, causation, and extension of the
crack in crankshaft surface, or the life prediction for crankshaft. Pandey [2] investigated the dominant
mechanism of failure of crankshafts, and estimated the stress level required for fatigue initiation and
propagation from the crankpin-web fillet region. Sofronas [3] analyzed and determined the causation for failed
crankshaft in a single-engine aircraft. Taylor [4] predicted the fatigue limit for a crankshaft by using a
technique of crack modeling. Guagliano [5] studied the crack propagation in a crankshaft. Miyahara [6]
predicted the fatigue crack initiation and propagation lives in a crankshaft quantitatively. Wang [7] studied the
diagnosis of crankshaft cracks via the measurement of the torsional modal characters of an imitated
crankshaft flywheel system. To simulate the vibration behavior of crankshaft, many models including
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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equivalent system, simply supported beam, spatial rigid frame and solid finite element are used in previous
work [8–13]. It is evident that the solid finite element model in 3-D is the most competent one; however, it is
computationally expensive to simulate the transient vibration and nonlinear vibration of a crankshaft system.
The simply supported beam model is of little exactness due to its immoderate simplicity. The spatial rigid
frame model combined with the method of dynamic stiffness matrix, transfer matrix and the finite element
based on Euler–Bernulli beam theory were applied to analyze the dynamic behavior of the crankshaft in Refs.
[10–12], respectively. However, the results showed that a large difference existed between the experimental and
analytical value of certain modes.

It is evident that the spatial rigid frame model is simplified and computationally effective for vibration
analysis of crankshaft system. Though the discrete components of crankshaft are not slender beams, Refs.
[13–15] indicated that the Timoshenko beam elements including rotary inertia and the shear deformation could
improve the accurateness of analytical results (especially for higher modes). Therefore, it is proposed to
establish a finite element model for vibration analysis of crankshaft system by applying a 3-node spatial
Timoshenko beam element in this work. Moreover, the engine block stiffness is idealized as a pair of vertical
and horizontal linear springs for each main bearing, and the other parts are simplified as equivalent mass
elements. In order to exhibit effectiveness of the proposed model, the frequencies of a crankshaft are
determined and compared with the results presented in Refs. [10,13].

Because of fatigue and stress concentration, crack occurs most frequently in the crankpin-web fillet region for
crankshaft. Generally, this crack will be transverse, 451 to the cross-section and at the surface of crank web [4,16].
According to the case, a corresponding slant crack beam element is proposed to model the crank web with such
kind of crack. It is well known that the presence of a transverse crack in a structure member would introduce local
flexibility, which for a beam can be described by a local flexibility matrix [17]. Such theory is widely used in many
open literatures for the dynamic analysis of crack beam, shaft and rotor [17–21]. Based on the theory, the stiffness
of the beam element with slant crack is developed in this study. Thereupon, a new model for cracked crankshaft is
established by combining the developed slant crack beam element and the 3-node Timoshenko beam elements
mentioned above. In order to validate the developed slant crack beam element and the method for cracked
crankshaft model, the frequencies of a cracked single cylinder crankshaft are evaluated numerically by using beam
elements and solid elements, respectively, and the results are compared with each other.

In order to simulate the motion of the crankshaft, the support provided by engine block is considered, and
the rotating crankshaft and the non-rotating engine block are combined in a rotating coordinate system.
Furthermore, the breathing behavior of crack is studied, and the nonlinear motion equation for cracked
crankshaft system is set up. The crankshaft of a four in-line cylinder engine provided in Ref. [12] is applied as
an example, and a slant crack is presumed in one of the crankpin-web fillet region. The current modeling
method is implemented, the motion of the crankshaft with or without crack is simulated, and the influence of
crack depth on the transient response of operating crankshaft is analyzed.

2. 3-node Timoshenko beam element

The 3-node Timoshenko beam element applied in this paper is a quadratic beam element in 3-D (as in Fig. 1),
and has six degrees of freedom at each node, these include translations ðu; v; wÞ in the x, y, and z directions and
rotations ðyx; yy: yzÞ about the x, y, and z directions . It is an element including shear deformation and rotary
inertia effects and suitable for analyzing slender to moderately stubby and thick beam structures.

The shape function of the 3-node element is

Ni ¼
1
2
ZðZ� 1Þ; Nj ¼

1
2
ZðZþ 1Þ; Nk ¼ 1� Z2, (1)

where Z is the nature coordinate ð�1pZp1Þ.
The displacement at a generic point p on the element is expressed in a vector form as
fdpg ¼ ½ up vp wp yxp yyp yzp �T. Then the displacement of point p is related to the element nodal
displacements {di}, {dy} and {dk} by

fdpg ¼ Ni � fdig þNj � fdjg þNk � fdkg, (2)

fdig, fdjg, fdkg is the vector of displacement at nodes i, j and k respectively.
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Fig. 1. The 3-node Timoshenko beam element.
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3. Modeling for crankshaft-bearing system

For comparison purpose, the crankshaft-bearing system of a 4 in-line cylinder engine provided in Refs.
[10,13] is applied in this study. The system includes crankshaft body, front pulley, flywheel and main bearing.
The current 3-node Timoshenko beam element is applied to establish a valid model for the vibration behavior
of the crankshaft. The modeling procedure is now summarized.

3.1. Crankshaft body

In the crankshaft body, the shaft members of five main journals, four crankpins, and the front pulley end
and flywheel end are represented by a spatial round 3-node Timoshenko beam element of appropriate
diameters. Each of the 3 central main journals is divided into 2 elements. Each of the end journals, flywheel,
and front pulley ends is considered as a single element. Each cheek is divided into 3 sections as Ref. [13], and
every section is represented by a spatial rectangular 3-node Timoshenko beam element. The finite element
model of overall crankshaft body is shown in Fig. 2. There are 38 elements and 77 nodes in total. Only the
initial and terminal nodes of each element are shown. The dimensional parameters of the elements are listed in
Table 1.

3.2. Front pulley and flywheel

The front pulley and flywheel are idealized by a set of masses and mass moments of inertia about 3
orthogonal axes attached at the end nodes of the corresponding elements, i.e., the front pulley at node 1 and
the flywheel at node 77 with masses and moments of inertia given in Table 2.

3.3. Crankshaft main bearings

Each of the main bearings is idealized according to Ref. [10]. The oil film of each journal bearing is idealized
by a set of equivalent linear spring and dashpots in the vertical and horizontal direction, i.e. the y and z

direction in Fig. 2. The linear spring and dashpots elements are attached at the node in the middle of each
bearing. The stiffness of the equivalent linear spring attached at two end journal (1# and 5#) is
kI

yy ¼ kI
zz ¼8� 108N/m, and the stiffness of the equivalent linear spring attached at three central journal

(2#, 3# and 4#) is kI
yy ¼ kI

zz ¼9� 109N/m.

3.4. Piston and connection rod

The equivalent mass of the piston and connecting rod are idealized as a set of lumped masses at the end
nodes of a crankpin element. The equivalent mass is given in Ref. [13] is used, and m ¼ 1.8 kg. This equivalent
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Table 1

Element dimensions and the members they represent in Fig. 2

Element Dimension (mm)

1 f48� 72

2, 10, 11, 19, 20, 28, 29, 37 f48� 21.75

5, 7, 14, 16, 23, 25, 32, 35 70� 19.5� 41

4, 8, 13, 17.22, 26, 31, 35 73� 14� 36

3, 9, 12, 18, 21, 27, 30, 36 84� 13� 29

6, 15, 24, 33 f46� 43.5

38 f48� 35.5

Table 2

Mass properties of front pulley and flywheel

M (kg) Ixx (kgm2) Iyy (kgm2) Izz (kgm
2)

Front pulley 2.01 6.38� 10�3 3.65� 10�3 3.65� 10�3

Flywheel 10.15 0.15 0.075 0.075

Fig. 2. The finite element model of the crankshaft body.

X.Y. Lei et al. / Journal of Sound and Vibration 295 (2006) 890–905 893
mass is divided equally into two parts attached at each end of the crankpin. Thus, a lumped mass of 0.9 kg has
been considered at all translational freedoms at two end nodes of elements 6, 15, 24 and 33.

4. Results and discussion

Subspace iteration is used to evaluate the modes of the finite element model of the 4-cylinder engine
crankshaft established in Section 3. The evaluated and experimental results of the first 8 orders natural
frequencies and the modes are listed in Table 3. For comparison, the corresponding results presented in
Refs. [10,13] are listed in the table too. In Table 3, ‘‘I’’ refers to the vibration deformation in x–y plane, and
‘‘O’’ refers to the vibration deformation in x–z plane of Fig. 2.

It can be seen from the results presented in Table 3 that:
(1)
 The 1st and 5th order natural frequency simulated using 3-node spatial Timoshenko beam element is the
most approximate to the experimental value (the experimental result of second mode is not given in
Refs. [10,13]). The error of the first order in our study is 5.6%, whereas it is 16.5% in Ref. [10].
(2)
 The 5th and 6th mode shapes are consistent with the experimental results, and the results of Ref. [13] are
not consistent with the experimental results.
(3)
 To the 7th and the 8th mode, the frequencies evaluated are not exact and the mode shapes are not
consistent with the experimental results. The same case exists in Refs. [10,13] too. This problem was
investigated in Ref. [22], and a conclusion is drawn that the causation is simplifying the flywheel as a
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Table 3

Comparison of the natural frequencies (Hz) obtained by different methods

Orders Results of Ref. [10] Results of Ref. [13] Current results Experimental results

1 223.0(I) 225.5(I) 254.37(I) 267.0(I)

2 255.0(O) 334.4(O) 257.84(O) —

3 393.0(O) 383.6(O) 354.37(O) 410.0(O)

4 424.0(I) 445.3(I) 504.99(I) 440.0(I)

5 478.0(O) 561.0(I) 536.87(O) 542.0(O)

6 540.0(I) 691.2(O) 635.12(I) 542.0(I)

7 639.0(O) 1000.0(O) 926.53(O) 619.0(I)

8 669.0(I) 1000.6(I) 1088.40(I) 658.0(O)

X.Y. Lei et al. / Journal of Sound and Vibration 295 (2006) 890–905894
lumped mass. When the flywheel is meshed by solid elements, the accuracy of the first 10 order mode
frequencies will be improved, and the mode shapes will be consistent with that of the experiments.
Though the third and fourth natural frequencies predicted by current model have more errors than those of
Refs. [10,13], the results and discussion indicate that the finite element model about crankshaft based on the
spatial Timoshenko beam element is effective.

5. Modeling for the cracked crankshaft

In Sections 3 and 4, a finite element model was proposed to simulate the vibration behavior of the
crankshaft. In this section, we will build a cracked crankshaft model based on the success of previous sections.

5.1. The cracked crankshaft model

Under the firing condition, crankshaft is endured an alternative impulsion load. The magnitude of stress in
the crankpin-web fillet region will change periodically with a great extent, and then the damage with fatigue
crack occurs frequently in this region. Generally, the crack occurs between the main journal and the crankpin,
and it is transverse, 451 to the cross-section and at the surface of crank web [16] (see Fig. 3).

For the crack in the crankpin-web fillet region extends from the surface into the crank web and does not
extend to other part of the crankshaft. It is proposed to represent the cracked crank web by a 2-node slant
crack beam element and simplify the other parts of the crankshaft as the method described in Section 3.
Comparing with the model shown in Fig. 2, the cracked model consists of the same number of elements, and
the number of the nodes will be cut down according to the number of the crack beam elements representing
cracked crank web. The approach for developing the stiffness of the 2-node slant cracked element will be
described as follows.

5.2. 2-node spatial beam element with slant surface crack

Several approaches can be used to develop the stiffness of the crack beam element. Refs. [17,20] estimated
the stiffness of a cracked rotor by introducing a local flexibility matrix. Ref. [23] represented the cracked
section by a spring to model a simply supported beam. In this study, the stress intensity factors presented in
Ref. [24] are applied and a new beam element with 451 slant surface crack is developed.

Consider a rectangular cross-section beam with given stiffness properties, the width and the height of the
cross-section are w and h, respectively. The depth of the slant transverse crack is a and the angle towards the
cross-section of the beam is 451 (see Fig. 4). The beam is loaded with axial force P1, shear forces P2 and P3,
bending moments P4 and P5, and torsional P6. The dimension of the local flexibility matrix depends on the
numbers of freedom (each node has six degrees of freedom), here is 6� 6. The crack is assumed to affect only
the beam stiffness and do not affect the mass distribution (still be same as that of the 2-node Euler–Bernoulli
beam element), the stiffness matrix can be calculated as follows.
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Fig. 4. A crack beam element in general loading.

Fig. 3. The crack in crankpin-web fillet region.
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Paris’ equation [17] gives the additional displacement mi due to a crack of depth a, in the i direction, as

mi ¼
q
qPi

Z a

0

JðaÞ da
� �

, (3)

where J(a) is the Strain Energy Density Function (SEDF) and Pi is the corresponding load. The SEDF is
defined by

J ¼
1

E0

X6
i¼1

K I i

 !2

þ
X6
i¼1

K II i

 !2

þm
X6
i¼1

K III i

 !2
2
4

3
5, (4)

where E0 ¼ E for plane stress or E0 ¼ E=ð1� n2Þ for plane strain, E is the modulus of elasticity, m ¼ 1þ n,
n is the Poisson ratio (n ¼ 0:3 for steel) and Kij ði ¼ I; II; III; j ¼ 1; 2; . . . ; 6Þ are the crack Stress intensity
Factors (SIF).

Then the local flexibility due to crack per unit width is

cdx
ij ¼

qmi

qPj

¼
q2

qPi qPj

Z a

0

JðaÞ da
� �

. (5)

Then integrated along the width of the crack, we have

cij ¼
qmi

qPj

¼
q2

qPi qPj

Z w

0

Z a

0

JðaÞ da dx

� �
¼

q2

qPi qPj

w

Z a

0

JðaÞ da
� �

. (6)

According to material mechanics and fracture mechanics theory, the distribution of bending stress and
shear stress introduced by torsion in the slant rectangular section is nonlinear. In order to mitigate the
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complexity, the distribution is moderately simplified to be linear in this study. Thus the stress intensity factors
for a strip of unit thickness with 451 slant crack are:

K I1 ¼ s1I
ffiffiffiffiffiffi
pa
p

F1ðsÞ; s1I ¼ P1=ð2whÞ,

K I3 ¼ s3I
ffiffiffiffiffiffi
pa
p

FII ðsÞ; s3I ¼ �P3=wh,

K I4 ¼ s4I
ffiffiffiffiffiffi
pa
p

F1ðsÞ; s4I ¼ ð3P4=ð2w3hÞÞx,

K I5 ¼ s5I
ffiffiffiffiffiffi
pa
p

F 2ðsÞ; s5I ¼ 3P5=ðwh2
Þ,

K I6 ¼ s6I
ffiffiffiffiffiffi
pa
p

F1ðsÞ; s6I ¼ �P6x=ða0xw2h2
Þ; ðwX

ffiffiffi
2
p

hÞ; s6I ¼ �P6x=ða0w3hÞ; ðwo
ffiffiffi
2
p

hÞ,

K II1 ¼ s1II
ffiffiffiffiffiffi
pa
p

F IIðsÞ; s1II ¼ P1=ð2whÞ,

K II3 ¼ s3II
ffiffiffiffiffiffi
pa
p

F 1ðsÞ; s3II ¼ �P3=ðwhÞ,

K II4 ¼ s4II
ffiffiffiffiffiffi
pa
p

F IIðsÞ; s4II ¼ ð3P4=ð2w3hÞÞx,

K II5 ¼ s5II
ffiffiffiffiffiffi
pa
p

F IIðsÞ; s5II ¼ 3P5=ðwh2
Þ,

K III2 ¼ s2III
ffiffiffiffiffiffi
pa
p

F IIIðsÞ; s2III ¼
ffiffiffi
2
p

P2=ð2whÞ,

K III6 ¼ s6III
ffiffiffiffiffiffi
pa
p

F IIIðsÞ; s6III ¼
ffiffiffi
2
p

P6=ð4a0wh2
Þ; ðwX

ffiffiffi
2
p

hÞ; s6III ¼
ffiffiffi
2
p

P6=ð4xw2hÞ; ðwo
ffiffiffi
2
p

hÞ,

K I2 ¼ K II2 ¼ K II3 ¼ K II6 ¼ K III1 ¼ K III3 ¼ KIII4 ¼ K III5 ¼ 0, (7)

where

F 1ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ps
tan

ps

2

r
0:752þ 2:02sþ 0:37 1� sin

ps

2

� �3
cos

ps

2

; F 2ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ps
tan

ps

2

r
0:923þ 0:199 1� sin

ps

2

� �4
cos

ps

2

;

F IIðsÞ ¼
1:122� 0:561sþ 0:085s2 þ 0:180s3ffiffiffiffiffiffiffiffiffiffiffi

1� s
p ; F IIIðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ps
tan

ps

2

r
; s ¼

ffiffiffi
2
p

a=ð2hÞ,

a0and x are the free torsional coefficient of the rectangle cross-section beam, its evaluation has relation to w=h,
which is listed in Table 4.

Combining relations of Eqs. (4), (6) and (7) yields the elements of the local flexibility matrix C due to the
slant crack cij (i, j ¼ 1, 2,y, 6):

c11 ¼
p

E0w

Z a

0

sF2
1ðsÞ ds,

c13 ¼ c31 ¼
�p
E0w

Z a

0

sF1ðsÞF IIðsÞ ds,

c14 ¼ c41 ¼
6p

E0w2

Z a

0

Z 1=2

0

xsF 2
1ðsÞ dx ds,

c15 ¼ c51 ¼
6p

E0A

Z a

0

sF 1ðsÞF 2ðsÞ ds,
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Table 4

The evaluation of the coefficients a0 and x related to h/w

h/w 1.00 1.20 1.50 1.75 2.00 2.50 3.0 4.0 5.0 6.0 8.0 10.0 N

a0 0.208 0.219 0.231 0.239 0.246 0.258 0.267 0.282 0.291 0.299 0.307 0.313 0.333

x 1.00 0.93 0.86 0.80 0.77 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74
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c16 ¼ c61 ¼

�2p
E0a0A

R a
0

R 1=2
0 xsF 1ðsÞF IIðsÞ dx ds ðwX

ffiffiffi
2
p

hÞ;

�2p
E0a0xw2

R a
0

R 1=2
0

xsF1ðsÞF IIðsÞ dx ds ðwo
ffiffiffi
2
p

hÞ;

8>><
>>:

c22 ¼
pm

E0w

Z a

0

sF 2
IIIðsÞ ds,

c26 ¼ c62 ¼

pm

2E0a0A

R a
0 sF2

IIIðsÞ ds ðwX
ffiffiffi
2
p

hÞ;

pm

2E0a0xw2

R a
0 sF 2

IIIðsÞ ds ðwo
ffiffiffi
2
p

hÞ;

8><
>:

c33 ¼
p

E0w

Z a

0

sF2
IIðsÞ ds,

c34 ¼ c43 ¼ �
6p

E0w2

Z a

0

Z 1=2

0

xsF 1ðsÞF IIðsÞ dx ds,

c35 ¼ c53 ¼ �
6p

E0wh

Z a

0

sF2ðsÞF IIðsÞ ds,

c36 ¼ c63 ¼

2p
E0a0xA

R a
0

R 1=2
0 sxF2

IIðsÞdx ds ðw �
ffiffiffi
2
p

hÞ;

2p
E0a0w2

R a
0

R 1=2
0 sxF 2

IIðsÞ dx ds ðwo
ffiffiffi
2
p

hÞ;

8>><
>>:

c44 ¼
18p
E0w3

Z a

0

Z 1=2

0

xsF 2
1ðsÞ dx ds;

c45 ¼ c54 ¼
36p

EAw

Z a

0

Z 1=2

0

xsF1ðsÞF 2ðsÞ dx ds,

c46 ¼ c64 ¼

�6p
E0a0xw2h

R a
0

R 1=2
0 sx2F 1ðsÞF IIðsÞ dx ds ðw �

ffiffiffi
2
p

hÞ;

�6p
E0a0w3

R a
0

R 1=2
0 sx2F 1ðsÞF IIðsÞ dx ds ðwo

ffiffiffi
2
p

hÞ;

8>><
>>:

c55 ¼
36p
EAh

Z a

0

sF2
2ðsÞ ds,
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c56 ¼ c65 ¼

�
12p

E0a0xAh

R a
0

R 1=2
0

sxF2ðsÞF IIðsÞ dx ds ðwX
ffiffiffi
2
p

hÞ;

�
12p

E0a0Aw

R a
0

R 1=2
0 sxF 2ðsÞF IIðsÞ dx ds ðwo

ffiffiffi
2
p

hÞ;

8>><
>>:

c66 ¼

2p
E0a0Ah

R a
0

R 1=2
0 s

1

x
x2F2

IIðsÞ þ
m

4
F2

IIIðsÞ

� �
dx ds ðwX

ffiffiffi
2
p

hÞ;

2p
E0a0w3

R a
0

R 1=2
0

s x2F 2
IIðsÞ þ

m

4x
F 2

IIIðsÞ

� �
dx ds ðwo

ffiffiffi
2
p

hÞ;

8>>><
>>>:

c12 ¼ c21 ¼ c23 ¼ c32 ¼ c24 ¼ c42 ¼ c25 ¼ c52 ¼ 0, (8)

where A is the area of the cross-section of the beam, a ¼ a
ffiffiffi
2
p

=ð2hÞ, x ¼ x=w.
The total flexibility of the cracked element can be obtained as ½Cc� ¼ ½C� þ ½C0�. [C0] is the total flexibility

matrix of the beam without crack, which can be derived by neglecting shearing action and by using the strain
energy [20].

½C0� ¼

l=AE 0 0 0 0 0

0 l3=3EIx 0 0 l2=2EIx 0

0 0 l3=3EIy �l3=2EIy 0 0

0 0 �l2=2EIy l=EIy 0 0

0 l=2EIx 0 0 l=EIx 0

0 0 0 0 0 l=GJ

2
6666666664

3
7777777775
, (9)

where A is the area of the cross-section of the beam, l is the element length. Using the principle of virtual work,
the stiffness matrix of the cracked element can be written as

½Kec� ¼ ½T�½Cc�
�1½T�T, (10)

where [T] is the transformation matrix

½T�T ¼

�1 0 0 0 0 0 1 0 0 0 0 0

0 �1 0 l 0 0 0 1 0 0 0 0

0 0 �1 0 �l 0 0 0 1 0 0 0

0 0 0 �1 0 0 0 0 0 1 0 0

0 0 0 0 �1 0 0 0 0 0 1 0

0 0 0 0 0 �1 0 0 0 0 0 1

2
666666664

3
777777775
.

5.3. Application example

In order to validate the current crack element and the approach for cracked crankshaft model, an imitated
crankshaft (not an actual crankshaft) including a crack is applied. Fig. 5(a) shows the finite element model
meshed by solid elements, and a slant crack is contained in the left crank web. The total of elements is 8646,
and the total of nodes is 16,428. Fig. 5(b) shows the model meshed by the current cracked element and 3-node
Timoshenko beams. The total of elements is 14, the total of nodes is 28, and the element 5 is a crack beam
element. The dimensions of the beam elements are listed in Table 5.

The influences of the crack depth on the natural frequencies of the two models are calculated respectively,
the results of first four natural frequencies are shown in Fig. 6.

From Fig. 6, it can be seen that the natural frequencies of the two models are approximate, and the
changes due to the crack depth are coincident in the rough. It is well known that solid finite element
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Table 5

Element dimensions and the members they represent in Fig. 5(b)

Element 1 2 3, 11 5, 7 6 4, 8 9, 10 12 13 14

Dimension (mm) f96� 60.5 f50� 10 f50� 66 92� 26� 25 f53� 72 72� 25.5� 50 180� 22� 90 f50� 22 f60� 30 f40� 45

Fig. 5. The models of the imitated crankshaft (a) The solid element model; (b) the beam element model.
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method is robust for vibration analysis of structure, such that the application proves that the current crack
beam element and the approach for cracked crankshaft model are valid for the vibration analysis of cracked
crankshaft.
6. Nonlinear equation of motion

In order to find the dynamic response of the crankshaft-bearing system, the rotating crankshaft must be
analyzed by combining with the non-rotating (fixed) main bearing. A common coordinate system is required
for the combined model. For this reason, the analysis is performed with respect to a right-handed rotating
coordinate system ðX ; Y ; ZÞ that is attached to the crankshaft (see Fig. 7). The X coordinate is along the
crankshaft axis towards the flywheel end and the Y coordinate point always to crankpin. The dynamic analysis
described in this report assumes that the mass matrix [M] of crankshaft system is time invariant.

Let the rotating speed of the crankshaft be o, the angle between the initial position and the coordinate
origin ðx; y; zÞ be 0 (i.e., when t ¼ 0, system ðX ; Y ; ZÞ is superposed with system ðx; y; zÞ). Therefore, under
the rotating coordinate system the supporting stiffness [Ka] is

½Ka� ¼
KYY KYZ

KZY KZZ

" #
¼ ½T0�T

kyy 0

0 kzz

" #
½T0�, (11)

where

½T0� ¼
cosðotÞ � sinðotÞ

sinðotÞ cosðotÞ

" #
.

If kyy ¼ kzz, then KYZ ¼ KZY ¼ 0 and KYY ¼ KZZ ¼ kyy ¼ kzz. Combining [Ka] and the stiffness matrix of
crankshaft body, the total stiffness matrix [K] of the operating crankshaft- bearing system can be yielded.



ARTICLE IN PRESS

Fig. 6. The natural frequencies of the two models versus crack depth.

z

y

Z
Y

�t

Fig. 7. Rotating coordinate system.
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6.1. Modeling of breathing crack

In the operating condition, the crankshaft endures a cyclical impulsive load and the crack in crank web will
be open and close (i.e., breathing). In this study, only fully open or fully closed conditions of crack are
considered. When the crack is fully closed, the crankshaft will be treated as uncracked, the total stiffness of
crankshaft-bearing system is [Ka]. In other cases the crack will be treated as fully open, the total stiffness of
cracked crankshaft-bearing system is [Kb]. For the crack beam element shown in Fig. 8, let y be the rotation
displacement due to the bending moment M in x-y plane. Then the crack is open or closed according to the
sign of the relative rotation Dy ðDy ¼ yj � yiÞ between nodes i and j, i.e., it is evaluated if the stresses in the
cracked section are of tension or compression according to the bending moment that is applied at this cross-
section. Then, the equation of motion that governs the dynamic behavior of the crankshaft-bearing system
with a crack can be represented as expression:

½M�f €Ug þ ½D�f _Ug þ ½KðDyÞ�fUg ¼ fFðtÞg, (12)

where

KðDyÞ½ � ¼
½Ka� Dy40 ðcrack is closedÞ;

½Kb� Dyp0 ðcrack is openÞ;

(

[D] is the damping of system, {F(t)} is the vector of load applied on the crankshaft, they will be discussed later.
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Fig. 8. Crack beam element.
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6.2. Damping of crankshaft-bearing system

In the dynamic crankshaft-bearing system, there are two types of damping: hysteresis damping and oil film
viscous damping. The oil film viscous damping is idealized by dashpots combined with linear springs
mentioned above. The hysteresis damping [DH] is modeled as its viscous equivalent according to Raileigh
distribution:

½DH� ¼ a00½M� þ b00½KðDyÞ�, (13)

where a00 and b00 are two constants to be determined from two specified damping ratios which correspond to
two unequal natural frequencies of the system. The following equation holds:

a00 þ b00o2
i ¼ 2zioi, (14)

where oi is the ith natural frequency of the system and xi is the damping ratio for the ith mode. Given the
natural frequencies and damping ratios of two different modes, the coefficients a00 and b00can be determined by
solving Eq. (14).

6.3. Crankshaft loading

The crankshaft load is mainly comes from the cylinder combustion and the reciprocation inertia of the piston
and connecting rod. This load is transmitted through the piston and connecting rod to the crankpin. The force Fc

that acts on the crankpin is shown in Fig. 9. It can be resolved into the tangential force Ft and radial force Fr.
The equivalent mass of the connection rod are treated as lumped mass and attached to crankshaft body. In the
rotating coordinate system, the crankshaft inertia load due to centrifugal is equal to m1ro

2, where m1 is the mass
of the element, r is the distance of its center of gravity from the rotating axis of the crankshaft.

7. Simulation and result analysis

As the total load {F(t)} acted on the crankshaft is periodic, it can be expanded into a series of harmonic
force components by Fourier analysis. Generally, the certain lower order harmonics force components have
dominant impact and the higher order harmonics can be ignored.

In this section, simulation is conducted on the crankshaft shown in Fig. 2. Assuming that the rotating speed
be 1500 r/min, the load is computed and resolved as the method described in Section 6.3, and the first 40 order
components are kept after expansion. The resolved load acts on the surface of elements corresponding to
crankpins in the four-stroke style. Thus, the excitation force consists of a series harmonics of 12.5n

(n ¼ 0, 1, 2,y, 40), and the frequency band is from 0 to 500Hz. Presume that the crack occurs in the element
16 shown in Fig. 2. The modeling procedures aforementioned are implemented to simulate the vibration
analysis of the crankshaft including different relative depth crack of 0, 2%, 4%, 10%, 20% and 40%.

In practical experiments, the torsional and longitudinal vibration at the free end can be measured directly.
The bending vibration of the main journal will transfer to the shell of engine block via the bearing supporting,
so it is can be acquired indirectly. In general, these vibration signals are used to analyze the dynamic
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Fig. 9. Decomposition of the exciting force.

X.Y. Lei et al. / Journal of Sound and Vibration 295 (2006) 890–905902
characteristics of the crankshaft. Therefore, only the results of the torsional and longitudinal vibration
response of node 1, the bending vibration response of the mid-node in 3# main journal are presented and
analyzed here. The corresponding frequency spectra are shown in Figs. 10–13.

Figs. 10(a)–(d) show the frequency spectra of the torsion of node 1 with different relative crack depth.
In Fig. 10(a) the corresponding relative crack depths are 0%, 2% and 4%, respectively; the frequency range
is from 0 to 50 kHz. In Figs. 10(b) and (c), the frequency ranges are 0–500 and 500–3000Hz, respectively.
Fig. 10(d) shows the frequency spectra of the torsion of node1 with deeper relative crack of 10%, 20% and
40%. Fig. 11 shows the frequency spectra of the longitudinal vibration acceleration of node 1. Fig. 12 and 13
show the frequency spectra of the bending vibration acceleration of the mid-node at 3# main journal with
different crack depth, respectively. The former is in y direction, and the latter is in z direction.

In all these spectra (from Figs. 10 to 13), the following observations can be obtained: (1) The harmonic
components higher than that of exciting force will appear in the vibration response due to crack; (2) the order
of appeared higher harmonic components will be n/2 (n ¼ 1, 2,y) times of the rotating frequency of
crankshaft, the presence of these harmonic components is due to the nonlinearities; (3) the amplitudes of the
higher harmonic peak and the distributing band of the higher harmonic components will increase with the
crack depth increasing; (4) the amplitudes of components corresponding to the exciting force frequency is less
sensitive to crack depth.

8. Conclusions

In this work, a new method for simulating nonlinear motion of cracked crankshaft is proposed and the
transient vibration response of a cracked crankshaft is analyzed. The main contents and conclusions are as
follows.
1.
 A finite element model based on 3-node Timoshenko beam element for crankshaft-bearing system is
proposed. The comparison between the analytical and experimental results of vibration modes indicates
that the proposed model is effective.
2.
 The stiffness matrix of a new slant crack beam element is developed, and it can be applied widely to any
structure including such a slant crack.
3.
 The cracked crank web is idealized as the developed crack beam element, and a new model for the vibration
analysis of cracked crankshaft is established. Evidently, such cracked crankshaft model is easy to establish
and computationally effective to implement.
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Fig. 11. Frequency spectra of longitudinal vibration of node 1 with relative crack depths (a) All harmonic frequencies; (b) higher harmonic

frequency components in (a).

Fig. 10. Frequency spectra of torsional vibration of node 1 with relative crack depths (a) All harmonic frequencies; (b) lower harmonic

frequency components in (a); (c) the harmonic frequency from 500–3000 components in (a); (d) the harmonic frequency components with

deeper crack.
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4.
 The transient vibration response of a certain cracked crankshaft is calculated and analyzed, and
some conclusions are drawn from the results. However, these conclusions will be validated in further
work.

This work provides a useful tool for the vibration analysis and crack detection of cracked crankshaft system.
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Fig. 12. Frequency spectra of bending vibration in y direction of the mid-node in 3# main journal with relative crack depths (a) All

harmonic frequencies; (b) higher harmonic frequency components in (a).

Fig. 13. Frequency spectra of bending vibration in z direction of the mid-node in 3# main journal with relative crack depths (a) All

harmonic frequencies; (b) higher harmonic frequency components in (a).
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