Available online at www.sciencedirect.com

. JOURNAL OF

SCIENCE DIRECT

@ SOUND AND
e RS VIBRATION

ELSEVIER Journal of Sound and Vibration 295 (2006) 964—987

www.elsevier.com/locate/jsvi

Vibration analysis of ring-stiffened cross-ply laminated
cylindrical shells

. * . .
Rong-Tyair Wang™, Zung-Xian Lin
Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan, ROC

Received 28 September 2004; received in revised form 20 March 2005; accepted 31 January 2006
Available online 17 April 2006

Abstract

This work presents the formulation of governing equations for a symmetric cross-ply laminated cylindrical shell with a
circumferential stiffener. Two kinds of the circumferential stiffeners are considered: outer ring and inner ring. The effects
of rotatory inertia and transverse shearing strain of both the cross-ply laminated shell and stiffener are considered.
Further, the warping effect of stiffener also is included. An analytic method is presented to obtain the modal frequencies
and their corresponding mode shape functions of the ring-stiffened laminated shell. The orthogonality of two distinct sets
of mode shape functions is shown. The effects of inner ring and outer ring on modal frequencies of the ring-stiffened
laminated shell are compared. Further, the effect of ply arrangement on modal frequencies of the ring-stiffened shell also is
studied. The forced vibration of the ring-stiffened laminated shell due to a concentrated transient force is examined. The
stress distributions in the plies of the ring-stiffened laminated shell due to the transient force are investigated.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated cylindrical shells have been widely used in applications such as pipelines, oil containers, oil
tankers, pressure vessels, rockets, aircrafts, and submarines. Therefore, it is important to understand the
behavior of the laminated shells due to loads, in order that the structures may be used safely in applications.
A long laminated cylindrical shell cannot be constructed directly. Fortunately, ring stiffeners can be used to
connect many shell parts together for a long laminated cylindrical shell. Most laminated cylindrical shells with
ring stiffeners in application are subjected to dynamic loadings. To avoid resonance occurring with the loads,
the natural frequencies of a ring-stiffened laminated shell should be known prior to the construction of
structure. Therefore, the free-vibration study of a laminated cylindrical shell with ring stiffeners is an
important topic in the analysis and design of shell structure.

The free vibration of ring-stiffened cylindrical shells has been studied for many years [1-8]. Usually,
the cylindrical shells are regarded as a thin shell, and the rings are considered to be an Euler ring.
However, neglecting the effects of transverse shearing strain and the rotatory inertia in both the thin shell and
the ring will cause the modal frequencies of a ring-stiffened shell to be overestimated. The errors can be
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corrected by including the effects of transverse shearing strain and the rotatory inertia in both the shell and
the ring [9].

This study presents the displacement fields of a symmetric and cross-ply laminated cylindrical shell with a
circumferential isotropic ring stiffener. The displacement fields in the middle surface of laminated shell consist
of the axial displacement, the radial displacement and the circumferential displacement. Further, there are two
respective rotations of the cross-section along the axial direction and circumferential direction. The ring is
considered to be the Timoshenko ring. There are three displacement components along three principal axes of
the ring. Further, one bending slope and the twist angle of the ring also are accounted for in this study. The
initial curvatures of the laminated shell are supposed to be unchanged during the process of deformation.
Further, the stress resultants and stress-couple resultants in both the ring and the cross-ply laminated shell are
derived. Via Hamilton’s principle, the governing equations and boundary conditions of the ring-stiffened
laminated shell are formulated. An analytical method is presented to obtain the modal frequencies and their
corresponding sets of mode shape functions of the structure. The orthogonality of any two distinct sets of
mode shape functions is derived to show the feasibility of modal analysis. The effect of geometric parameters
of the ring on the modal frequencies of the ring-stiffened laminated shell is studied. Further, the effects of
outer ring and inner ring on the modal frequencies of the ring-stiffened laminated shell are compared.
Moreover, the effect of layer arrangements on the modal frequencies will also be investigated. The method of
modal analysis is presented to examine the forced vibration of the ring-stiffened laminated shell.
A concentrated transient load on the laminated shell structure is taken as an example. The dynamic stress
distribution in the plies of the laminated shell will also be studied.

2. Stress resultants
2.1. Cylindrical shell

A cross-ply laminated cylindrical shell stiffened with an outer ring and an inner ring, respectively, are
depicted in Figs. 1(a) and (b). The coordinate system and the displacements of the mid-surface of the
laminated shell are depicted in Fig. 2. The stacking sequence and one lamina coordinate system of the
laminated shell are depicted in Figs. 3(a) and (b), respectively. The laminated shell has mean radius a,
thickness 4. The length of the ith span is L,. The displacements of the middle surface of the ith shell span along
the principal axes are denoted as u”, v and w®, respectively. Further, ¢ are the respective rotation
angles of the cross-section along the x-axis and the 0-axis. The displacement fields at a distance & from the
middle surface in the span are
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By performing the similar procedures described by Kraus [10], the strains are obtained as the forms
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Fig. 1. A laminated cylindrical shell stiffened with a circumferential ring: (a) outer ring and (b) inner ring.
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Fig. 3. (a) The stacking sequence and (b) one lamina coordinate system of the laminated shell.
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The stresses in the kth ply of the orthotropic material in the symmetric and cross-ply laminate are [11]
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where Q,] denotes the stiffness. '
The in-plane stress resultants n(’), n(,) and n(é()), the stress-couple resultants m', mg)and mi’()), and the
transverse stress resultants ¢\, q ) in the laminated shell span are
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where
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in which /;_; and A, are the coordinates of the bottom and top surface of the kth ply along the normal
direction of laminated shell, respectively.

2.2. Ring

The geometry of displacements of the circumferential ring is depicted in Fig. 4. The ring is assumed to be
homogeneous and isotropic, and has density p,, Young’s modulus E,, shear modulus G,, shear coefficient «,,
radius R, rectangular cross-sectional area 4 with width ¢, and thickness b, the second moments of area /. and
I, torsion coefficient x, [12] and torsional rigidity D,(: k,G,.c;’b). The displacements on the central line of the

3)

ring along the principal axes are denoted as u®, v® and w®. Further, d)ff) and qﬁff) are the respective angles of

the cross-section along the principal x-axis and f-axis. The displacements x®*, v®" and w®" at any point in
the ring along the principal axes are
G B S G I TG L C i) )

The stress resultants ¢, ¢§ and ¢, and stress-couple resultants m), m{;

), ) and mPof the ring about the
principal axes are [13]
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where R = a + 0.5(b + h) for the outer ring, R = a — 0.5(b + h) for the inner ring.
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Fig. 4. (a) Displacements and (b) stress resultants of one segment of the circumferential ring.
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3. Equations of motion

The strain energy S and kinetic energy 7T of the ring-stiffened cross-ply laminated shell are
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where I( = h*/12) is the area moment of the cross-section of the laminated shell about the mid-surface. The
work P done on the laminated shell by the external forces £, fy and f,, is
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Performing Hamilton’s principle yields the following five equations of motion of the cross-ply laminated
shell
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and the boundary conditions
L 2n
/ (ngg)(S D 4 1V8 00 4 gD — mDsgh +m§1)5¢§1)) dx =0, (I1a)
0 0
L 2n
/O (nG0u® + 1’6 ® + gP 5w — mGod + mPo¢?) dv=0, (11b)
2n
/ [—a(n@& uV 4 n(xl())é o+ q&l)é w) — mi”éq’)é” + m%éd)fvl))} do =0, (11c)
0 x=0




R.-T. Wang, Z.-X. Lin | Journal of Sound and Vibration 295 (2006) 964-987 969

do =0, (11d)
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The displacements continuity at the connection of the two-span laminated shell and the ring are
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where ry = 0.5(b + &) for the outer ring and ry = —0.5(b + h) for the inner ring. Employing Egs. (12a) and
(12b) into Eq. (11e) yields the following system of equations of force balances at the conjunction of the ring
and the two laminated shells as
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1 (N
3) _ E.I, aqﬁi) (3) a¢9 m(3) E In

TR o0 - "M TR o0 M
x=L, x=L;

L (14)

=L,

The cross-ply laminated shell is simply connected. Therefore, Eqgs. (11a) and (11b) are automatically
satisfied. Eqgs. (10a)—(10e) constitute the equations of motion of the cross-ply laminated shell with Egs. (11¢)
and (11d) being the boundary conditions at two ends. Eqs. (13a)—(13e) describe the forces balance at the
connection of the two spans and the ring. Further, Eqgs. (12a) and (12b) describe the displacement continuity at
the connection of the two spans and the ring.

4. Modal frequencies

To calculate the modal frequencies of the ring-stiffened cross-ply laminated shell, the responses of the ith
span shell and those of the ring support are denoted as
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where the superscript (i) indicates the ith span, the superscript (3) indicates the ring, the subscript j is the
number of circumferential waves in the mode shape, w is the circular frequency and
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Substituting Eqs. (15a) and (15b) into Eqgs. (10a)—(10e) yields
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Further, Egs. (13a)—(13¢) can be expressed as
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In the section the operators N1—N;7 are listed in Appendix A. Substituting the system of Egs. (15a), (15b)
and (16) into Eqs. (19a)—(19e) yields

: ar o odwd
() e 48) A

=0, (21a)



972 R-T. Wang, Z.-X. Lin | Journal of Sound and Vibration 295 (2006) 964-987
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The solutions U; 9 V(’) W(’) q5(’) and di(’) of the system of Eqgs. (21a)—(21e) can be obtained and arranged as
the vector form
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in which the coefficients c¢;—c4 also are listed in Appendix A. Substituting Eq. (22) into Eq. (16) yields
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Setting x = L; in Eq. (22), then substituting the result into two systems of Eqgs. (18) and (17), and arranging
the results in two vector forms yield
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The sign conventions for displacements and applied forces at two ends of the ith span are expressed as
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(Fu) = {1 8%, - 09 31 31, } o), (30b)
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Substituting Egs. (22) and (25) into Egs. (29a)-(29d) and arranging the results yield the following two
symbolic forms:

(O] (O]
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j J
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where {}® = {b(llj) .......... b(l’())j} . Solving {a}"” into terms of {DL}_/(‘Z) and {F L};’) from Eq. (31a) then substituting

the result into Eq. (31b) yields
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where [H;] = [G/][B/]” !, Similarly, the following equation is obtained
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Substltutlng Eqgs. (18) and (17) into the system of Egs. (20a)—(20¢) and employing the notations {F L}(l) AF R}(z)
and {DR} into the result yield the symbolic form

(Fr)? = —(Fr)}” +[K]{Dx);}". (35)
in which the arrays of the matrix [K]; are listed in Appendix B.

The system of Eq. (18) of displacement continuity at the conjunction of the first span shell and the second
span shell is

(D} = (D). (36)

Combining Eq. (36) of displacement continuity and Eq. (35) of force balances at the right end of the first shell
span, the left end of the second shell span and the ring support yields the symbolic form

" Isxs O " 17
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Substituting Eq. (33) into Eq. (37) yield
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where the transfer matrix [Zj](l) is

[Z](”:[IM ° iy (39)
/ Ky —Ises |77

Similarly, the following equation is obtained
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Therefore, the response relations at both ends of the entire laminated shell structure are
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177 L SR S 74 L} Sl S (41a.b)
Fr | ‘ Fr| Fr |, ' Fr|.
J j J j

2]V = [H)[Z]™. (42)

where

Performing similar procedures of calculation described by Wang and Lin [14], we can obtain the /jth modal

frequency w; and the corresponding modal shape functions Ug), Vg), Wﬁ?, ‘Pg), @5;), NS,)j, Ngzﬁj, Ng,},
(i) () 7@ (1) 0 HO O 50 O 5O g0 g0 o) AO  AO  p() 40 = ()
;/j’ 911/" xlj> 91!/" xlf?lj’ oo Dl TG T Flo SNl ST X0l S0l 2xlj> 20> Tl 0l x0

Q., Oy, M., My, M U Vv,', W', ¥, , & N Ny, O Opry Moy My, and M for

; (3) (3) (3) 3 53 (3) (3) (3) (3) (3) 3 73 70 570 F®
the ith shell span and Ulj , V,j , W,j , 'I’[j , dilj , Qxlj, Q@lj’ inj, Mxlj, Mmj, Mn,j, U,j , Vl/‘ , Wl/’ , ‘Pl/ ,

z3) A8 A3 /B 0B O3 -r(3) .
&7, 0> Opj» Qs My, My, and M., for the ring.

5. Orthogonality

By performing a similar procedure to that described by Wang and Lin [9], the following four equations are
obtained:

2 Li L N o o o
{za [ ol(ugug+ vipv« wowg)i(afyat, + 0505 a
i=1
(3) 773 (3) 1(3) 3) 1173 3) 3 (3) 53) _
+ f’rR[A (Uz/ Ug +Vy Vig + Wy ka) +J Py Py + 1 xd)xljd)xk.i}} =0, (43a)

xlj

a ~ - -
@ 40 g2
A11A22 - A12

OO ND 0D ND 0 (MO O A A
2 /L" AZNGN G, + ANNGNG, = AD(NGNG, + NN
i=1 /0

@) A7 (i) ~() () @) () (i)
NoiNvoy Qi@ QoQoi M oyM sor

+ - - ; -
) ) U] (i)
Ag6 KAS; KAy D 616
(@) 4 7(0) 3 7(0) (@) 4 7() 3 () (i) (i) 4,0 (i) (i)
Dy M My + Dy MMy, — Dy (M Moy + My M ()[/‘)

() p(@) (2
Dy Dy — Dy

(33,03 (3) H(3) (3) H3) (3) 3,03 (3) H(3) (3) 21,03
+R Mrl] Mxkj QY[] kaj + in] anj + M@lj M@kj + Q@lj Qij + Mnl] Mnkj
E.1I, kG, A D, E.A E.I,

=0, (43b)
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2 - - o
3 a / { ( oY)+ vV W) W(')) 4 1(@3},@5,’,1, 4 ¢§’}/¢§,’(j>} dx
i=1

+p,R[4(0FTF + VPV + WPWE) + 1858 + 15085 ] =o, (43c)

a

@) 77D 77 @) 717D () (@) (i) 77 (0) @) 7o)
2 /Lf ApN N+ A NNy — A (NY[]NGIC] + ka]Nolj>
(@i ) (2
i=1 70 A111)A(2’2 - A1g
(1) () ~@) A (i) ~() () ()
+ Nx(?[/‘Nkaj QY]] kaj QG/] QHk] Mx@/jMkaj

0 0 G 0
A616 A5l5 A4[4 Dﬁl6
) 7@ a7 (D) (URYIURYIU] (i) @) 7O D) 3o
o DT, + DY NG i, — D (1 MGy, + M, 1))

O i _ pi2
Dlll DZIZ - DIZZ

(3) y(3) AG) /(3 (3) A3) (3) 15 (3) (3) /0) (3) 743
+R Mrl]Mrkj QY[] kaj + in] anj + M(?lj M@k] QGI] QGk] + Mnl] Mnk] -0 (43d)
E.l, 1,G, A D, E.A El, [ 7

for /#k. Egs. (43a)—(43d) indicate that corresponding sets of mode shape functions of any two distinct modal
frequencies are orthogonal. Further, the /jth modal frequency wj; is obtained as

wj = Sy/ My, (44)

where the /jth modal mass M and modal stiffness S); are

2 L
()2 (i)2 (i)2 (1)2 (i)2
My = Za/o p (U + Vi 4 W) w1 (0f) + 00)) | d
i=

+p,R [A(U(W + V4 W)+ a0l + 1,00

0lj vl
_ Z / (1)2 V(')Z W(z)Z) n I( 45;'1),2 (15(3/2)} d
+p,R|4 (U(3)2 + P+ W) I B + LG (452)
O N2 JON2 5 DN ) A2 02 o022
Sy =a 2/ ANy + AiNoy —24uNgNoy Ny Oy Qo Moy
= AV A — A AD T xea? " kdy), DY
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+ — X
O i) _ piz

D111D212 - Dll2

32 3)2 3)2 32 3)2 32
+R{Mxlj +Qxlj + Q0 My Qo | My }

EI, 1,G, A D, ' E.A ' El,

xlj
A — A7 AG Al 0
| DU+ ity zDath;,Ms;} N
DY} DY — DY’
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0] (’)2 (i) 7702 @) 77 (@) 770 (i) A(0)2 (1)2 (i)
0 2 / {Azlsz/ A Nm, —24 112Nx1/N91/ Nxmj Oy Qe;, sz/
i=1 J0

(45b)
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6. Forced vibration

While examining the forced vibration, the responses of the ring-stiffened cross-ply laminated shell can be
expressed by the mode superposition in the following forms:
{um wd dbg) ng) ng) qg) m(gi) mg)}(x, 0,1
= > {Cyweoso) U w ol NG N, 00 MG M) |0

xlj xlj
I=1,/=0

+ Cy0ysinGo) | 0 W) &, §'Y) N5 04wy b3 (0 . (462)

{v(i) ¢(1) n! () qg) () }(X, 0, l)

= > {cywsingo) [V o N, 0f) MG, ]
I=1,=0

+Cy(nycos(0) | 7} 8 Ny 05 115, | (0 }. (46b)

for the ith shell span and

{ NONEINE) qbg) ¢ 4@ q(3 qs) e ms)}(g’ /)

; 3) 73 11,3 53 53 AHG) H3) A3 (3) (3) 1 ,03)
= Z {Cl](l) COS(IH) |:U V W @0[] (prl/ Qxlj Q()l] in} 0lj Mxl] Mn/]:|
I=1,=0

= s (3) 1,3 3) 23) £3) H3) A3 A3 3) 1 (3) 1753
+Cy(nysinGo)| O3 v Wy &) o) 05 0f) 05 M) v i) b, (46c)
for the ring. Cy(¢) and C_’lj(t) are the /jth modal amplitudes of the entire structure. Performing similar
procedures to those described by Wang and Lin [14] and employing the orthogonality of any two distinct sets
of mode shape functions into the results yields

sz(% 51]‘) + 8(Cy, Cy) = (Fy, Fy) (), (47)

in which () indicates the differentiation with respect to time, the /jth modal excitations Fj(7) and F(7), and
the initial conditions Cy(0), C,,(O) C/J(O) and C;,(O) are given, respectively, as

1< L pam . i y h i
=23 [ [ afeosin(r.ug 41,y 1.0ty
i=1

+ sin(j6) ( v+ g qa(;;,) f} dOdx, (48a)
- Lo ) (i) 0
Fy() = / / {Sln(19)< 709 4 f f@m,)

+ cos(j0) ( 175;’ (j}]) f9} dodx, (48b)
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Fig. 5. A concentrated force acts on the laminated cylindrical shell stiffened with a circumferential ring: (a) outer ring and (b) inner ring.
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A concentrated transient load magnitude of Fj acting at the point ( = 0, x = 0.5L;) of the first shell span is
displayed in Fig. 5. The form of the load is

()= { Fod(x — Ly/2,0)sin(nt), 0<t<ls, (50)

0, Is<t.

Substituting Eq. (50) into Egs. (48a) and (48b) yields the respective histories of F(#) and F (7). The respective
histories of Cy(1), Cj(t), Cj(t) and Cj(7) can be obtained by substituting F;(¢) and Fj(7) into Eq. (47) then
performing similar procedures to those described by Wang [15].

7. Examples and discussion

In this section, the constants E;; = 150 GPa, Ey» = E33 = 9GPa, Gy = 2.5GPa, G = G13 = 7.1GPa,
v1p = v3; = vp3 = 0.3, longitudinal tensile strength X, = 1.5GPa, longitudinal compressive strength
X.=1.6GPa, transverse tensile strength Y, = 44.5MPa, transverse compressive strength Y. =253 MPa,
shear strength S = 41.4MPa and p = 1.6 Mg/m3 of T300/976 graphite-epoxy [16] for the cross-ply laminated
shells (L=5m,h=3cm,L; = L, =205m) are considered. Further, the constants E, = 70GPa, G, =
2.6GPa, p, =271 Mg/m3, k; = 0.23 and k, =0.833 of 6061-T6 aluminum rings are also considered.
The magnitude of the concentrated transient force is o = 1 N. The laminated shells have both ends being
fixed. The loading point (6 = 0,x = 1.25m) is considered in the analysis of forced vibration for the ring-
stiffened laminated shell. Further, the stresses distribution in each ply along the line of acting force is
considered.

7.1. Without ring

The lowest four circumferential modes of the [0/90/0], laminated shell are depicted in Fig. 6. The lowest
axial modes of the cross-ply laminated shell are displayed in Fig. 7. The cross-section is uniformly expanded or
contracted for j =0, and is in the state of rigid body motion for j = 1. Further, the cross-section will be
deformed for j being greater than 1. The cross-section of the laminated shell is in the state of rigid-body
motion for the modes (1, 1), and (2, 1). In the situation, the laminated shell behaves like a hollow beam.
Moreover, the radius of the laminated shell will be the radius of gyration of a hollow beam. Therefore, the
larger radius implies larger w;; and w,; of the laminated shell as indicated in Table 1. The cross-section of the
laminated shell is deformed for the modes (1, 2) and (2, 2). The larger radius induces the less coupling between
W or V and U of the laminated shell. Therefore, results in Table 1 indicates that the larger radius implies less
[O3)) and 7.

Fig. 6. The lowest four circumferential mode shapes of the [90/0/90], laminated cylindrical shell (¢ = 30 cm).
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Fig. 7. The lowest three axial mode shapes of the [90/0/90], laminated cylindrical shell (¢ = 30 cm).

Table 1
The radius @ (cm) effect on the comparison of the modal frequencies (rad/s) of the [90/0/90], laminated shell (L = 5Sm, & = 3 cm)

a D10 D11 2] @12 022
30 3754.9 725.4 1542.0 2143.2 2257.9
35 3756.1 768.8 1592.4 1610.9 1778.7
40 3756.7 801.1 1633.1 1269.8 1496.8
' Ti 17
éﬁ i 7 //iL JI~.=IE JIZ
[=1 I=1

iﬁ
|

1=2 1=2
. . ; v ~Y
4+ == ¥ = I —V
[1=3 _
(@) (b) [=3

Fig. 8. The lowest three axial mode shapes of the [90/0/90], laminated cylindrical shell (¢ = 30 cm) with an outer stiffening ring: (a) j is an
even number and (b) j is an odd number.

Table 2
The layers effect on the comparison of the modal frequencies (rad/s) of the laminated shell (L = Sm, &7 = 3cm, a = 30cm)

Layer D10 [ ()1 @12 23
[0/90/0], 4906.7 805.1 1655.0 1427.8 1653.7
[90/0/90], 3754.8 725.4 1542.0 2143.2 2257.9

The shape of cross-section of the cross-ply laminated shell (¢ = 30 cm) does not change for the modes (1, 0),
(1, 1) and (2, 1) (Fig. 8). Further, the laminated shell is in the state of bending modes along the axial direction
for these modes. However, the cross-section of the laminated shell is deformed for the modes (1, 2) and (2, 2).
The shell with the [0/90/0]; lamination gives a larger bending rigidity, however, smaller transverse
shear stiffness than the shell with the [90/0/90], lamination does. Therefore, the [0/90/0], laminated shell
has larger wio, w17 and w,;, however, less w1, and w,, than those of the [90/0/90], laminated shell as indicated
in Table 2.

In the following sections, the mean radius « = 30 cm of the cross-ply laminated shells is considered. Results
obtained by the method of modal analysis converge rather fast. Therefore, it is sufficient to employ w;q, @1,
w»1, W12, Wy and their corresponding sets of mode shape functions of the cross-ply laminated shell with a
stiffening ring in the method of modal analysis in the numerical computation.
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Table 3
The thickness b (cm) effect of outer ring (¢, = 3cm) on the comparison of the modal frequencies (rad/s) of the ring-stiffened [90/0/90],
laminated shell (L1 = L, = 2.5m, a = 30cm, & = 3cm)

b W10 [OJF] (053] 12 o2

1 3745.3 723.1 1544.7 2147.3 2263.4
2 3731.6 720.2 1549.2 2161.9 2268.7
3 3717.4 717.2 1553.7 2182.7 2273.7
Table 4

The width ¢, (cm) effect of outer ring (b = 3cm) on the comparison of the modal frequencies (rad/s) of the ring-stiffened [90/0/90],
laminated shell (L; = L, =2.5m, a = 30cm, 4 = 3cm)

Cr @10 @1 @071 W12 @22

3 3717.4 717.2 1553.7 2182.7 2273.7
6 3676.5 708.6 1565.3 2194.2 2283.1
9 3636.3 700.3 1575.2 2196.7 2288.8
Table 5

The layers effect on the comparison of the modal frequencies (rad/s) of the laminated shell (L; = L, = 2.5m, a = 30cm, /4 = 3cm) with an
outer stiffening ring (b = 3cm, ¢, = 6¢cm)

Layer 1o Wy W21 W12 @22
[0/90/0], 4695.2 787.1 1667.7 1530.2 1673.0
[90/0/90], 3676.5 708.6 1565.3 2194.2 2283.1

7.2. Quter ring

The fundamental three axial modes along the axis of the [90/0/90], laminated shell with an outer stiffening
ring for j being an even number and an odd number are depicted in Figs. 8(a) and (b), respectively. These
figures show the ring induces a constraint on the transverse deformation of the shell. Therefore, the effects of
width and thickness of a stiffening ring on the modal frequencies of the combined structure are studied. The
comparisons of modal frequencies of the [90/0/90], laminated shell with an outer stiffening ring (¢, = 3cm) of
three different thicknesses are listed in Table 3. The comparisons of modal frequencies of the [90/0/90];
laminated shell with an outer stiffening ring (b = 3cm) of three different widths are listed in Table 4. The
shape of cross-section for both the laminated shell and the ring does not change for the mode (1, 0). The cross-
section of both the laminated shell and the ring for the mode (1, 1) is in the state of rigid body motion. In this
situation, the ring adds a mass to the combined structure. As a result, either the thicker ring or the wider ring
imply both smaller @,y and w;; of the combined structure. Although the ring is located at the nodal line of the
laminated shell for the modes (2, 1) and (2, 2), the ring induces a countered moment at the connection of ring
and laminated shell. As a result, the laminated shell stiffened with either the wider ring or the thicker ring is
more difficult to be deformed in the transverse direction for i = 2. Therefore, either the thicker ring or the
wider ring implies both larger w,; and w,,. Either the thicker ring or the wider ring gives a more constraint on
the deformation of cross-section of the laminated shell for the mode (1, 2). Therefore, either the thicker ring or
the wider ring implies larger ws.

The comparisons of two different lamination schemes [0/90/0]; and [90/0/90]; on the modal frequencies
of the laminated shell with an outer stiffening ring (b = ¢, = 3cm) are displayed in Table 5. The [0/90/0];
laminated shell has larger bending rigidity, however, smaller transverse shear stiffness than the [90/0/90];
laminated shell does. Therefore, the [0/90/0], laminated shell with an outer stiffening ring has both larger
w1 and w,;, however, both smaller w, and w,, than those of the [90/0/90], laminated shell with an outer
stiffening ring.
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Fig. 9. The stress distributions in thickness along the line of an acting force on the [90/0/90]; laminated shell (¢ = 30 cm) with an outer
stiffening ring: (a) o, (b) 02, (¢) 123, and (d) t3;.
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Fig. 10. The stress distributions in thickness along the line of an acting force on the [0/90/0], laminated shell (¢ = 30 cm) with an outer
stiffening ring: (a) o, (b) 02, (¢) 123, and (d) t3;.

The stress distributions in the [90/0/90]; laminated shell with an outer stiffening ring are plotted in
Figs. 9(a)—(d) for a4, 65, 753 and 131, respectively. The stress distributions in the [0/90/0], laminated shell with
an outer stiffening ring are displayed in Figs. 10(a)—(d) for ¢, 05, 73 and 73;, respectively. Results listed
in Figs. 9(a)-10(d) demonstrate that the [0/90/0]; laminated shell bears greater maximum stresses than the
[90/0/90], laminated shell does. Based on the failure criteria of maximum stress, the first failure will occur at



R.-T. Wang, Z.-X. Lin | Journal of Sound and Vibration 295 (2006) 964-987 983

Table 6
The thickness b (cm) effect of inner ring (¢, = 3cm) on the comparison of the modal frequencies (rad/s) of the ring-stiffened [90/0/90],
laminated shell (L; = L, =2.5m, a = 30cm, 4 = 3cm)

b D10 @11 2] D12 022

1 3746.9 723.4 1543.4 2151.3 2259.6
3735.6 721.0 1546.0 2173.0 2260.4

3 3724.6 718.8 1548.1 2205.0 2260.7

Table 7

The width ¢, (cm) effect of inner ring (b = 3cm) on the comparison of the modal frequencies (rad/s) of the ring-stiffened [90/0/90],
laminated shell (L; = L, =2.5m, a = 30cm, 4 = 3cm)

Cr @10 11 (2] ™12 023

3 3724.6 718.8 1548.1 2205.0 2260.7
6 3690.8 711.7 1556.9 2230.3 2268.9
9 3657.6 704.8 1567.9 2242.9 2279.4
Table 8

The layers effect on the comparison of the modal frequencies (rad/s) of the laminated shell (L; = L, = 2.5m, a = 30cm, & = 3 cm) with an
inner stiffened ring (b = 3cm, ¢, = 6cm)

Layer W10 [OI%1 s [0 >
[0/90/0], 4737.2 790.4 1662.0 1559.7 1658.6
[90/0/90], 3690.8 711.7 1556.9 2230.2 2268.9

the sixth ply of the [0/90/0], laminated shell and at the fifth ply of the [90/0/90], laminated shell due to a5.
Further, the sixth ply of the [0/90/0], laminated shell is easier than the fifth ply of the [90/0/90], laminated shell
to be broken down.

7.3. Inner ring

The comparisons of modal frequencies of the [90/0/90], laminated shell with an inner stiffening ring (¢, =
3cm) of three different thicknesses are listed in Table 6. The comparisons of modal frequencies of the [90/0/
90], laminated shell with an inner stiffening ring (b = 3cm) of three different widths are listed in Table 7.
Results of Tables 6 and 7 indicate that either the thicker ring or the wider ring will imply both smaller @, and
w11, however, larger wi,, w,; and w,, of the combined structure.

The comparison of two different lamination schemes [0/90/0]; and [90/0/90], on the modal frequencies of
laminated shell with an inner stiffening ring (b = ¢, = 3cm) is displayed in Table 8. The [0/90/0],; laminated
shell has larger bending rigidity, however, smaller transverse shear stiffness. Therefore, the [0/90/0], laminated
shell with an inner stiffening ring has larger wg, @, and w,;, however, smaller w;, and w,, than those of the
[90/0/90], laminated shell with an inner stiffening ring.

The comparison of two kinds of stiffening rings on the modal frequencies are listed in Tables 9 and 10 for
the ring-stiffened [90/0/90], laminated shell and the ring-stiffened [0/90/0], laminated shell, respectively. A
stiffening ring adds a mass to the to the laminated shell for the modes (1, 0) and (1, 1). Further, an inner ring
adds a smaller mass to the laminated shell for the modes (1, 0) and (1, 1). Therefore, both wo and w;; of the
laminated shell stiffened with an inner ring are greater than those of the same shell with an outer ring. Results
of both tables also indicate that both outer ring and inner ring give a better effect on stiffening the laminated
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Table 9
The rings (b =3cm, ¢, = 6cm) effect on the comparison of modal frequencies (rad/s) of the ring-stiffened [90/0/90], laminated shell
(Ly=L,=25m, a=30cm, h =3cm)

Ring D10 11 2] 12 (2))

No 3754.8 725.4 1542.0 2143.2 2257.9

Outer 3676.5 708.6 1565.3 2194.2 2283.1

Inner 3690.8 711.7 1556.9 2230.2 2268.9
Table 10

The rings (b = 3cm, ¢, = 6cm) effect on the comparison of the modal frequencies (rad/s) of the ring-stiffened [0/90/0], laminated shell
(Li=L,=25m,a=30cm, = 3cm)

Ring @10 W1 (053] W12 [O)))
No 4906.7 805.1 1655.0 1427.8 1653.7
Outer 4695.2 787.1 1667.7 1530.2 1673.0
Inner 4737.2 790.4 1662.0 1559.7 1658.6
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Fig. 11. The stress distributions in thickness along the line of an acting force on the [90/0/90], laminated shell (¢ = 30 cm) with an inner
stiffening ring: (a) a1, (b) 02, (¢) 123, and (d) 73;.

shell for the modes (2, 1), (1, 2) and (2, 2). The outer ring gives a more constraint on countered moment than
the inner ring does. Therefore, the outer ring gives a better effect on stiffening the laminated shell for the
modes (2, 1) and (2, 2). However, the inner ring gives a more constraint on the transverse deformation of
the laminated shell for the modes (1, 0), (1, 1) and (1, 2). Consequently, the inner ring gives a better effect than
the outer ring on stiffening the laminated shell for the modes (1, 0), (1, 1) and (1, 2).

The stress distributions in an inner ring-stiffened [90/0/90], laminated shell are plotted in Figs. 11(a)—(d) for
a1, G2, To3 and 131, respectively. The stress distributions in an inner ring-stiffened [0/90/0], laminated shell are
displayed in Figs. 12(a)—(d) for a1, 01, 753 and 737, respectively. Results listed in Figs. 11(a)-12(d) demonstrate



R.-T. Wang, Z.-X. Lin | Journal of Sound and Vibration 295 (2006) 964-987 985

15 15
10} / 1.0f
__05f / __ 05}
§ oof / § oof
< .05} < 05}
-1.0 / -1.0f
-1.5/ - - -15 L L
0 200 400 600 10 20 30 40
(a) o, (Pa/N) (b) o, (Pa/N)
15 15
1.0} | 1.0f |
__o5p | 05} |
5 oo} 5 oo}
< 05} < 05}
1.0} | 1.0t |
-1.5 L L L 1.5l L L
16 -12 -08 -04 00 0.0 15 3.0 45
(© T, (Pa/N) (d) T, (Pa/N)

Fig. 12. The stress distributions in thickness along the line of an acting force on the [0/90/0], laminated shell (¢ = 30 cm) with an inner
stiffening ring: (a) a1, (b) 02, (¢) 123, and (d) t3;.

that the [0/90/0], laminated shell bears greater maximum stresses than the [90/0/90]; laminated shell does.
Based on the failure criteria of maximum stress, the first failure will occur at the sixth ply of the [0/90/0],
laminated shell and at the fifth ply of the [90/0/90], laminated shell due to ¢,. Further, the sixth ply of the [0/
90/0], laminated shell is easier than the fifth ply of [90/0/90], laminated shell to be broken down.

8. Conclusions

Based on the present modal analysis for the vibration of ring-stiffened cross-ply laminated cylindrical shells,
the following conclusions can be made: (1) adding a ring to the shell will soften the combined structure for the
modes (1, 0) and (1, 1); (2) adding a ring to the shell will stiffen the combined structure for the modes (2, 1),
(1, 2) and (2, 2); (3) an outer ring gives a better effect than the inner ring on stiffening the combined structure
for the modes (2, 1) and (2, 2); (4) an inner ring gives a better effect than the outer ring on stiffening the
combined structure for the mode (1, 2); (5) the first failure is easier to occur in the ring-stiffened [0/90/0], shell;
and (6) the first failure is easier to occur in the [0/90/0], shell with an inner stiffened ring.
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Appendix A. List of operators Ni—N7

s d2 2
Ny =ad) el ZAgg + paho?, (A.1)
0 d 1o 0 )
N, = aA“@ - (] Ay + KA44) + pahw”, (A2)
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p & 1y g i
N3 = aKAg;@ - (JzicAz + Ag%) + paho?,

) d2 j2
Ny= —aD(I? Pl += . D( + aKA — palw?,

d?
Ns aDgé) Pl +L D(Z) + aKA(’) — palw?,

1 1 ;
Ng = { (A(zlz) + A(’)) + Nz} , N7p= —3 (jKAE&Cz + N3),
axAs;

d
o= s (o2
8 Cc1Ns — je3 + ax

;1
No = j (DY} + D ) No — k) = — 5 NaNs,
KAy ’)

Nio = caNs — jcAY) ](D‘g + D(’))N7,

i ; d? d
Ny :](D(I%—{-D()) d 2+C3N4d

]<D(g 4 D(’)) &

Nip = —Ny4Ng — 255>
KAE"4 dx?

2
+ N4yN7,

i i i d
Ny = [j(DR+ DG )er — anal| =

d 1
Nig =N8£__(,)N10N1, Nis = Ng — 4Ny,
12
d 1
Nig :N“di_WNBNl’ Ni7=Npp— N3,
XAy,
in which
() () (i) (i) (i) 0] (@) 0]
o = Ay +A6I6 0 = Ay + Kf44[4 or S Aus01 — A7 )= Ay +AA6[6
KAE(‘)‘ CIKAE()‘ ’ a;cA(Slg A(lg

Appendix B. Arrays of the matrix [K];
A 2.2 2
M =R (0, R0* = j°1,G,), ks = kar = —rokn,
2.2 2p _ _ _jA
p,R°w™ — j°E, K,Gr), koy = ks = R (E, + 1x,.G,),

k.G A E.A
= +rokn, kx=kiy——5,
aR

LKy
kys = ks3 =

(A.3)

(A.4)

(A.5)

(A.6,7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14,15)

(A.16,17)
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1
k44 = —}’0k14 + aiR (prJRZ(Dz _szr - E)‘In)a

A I, 2 Erly
kss = rokos +ﬁ (r() — R)K,,G,‘R + Prijaﬂ _]2T ’

and others being zeros.
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