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Abstract

This paper presents a study of the stabilization problem, via delayed state feedback of Pyragas type, for unstable

vibration systems that have even number of characteristic roots with positive real parts. On the basis of stability switches

with respect to the time delay, a new stabilization criterion is established, and an effective procedure for determining the

admissible values of the feedback gains and the delay is given. Two examples are given in detail to demonstrate the

efficiency of the theory.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of active control has drawn much attention over the past decades. A general description of the
control problem of vibration systems is to determine whether there is a control u such that the trivial solution
x ¼ 0 of the controlled system described by

M €xþ C _xþ Kx ¼ Bu; x 2 Rn (1)

is asymptotically stable, or to meet some other demands, whereM and K are positive definite matrices. Among
the existing control schemes, the delayed state difference feedback, which was originally proposed in Ref. [1]
for controlling chaos of nonlinear systems, becomes one of most powerful control techniques due to its
flexibility in applications. It has also been widely applied in vibration control. For example, it was used in Ref.
[2] to improve the stability of periodic vibro-impact processes, as well as in Ref. [3] to stabilize the periodic
motion of vibration systems of multiple degrees of freedom. In the theory of machine tool vibration, the
regenerative stiff force and the regenerative damping force are also in the form of delayed feedback of Pyragas
type [4]. Then there comes a problem: can a delayed feedback of Pyragas type always stabilize an unstable
motion of a vibration system?
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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An affirmative answer to this question was given in Ref. [5]. It tells that if the number of characteristic roots
with positive real parts of a dynamic system is even and if they are not associated with the origin of the
complex plane, then there is a delayed feedback control of Pyragas type that stabilizes the unstable motion.
More precisely, let us consider in general the nth order linear controllable system of the form

_x ¼ Axþ Bu; x 2 Rn (2)

and let the controller u be in the form of Pyragas type

u ¼ �KðxðtÞ � xðt� tÞÞ (3)

then the closed-loop system is described by a delay differential equation (DDE)

_xðtÞ ¼ AxðtÞ � BKðxðtÞ � xðt� tÞÞ. (4)

In the literature, most of results assume the stability at t ¼ 0. Here _x ¼ Ax is assumed to have even number of
characteristic roots with positive real parts, so the closed-loop system (4) is unstable if t40 is small enough. In
particular, for the vibration system (1) of our interest, the number of characteristic roots with positive real
parts of a unstable vibration system must be even. Two key steps are involved in establishing the main result of
Ref. [5] for the stabilization problem. For example, for the case of scalar input, one needs firstly to prove that
the system (2) can be stabilized by the derivative feedback

u ¼ �KT _xðtÞ (5)

for proper K with KTB ¼ 0, and then to prove that it can be stabilized by

u ¼ �KT 1

t
ðxðtÞ � xðt� tÞÞ (6)

for a certain small t40. Thus, from the viewpoint of control, the stabilization problem has been well-solved.
On the other hand, the PD control and PID control are most widely used in applications, and an

accelerative feedback is not popular in vibration control. When we come back to the vibration systems, the
derivative feedback (5) implies usually an accelerative feedback, and a small t leads to large feedback gains due
to (6). More importantly, Ref. [5] does not provide an estimation or estimating routines for the admissible
delay values. This motives us to develop an alternative approach that is easier and computational tractable for
the stabilization problem.

The stability of the controlled system, described by a DDE, can be carried out by investigating the root
location of the characteristic roots. The trivial solution x ¼ 0 is asymptotically stable if and only if all the
characteristic roots have negative real parts. If all the system parameter are fully known, then the Hassard
theorem [6] and the Nyquist plot [7] are preferable for the stability test. When the delay effect on the stability is
addressed, the concept of stability switches [8,9] is helpful for the stabilization problem, which describes a
phenomena of the stability interchanges of the trivial solution from being unstable to being stable, or from
being stable to being unstable, as t varies from zero to infinite. As is well-known, a system undergoes stability
switches only if a characteristic root appears on or crosses the imaginary axis, so the key steps in the stability
analysis are to determine when the system is marginally stable and to determine the changing direction of the
characteristic roots at the critical points. On the other hand, the fundamental frequency is an important index
of vibration systems, it would be helpful to engineers if the criterion for the stabilization problem is associated
with the vibration frequencies. In Ref. [10], on the basis of stability switches, some results of this kind for an
undamped vibration system of single degree of freedom (sdof) with delayed feedback have been established.
The main advantage of paper [10] is that the stability criteria are simply in terms of the fundamental
frequencies.

As a followup work of Ref. [10], this paper presents an alternative study of the stabilization problem of
Eq. (2) that has even number of characteristic roots with positive real part, a problem that has been studied in
Ref. [5]. In the design phase, the feedback gains are to be determined, and the exact value of the delay is
usually not known. So the Hassard criterion and the Nyquist criterion are not applicable in general for the
stabilization problem. By means of the stability switches, the changing direction of the characteristic roots at
the critical roots can be determined fully by the system parameters, this will be discussed in Section 2 for the
closed-loop system (4). In order to make the exposition as simple as possible, we begin in Section 3 with the
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case when the uncontrolled system has exactly one pair of characteristic roots with positive real part and the
characteristic function of the closed-loop is in a relatively simple form, then a new stabilization criterion will
be established. The ideas can be easily extended to the general case, so in Section 4, only a rough description is
given for the case when the plant has at least two pairs of characteristic roots with positive real parts. Finally
in Section 5, some concluding remarks are drawn from the discussion.

2. The changing direction of characteristic roots at critical points

Let us study the stability of the closed-loop system, described by

_xðtÞ ¼ AxðtÞ � BKðxðtÞ � xðt� tÞÞ. (7)

The characteristic quasi-polynomial pðl; tÞ now reads pðl; tÞ ¼ detðlI� Aþ BK� BKe�ltÞ, or in the form

Pðl; zÞ ¼
Xm

k¼0

qkðlÞz
k ðz ¼ e�ltÞ, (8)

where deg½q0ðlÞ�4 deg½qiðlÞ� ðiX1Þ, l ¼ 0 is not a root of pðl; tÞ ¼ 0, and the qiðlÞ’s have no common pure
imaginary roots. Assume that the system is marginally stable, namely pðl; tÞ has a pair of pure imaginary
roots: l ¼ � io with o40 for some values of t, then the vibration frequency o satisfies a polynomial equation
F ðoÞ ¼ 0, which can be found out by following Ref. [11].

In fact, we define

Pð1Þðl; zÞ ¼ q0ð�lÞPðl; tÞ � qmðlÞz
mPð�l; 1=zÞ. (9)

It is easy to see that Pð1Þðl; tÞ is independent of zm and thus it can be written as

Pð1Þðl; zÞ ¼
Xm�1
k¼0

q
ð1Þ
k ðlÞz

k,

where q
ð1Þ
0 ðlÞ ¼ q0ðlÞq0ð�lÞ � qmðlÞqmð�lÞ. Repeating this procedure yields

PðjÞðl; zÞ ¼
Xm�j

k¼0

q
ðjÞ
k ðlÞz

k ðj ¼ 1; 2; . . . ;mÞ. (10)

It is easy to see that PðmÞðl; zÞ ¼ q
ðmÞ
0 ðlÞ is independent of z.

If pðl; tÞ ¼ 0 has a root l ¼ io for some t40, then ðl; zÞ ¼ ðio; e�iotÞ is a root of Pðl; zÞ ¼ 0, and so is it a
root of Pð�l; 1=zÞ ¼ 0 since the coefficients are real. Moreover, ðl; zÞ ¼ ðio; e�iotÞ is a common root of
PðjÞðl; zÞ ¼ 0 and PðjÞð�l; 1=zÞ ¼ 0 for all j ¼ 1; 2; . . . ;m. Hence, one has q

ðmÞ
0 ð�ioÞ ¼ 0, which can be simplified

as a polynomial equation with respect to o that has even-order terms only:

F ðoÞ ¼ 0. (11)

If pðl; tÞ ¼ q0ðlÞ þ q1ðlÞe
�lt, for example, we have F ðoÞ ¼ q0ðioÞq0ð�ioÞ � q1ðioÞq1ð�ioÞ ¼ jq0ðioÞj

2�

jq1ðioÞj
2, and obviously F ðoÞ ¼ 0 if and only if F ð�oÞ ¼ 0. For convenience, we call F ðoÞ the critical

function hereafter. Once a root o� of F ðoÞ ¼ 0 is in hand, many routines, say Ref. [12], are available to find the
critical values tk of the delay t such that pðio�; tkÞ ¼ 0.

Remark 1. The condition F ðoÞ ¼ 0 can be derived in different ways. In Ref. [12], for instance, the real and
imaginary parts of pðio; tÞ ¼ 0 are firstly converted into two polynomial equations

a0ðoÞym þ a1ðoÞym�1 þ � � � þ amðoÞ ¼ 0;

b0ðoÞym þ b1ðoÞym�1 þ � � � þ bmðoÞ ¼ 0;
(12)

respectively, by using the transformation e�iot ¼ ð1þ iyÞ=ð1� iyÞ. Let x0 ¼ 1;x1 ¼ y; x2 ¼ y2; . . . ;x2m�1 ¼

y2m�1, and let x ¼ ½x2m�1 x2m�2 � � � x1 x0�
T, then the two nonlinear equations can be transformed into a

linear equation in matrix form: Dx ¼ 0, where D is the Sylvester matrix of the two polynomials in Eq. (12)
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with respect to y

D ¼

a0 a1 a2 � � � am�1 am

a0 a1 a2 � � � am�1 am

..

. ..
.

a0 a1 a2 � � � am

b0 b1 b2 � � � bm�1 bm

b0 b1 b2 � � � bm�1 bm

..

. ..
.

b0 b1 b2 � � � bm

2
66666666666666664

3
77777777777777775

.

A necessary condition for pðio; tÞ ¼ 0 is the Sylvester resultant, namely the determinant of D, vanishes. This is
the same as F ðoÞ ¼ 0 except for a non-zero factor. This approach can not only yield the condition F ðoÞ ¼ 0
but also provide an effective method for determining the corresponding critical values tk, by solving linear
equations, at each real root o of F ðoÞ ¼ 0.

To complete the stability analysis, it is required to determine the changing direction of the characteristic
roots as t passes through the critical values, namely to determine the sign of S:¼Reðdl=dtÞjðo�;tkÞ

at each pair
of critical values (o�; tk) that satisfy pðio�; tkÞ ¼ 0. The system increases (decreases) two new characteristic
roots with positive real parts as t passes through tk from the left to the right if S40 (So0). Let

PðlÞ ¼ q
ð1Þ
0 ðlÞ � � � q

ðm�1Þ
0 ðlÞ, (13)

where q
j
0ðlÞ’s are defined in Eq. (10). For simplicity, we call PðlÞ the coefficient function. In general, the

changing direction depends not only on the critical function F ðoÞ, but also on the coefficient function. More
precisely, one has

Theorem 1. The following equation holds:

sgnRe
dl
dt

� �
ðo�;tkÞ

¼
sgn½Pðio�ÞF 0ðo�Þ�; m41;

sgn½F 0ðo�Þ�; m ¼ 1:

(
(14)

Proof. When m ¼ 1, Eq. (14) can be proved simply as follows [9]. In fact, by differentiating pðl; tÞ ¼ 0 with
respect to t, we have

dt
dl
¼

dl
dt

� ��1
¼ �

q00ðlÞ
lq0ðlÞ

þ
q01ðlÞ
lq1ðlÞ

�
t
l
. (15)

Let z̄ be the conjugate of complex z, ReðzÞ and ImðzÞ stand for the real and imaginary parts of z, then the
simple fact Re½1=ðaþ biÞ� ¼ Reða� biÞ=ða2 þ b2

Þ ¼ Reðaþ biÞ yields

sgnRe
dl
dt

� �
ðo� ;tkÞ

¼ sgnRe �
q00ðio

�Þ

io�q0ðio�Þ
þ

q01ðio
�Þ

io�q1ðio�Þ

� �

¼ � sgn Im
q00ðio

�Þ

o�q0ðio�Þ
�

q01ðio
�Þ

o�q1ðio�Þ

� �
¼ � sgn Im½q00ðio

�Þq̄0ðio
�Þ � q01ðio

�Þq̄1ðio
�Þ�

¼ sgn ½Req0ðio
�ÞReq00ðio

�Þ þ Imq0ðio
�ÞImq00ðio

�Þ

�Req1ðio
�ÞReq01ðio

�Þ � Imq1ðio
�ÞImq01ðio

�Þ�

¼ sgnF 0ðo�Þ.

The proof is completed for m ¼ 1. For a proof of the general case, it is referred to [11]. &
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3. The stabilization problem for a simple case

We begin with the case when A has exactly one pair of conjugate eigenvalues with positive real part but the
other eigenvalues stay in the left half open complex plane. Or equivalently, the plant has one pair of
characteristic roots with positive real part when t ¼ 0. In addition, we assume that the characteristic quasi-
polynomial is in the form

pðl; tÞ ¼ q0ðlÞ þ q1ðlÞe
�lt. (16)

A general discussion will be given in Section 4.

3.1. Stabilization criteria

Now the critical function F ðoÞ may have no real roots, may have exactly one pair of real roots, or may have
two/more pairs of real roots. If F ðoÞ has no real roots, the system does not change its stability, the trivial
solution x ¼ 0 is unstable for all given delay. If F ðoÞ has exactly one pair of (simple) real roots �o�, a series of
critical values tk of delay can be determined, satisfying

tk ¼ t0 þ
2kp
o�

; ðk ¼ 0; 1; 2; . . .Þ, (17)

where t0 is the minimal critical delay, see, for example, Ref. [8]. Because F ðoÞ has exactly one positive zero o�,
and F ð1Þ ! 1, we must have F 0ðo�Þ40. It follows that

sgnRe
dl
dt

� �
ðo�;tkÞ

¼ sgnF 0ðo�Þ ¼ 1.

It implies that as t passes through each tk, the system increases one new pair of characteristic roots with
positive real part. Thus, the trivial solution is unstable for all given delay.

Therefore, in order to stabilize the unstable motion, it is necessary that F ðoÞ has two or more different pairs
of real roots. For simplicity, it is convenient to consider the case when F ðoÞ has exactly two different pairs of
real roots: �o1 and �o2 with 0oo2oo1. Let tj;0 be the minimal critical delay corresponding to oj ðj ¼ 1; 2Þ,
then the two series of critical delays tj; n satisfy

tj;n ¼ tj;0 þ
2np
oj

; ðj ¼ 1; 2; n ¼ 0; 1; 2; . . .Þ (18)

and

t1; kþ1 � t1; k ¼
2 p
o1

o
2p
o2
¼ t2; kþ1 � t2; k; ðkX0Þ. (19)

Moreover, we have

Theorem 2. The following two claims hold:

sgnRe
dl
dt

� �
ðo1;t1;kÞ

¼ sgnF 0ðo1Þ ¼ 1,

sgnRe
dl
dt

� �
ðo2;t2;kÞ

¼ sgnF 0ðo2Þ ¼ �1.

Proof. By the definition of derivative, we have

F 0ðoiÞ ¼ lim
o!oi

F ðoÞ � F ðoiÞ

o� oi

; ði ¼ 1; 2Þ.

Thus, the two inequalities F 0ðo1Þ40 and F 0ðo2Þo0 hold due to the facts: F ðoÞ4F ðo1Þ ¼ 0, (8o4o140),
F ðoÞoF ðo1Þ ¼ 0, (8o2oooo1), and F ðoÞ4F ðo2Þ ¼ 0, (80oooo2). This completes the proof. &

Therefore, we have the following necessary and sufficient conditions for the stabilization problem.
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Theorem 3. Let the feedback gain matrix K be chosen such that F ðoÞ has exactly two different positive roots

o14o240. Then in order that the unstable solution x ¼ 0 of the closed-loop, namely Eq. (7), is asymptotically

stable, it is necessary that the two corresponding minimal critical values t1;0, t2;0 of the time delay satisfy the

following condition:

t2;0ot1;0. (20)

Conversely, if t2;0ot1;0 holds, a delayed feedback u ¼ �KðxðtÞ � xðt� tÞÞ with any t 2 ðt2;0; t1;0Þ stabilize the

unstable solution of the control plant.

Proof. Theorem 2 tells that as t increases from zero to infinite, the system increases one new pair of conjugate
characteristic roots with real parts being from negative to positive when t passes through each t1;k from the left
to the right, or decreases one new pair of conjugate characteristic roots with real parts being from positive to
negative when t passes through each t2;k from the left to the right. Because of the condition (19), the number
of characteristic roots with real parts being from positive to negative is less than that of characteristic roots
with real parts being from negative to positive. Let the critical values t1;k and t2;k of delay be rearranged as a
list from small to large, then as t increases, the system changes its stability from being unstable to being stable,
or alternatively from being stable to being unstable, and the change ends if in the list of critical values of delay,
some t1;k is followed immediately by t1;kþ1.

Now, if on the contrary, t1;0pt2;0, then one has t1;0ot1;1ot2;0o � � �, or t1;0ot2;0ot1;1o � � �, or
t10 ¼ t20ot11ot21o � � �. In each of the three cases, the above analysis shows that the trivial solution x ¼ 0
is unstable for all given t. Therefore, it is necessary that t2;0ot1;0 for the stabilization problem.

Conversely, if t2;0ot1;0 holds, then the trivial solution of Eq. (7) is unstable for t 2 ½0; t2;0Þ, and it is
asymptotically stable for t 2 ðt2;0; t1;0Þ. The proof is completed. &

Remark 2. In the design phase, the feedback gains are usually not known, so the critical function F ðoÞ
involves some unknown parameters. In this case, it is usually difficult to determine for what values of gains,
the critical function F ðoÞ has exactly two different positive roots. However, it is convenient to apply the theory
of complete discrimination system for polynomials [13] that is similar to the classical Sturm sequence theory,
as done in Ref. [8].

Remark 3. This paper addresses on the stability criteria for the controlled systems, it does not provide any
discussion on the achievable performance of the controllers, another important problem beyond the scope of
this paper. Roughly speaking, the stability near the critical points t1;0; t2;0 is usually very poor, because the
maximal real part of the characteristic roots is negative but is close to zero. To achieve a better performance,
say, the maximal real part of the characteristic roots is less than a given number �ao0, the routines of this
paper can be followed if l is replaced by s� a, since ReðsÞo0 if and only if ReðlÞ ¼ Reðs� aÞo� a.
3.2. Stabilization to a sdof vibration system

To demonstrate the proposed approach, let us consider the following typical sdof linear vibration system
m €xþ c _xþ kx ¼ 0 or in the non-dimensional form

€xþ 2x _xþ x ¼ 0. (21)

In the literature, it is usually assumed that c40 namely x40 such that the trivial solution x ¼ 0 is
asymptotically stable. Here in this paper, we assume that the system has a negative damping (xo0) such that
x ¼ 0 is unstable, and we want to determine if there are u, v and a positive T such that x ¼ 0 of the closed-loop
system under delayed feedback of Pyragas type

€xþ 2x _xþ x ¼ �u½xðtÞ � xðt� TÞ� � v½ _xðtÞ � _xðt� TÞ� (22)

is asymptotically stable. Such a problem is encountered in the stabilization problem of unstable periodic
solutions, see, for example Refs. [2,3,10]. As is well-known, the trivial solution of Eq. (22) is asymptotically
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stable if and only if the characteristic quasi-polynomial

pðl; tÞ ¼ l2 þ 2 x lþ 1þ u ð1� e�l tÞ þ v l ð1� e�l tÞ (23)

has roots staying in the open left-half complex plane only.
By separating the real and imaginary parts of pðio; tÞ ¼ 0, we have

Re½pðio; tÞ�:¼� o2 þ 1þ u ð1� cosðotÞÞ � vo sinðotÞ ¼ 0;

Im½pðio; tÞ�:¼2 xoþ u sinðotÞ þ vo ð1� cosðotÞÞ ¼ 0:

Solving for sinðotÞ; cosðotÞ gives

cosðotÞ ¼
�o2 uþ uþ u2 þ v2o2 þ 2 vo2 x

u2 þ v2o2
; sinðotÞ ¼ �

o ð2 u xþ vo2 � vÞ

u2 þ v2 o2

providing that u2 þ v2o2a0. Then, pðio; tÞ ¼ 0 yields

F ðoÞ:¼o4 þ ð�2 uþ 4 v x� 2þ 4 x2Þo2 þ 2 uþ 1 ¼ 0 (24)

since sin2ðotÞ þ cos2ðotÞ ¼ 1. In order to stabilize the unstable motion of the sdof vibration system, it is
necessary that F ðoÞ ¼ 0 has exactly two pairs of real roots.

Now, assume that F ðoÞ ¼ o4 þ po2 þ q, given in (24), has two different pairs of real roots: �o1 and �o2

with 0oo2oo1, this is true if the following three conditions hold

po0; qX0; p2 � 4qX0. (25)

Then the critical delays tj; n corresponding to oj satisfy tj;n ¼ tj;0 þ 2np=oj ; ðj ¼ 1; 2; n ¼ 0; 1; 2; . . .Þ and
t1; kþ1 � t1; k ¼ 2p=o1o2p=o2 ¼ t2; kþ1 � t2; k; ðkX0Þ. Moreover, we have

sgnRe
dl
dt

� �
ðo1;t1;kÞ

¼ sgnF 0ðo1Þ ¼ 1; sgnRe
dl
dt

� �
ðo2;t2;kÞ

¼ sgnF 0ðo2Þ ¼ �1.

Theorem 4. In order that the unstable trivial solution x ¼ 0 of Eq. (21) under a delayed feedback of Pyragas type

�u½xðtÞ � xðt� TÞ� � v½ _xðtÞ � _xðt� TÞ� is asymptotically stable, it is necessary that po0; qX0; p2 � 4qX0 such

that F ðoÞ has exactly two different positive real roots o14o240, and that the minimal critical values t1;0, t2;0 of

the time delay satisfy the following condition t2;0ot1;0. Conversely, if the condition t2;0ot1;0 holds, then the

delayed feedback with any t 2 ðt2;0; t1;0Þ stabilizes the unstable trivial solution of Eq. (21).

In general, it is not obvious to see whether the condition t2;0ot1;0 holds or not. But it is easy to find out the
admissible controllers. For example, if u ¼ 0, then the critical stability condition yields

cosðotÞ ¼
vþ 2 x

v
; sinðotÞ ¼ �

o2 � 1

vo
(26)

the critical function F ðoÞ reads simply

F ðoÞ ¼ o4 þ ð�2þ 4 v xþ 4 x2Þo2 þ 1

and it has exactly two different pairs of real roots if and only if 4 v x� 2þ 4 x2o0 and
0o16 x ðxþ vÞ ðv x� 1þ x2Þ, namely, xo0, 4 v x� 2þ 4 x2o0 and 0oxþ v, or simply

xo0; 0oxþ v. (27)

Thus, for each v4� x, the admissible values of the delay can be found easily.

Example 1. x ¼ �0:5. Taking u ¼ 0 and v ¼ 0:84� x, for instance, gives two real zeros o2 ¼ 0:6851;o1 ¼

1:4597 of F ðoÞ ¼ o4 � 2:60o2 þ 1. Solving Eq. (26) gives the corresponding minimal critical delay values
t1;0 ¼ 3:0553 and t2;0 ¼ 2:6617, respectively, t2;0 is smaller than t1;0 as expected. Moreover, the two sequences
t1;n and t2;n, as defined in Eq. (18), are found to be

t1;0 ¼ 3:0553; t1;1 ¼ 7:3598; t1;2 ¼ 12:4026; t1;3 ¼ 16:8756; . . .

t2;0 ¼ 2:6617; t2;1 ¼ 11:8331; t2;2 ¼ 19:6572; t2;3 ¼ 28:4833; . . . .
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The critical values of t can be ranked as follows

t2;0o t1;0ot1;1 ot1;2ot2;1o � � � . (28)

As a result, the unstable trivial solution x ¼ 0 can be stabilized if the delay t is chosen in (2:661; 3:055). Of
course, the stability is poor if t 2 ð2:661; 3:055Þ is chosen close to the endpoints, since the maximal real part of
the characteristic roots is close to zero.

The numerical simulation checks the results well. The initial value is taken to be xðtÞ ¼ 0:6; _xðtÞ ¼ 0
ð8t 2 ½�t; 0�Þ, the step-size of integration by using Runge–Kutta method is 0:01. As shown in Fig. 1, the
simulation results are in very good agreement with the theoretical prediction.

Example 2. x ¼ �0:3. In this case, we chose u ¼ 0 and v ¼ 0:54� x, then F ðoÞ ¼ o4 � 2:24o2 þ 1 and it has
two real zeros: o1 ¼ 0:7846;o2 ¼ 1:2745. As done above, the two sequences t1;n; t2;n are found to be

t1;0 ¼ 3:5394; t1;1 ¼ 8:4693; t1;2 ¼ 13:3992; t1;3 ¼ 18:3290; . . . ,

t2;0 ¼ 2:2586; t2;1 ¼ 10:2666; t2;2 ¼ 18:2746; t2;3 ¼ 26:2826; . . . .

The critical values of t can be ranked as follows:

t2;0o t1;0ot1;1 ot2;1ot1;2o � � � . (29)

As a result, the unstable solution x ¼ 0 is stabilized under the delayed feedback control if the delay t is chosen
in (2:2586; 3:5394).

Moreover, under the condition (27), F ðoÞ has exactly two different positive roots: 0oo2oo1, and the
critical values of time delay satisfy

cosðo1 t1; kÞ ¼ cosðo2 t2; kÞ; o1o2 ¼ 1. (30)

The condition cosðo1 t1; kÞ ¼ cosðo2 t2; kÞ yields

o2 t2; 0 ¼ 2p� o1 t1; 0; �
o2

1 � 1

vo1
¼

o2
2 � 1

vo2
. (31)
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Fig. 1. The time histories of Eq. (22) with u ¼ 0; v ¼ 0:840:5 ¼ �x for (a) t ¼ 2:6; (b) t ¼ 2:7; (c) t ¼ 3:0; and (d) t ¼ 3:1.
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Now, if jxj ð¼ �xÞ is small and v4� x, then we have

cosðotÞ ¼
vþ 2x

v
� 1; sinðotÞ ¼ �

o2 � 1

vo
� 0. (32)

It follows that o1 � 1, cosðo1t1;0Þ40, sinðo1t1;0Þo0, cosðo2t2;0Þ40 and sinðo2t2;0Þ40. Therefore the
condition t2; 0ot1; 0 is governed:

o1t1;0 2
3

2
p; 2p

� �
; o2t2;0 2 0;

p
2

� �
(33)

and

t2; 0 ¼ ð2p� o1 t1; 0Þo1ot1;0. (34)

This means that if jxj is small, a delayed velocity feedback of Pyragas type can always stabilize the unstable
motion. It is similar to the observation in Ref. [14], where it has proved that a delayed velocity feedback
v _xðt� tÞ can always stabilize the unstable motion of a small perturbation of undamped sdof vibration system,
by means of the averaging technique for time-delay equations of slow variables.

When jxj is not small, Eq. (26) holds too, if v ð4� xÞ is large enough. However, a large v may result in a
large o so that Eq. (34) may not be guaranteed. In this case, we assume that v ¼ 0; ua0, and see if the
condition t2;0ot1;0 holds or not.

For ua0 and v ¼ 0, the function F ðoÞ ¼ o4 þ ð�2þ 4x2 � 2uÞo2 þ 1þ 2u has two different positive real
roots if and only if u4maxf�1=2; 2x2 � 1; 2x2 � 2xg. The two positive roots o14o2 satisfy

o2
1 þ o2

2 ¼ 2uþ 2� 4x2; o2
1o

2
2 ¼ 2uþ 1. (35)

Corresponding to o1;o2, the critical values of delay are determined from

cosðotÞ ¼
u2 � uo2 þ u

u2
; sinðotÞ ¼ �2

xo
u

. (36)

Thus, for sufficient large u40, we note that o1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ 1
p

and o2 � 1, so we have o1t1;0 2 ðp=2; pÞ,
o1t1;0 � p, o2t2;0 2 ð0;p=2Þ and o2t2;0 � 0. As a result, there is a large u such that

t1;0 �
p
o1

4
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2uþ 1
p 4t2;0. (37)

This means that a delayed feedback �u½xðtÞ � xðt� tÞ� with large u can always stabilize the unstable motion of
the sdof vibration system.

Example 3. x ¼ �1:3. Firstly we chose u ¼ 0 and v ¼ 1:74� x, then F ðoÞ ¼ o4 � 4:08o2 þ 1 and it has two
real zeros: o1 ¼ 0:5118;o2 ¼ 1:9540. As done above, we have 2:1261 ¼ t1;0ot2;0 ¼ 4:1595. So no t40 exists
to stabilize the unstable solution x ¼ 0 of the sdof system. Similar results can be obtained for larger v. When
ua0; v ¼ 0, however, the trivial solution can be stabilized for large u. In fact, we have u45:98 to guarantee the
existence of two different positive roots o1;o2 of F ðoÞ. If u ¼ 7, then F ðoÞ ¼ o4 � 9:24o2 þ 15 has two
different positive roots: o2 ¼ 1:4495; o1 ¼ 2:6719. The two minimal critical values of delay are found to be
t1;0 ¼ 0:5417, t2;0 ¼ 0:3922, respectively, so the trivial solution is stabilized if t 2 ð0:3922; 0:5417Þ. If we
increase u to a large number 70, then corresponding to the two roots o2 ¼ 1:0251; o1 ¼ 11:584 of
F ðoÞ ¼ o4 � 135:24o2 þ 141, the two minimal critical values of delay are found to be t1;0 ¼ 0:2328,
t2;0 ¼ 0:0372, respectively. It means that if t 2 ð0:0372; 0:2328Þ, then x ¼ 0 can be stabilized by the delayed
velocity feedbacks.

4. The stabilization problem for the general case

The proposed stabilization scheme can also be extended to the case when the control plant has more than
two characteristic roots with positive real parts. As done before, the first step is to determine for what values of
delay, the system is marginally stable, which results in the critical function. The second step is to determine the
changing direction of the characteristic roots as the delay passes through the critical values.
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We first assume that the characteristic function of the closed-loop system has the form pðl; tÞ ¼
q0ðlÞ þ q1ðlÞe

�lt and assume that the plant has two pairs of conjugate complex characteristic roots with
positive real parts, then we chose the feedback gains such that the critical function F ðoÞ have four pairs of
roots: �ioj (j ¼ 1; 2; 3; 4), with o14o24o34o4, and the four corresponding minimal critical values of delay
are denoted by tj;0 ðj ¼ 1; 2; 3; 4Þ, respectively. Then the unstable solution is stabilized only if
maxft4;0; t2;0gominft3;0; t1;0g, and the trivial solution of the controlled system is asymptotically stable for
all t 2 ðmaxft4;0; t2;0g;minft3;0; t1;0gÞ. If the control plant has 2N characteristic roots with positive real parts,
the feedback gains can be chosen in this way such that the critical function F ðoÞ has exactly 2N positive zeros:
o14o24 � � �4o2N�14o2N40. Corresponding to each ok, we find out the minimal critical delay value tk;0.
Then the unstable solution is stabilized only if

maxft2N;0; t2N�2;0; . . . ; t2;0gominft2N�1;0; t2N�3;0; . . . ; t1;0g (38)

and the trivial solution of the controlled system is asymptotically stable for all t 2 ðmaxft2N ;0; t2N�2;0; . . . ; t2;0g;
minft2N�1;0; t2N�3;0; . . . ; t1;0gÞ.

To see this, let us consider the stability of the following simple system:

€x1ðtÞ � c1 _x1 þ O2
1x1 ¼ � aðx1ðtÞ � x1ðt� tÞÞ � bðx2ðtÞ � x2ðt� tÞÞ,

€x2ðtÞ � c2 _x2 þ O2
2x2 ¼ � aðx1ðtÞ � x1ðt� tÞÞ � bðx2ðtÞ � x2ðt� tÞÞ, ð39Þ

where c140 and c240 to ensure that at t ¼ 0, the system has two pairs of conjugate characteristic roots with
positive real parts. We want to chose proper a;b; t such that the trivial solution of Eq. (39) is asymptotically
stable.

For simplicity, let b ¼ a, then straightforward computation yields the characteristic function pðl; tÞ

p ¼ l4 � ðc2 þ c1Þl
3
þ ð2 aþ c1c2 þ O2

2 þ O2
1Þl

2

� ðc1O2
2 þ a c2 þ O2

1c2 þ a c1Þlþ ðO2
1O

2
2 þ aO2

1 þ aO2
2Þ

þ ½�2 a l2 þ ða c1 þ a c2Þl� aO2
2 � aO2

1�e
�l t

and the critical function F ðoÞ

F ¼ o8 þ ðc21 � 2O2
1 � 2O2

2 � 4 aþ c22ÞO
6 þ ½6 aðO2

1 þ O2
2Þ þ 4O2

1O
2
2

� 2 c22O
2
1 � 2 c21O

2
2 � 2 aðc21 þ c22Þ þ c21c

2
2 þ O4

2 þ O4
1�o

4

þ ½�8 aO2
1O

2
2 þ O4

1c22 � 2O4
2O

2
1 � 2 aðO4

1 þ O4
2Þ þ c21O

4
2 � 2O4

1O
2
2

þ 2 aðc22O
2
1 þ c21O

2
2Þ�o

2 þ ð2O4
1O

2
2aþ 2O2

1O
4
2aþ O4

1O
4
2Þ

which depends on the feedback gain a.
Let O1 ¼ 1;O2 ¼ 4; c1 ¼ 0:1; c2 ¼ 0:2, then

F ¼ o8 � ð33:95þ 4aÞo6 þ ð320:6004þ 101:90aÞo4

� ð641:60aþ 541:40Þo2 þ 256þ 544a.

Numerical simulation (or using the complete discrimination system for polynomials [13]) shows that a should
be greater than 0:7429 so that F ðoÞ has four positive roots: o14o24o34o4. The graph of qF=qo ¼ 0 divides
the ða;oÞ-plane into several regions, and in each region qF=qo has definite sign. As shown in Fig. 2, in the
regions that the curves of o4ðaÞ and o2ðaÞ stay in, we have qF=qoo0, while in the regions that the curves of
o3ðaÞ and o1ðaÞ stay in, we have qF=qo40.

Now let a ¼ 140:7429, then o4 ¼ 1:0029;o3 ¼ 1:6500;o2 ¼ 4:0413;o1 ¼ 4:2296, and the four minimal
critical delays are t4;0 ¼ 0:1002, t2;0 ¼ 0:2181, t3;0 ¼ 1:7665 and t1;0 ¼ 0:5638, respectively. Since
maxft4;0; t2;0gominft3;0; t1;0g, so the unstable motion is stabilized if we chose a ¼ 1 and t 2 ð0:2181; 0:5638Þ.
It is in very good agreement with the numerical simulation as shown in Fig. 3, by using Runge–Kutta method.
Here, the initial conditions are given by x1ðtÞ ¼ 0:1; _x1ðtÞ ¼ 0;x2ðtÞ ¼ 0:1; _x2ðtÞ ¼ 0 ð8t 2 ½�t; 0�Þ, and the step-
size of integration is taken as 0:01. Similarly, if we increase the value of a to 20, then F ðoÞ has four zeros
o4 ¼ 1:0005;o3 ¼ 2:7949;o2 ¼ 3:9967;o1 ¼ 9:4427, and the corresponding minimal critical delay values are
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found to be t4;0 ¼ 0:0050; t3;0 ¼ 0:7520; t2;0 ¼ 0:0100; t1;0 ¼ 0:3287, respectively. Thus the trivial solution of the
closed-loop system is asymptotically stable if t 2 ð0:0100; 0:3287Þ. Numerical simulation shows that the larger the
value of a, the smaller the admissible value of the delay.

In general, if the characteristic quasi-polynomial is in the form

pðl; tÞ ¼
Xm

k¼0

qkðlÞe
�klt; ðmX2Þ (40)

and if the control plant has 2N characteristic roots with positive real parts, we chose the feedback gains in this
way such that the critical function F ðoÞ has exactly 2N positive zeros: o1;o2; . . . ;o2N�1;o2N , and compute the
minimal critical delay value tk;0 corresponding to each ok. In this case, the sign of F 0ðokÞ is not enough to
determine the changing direction of the characteristic roots as the delay varies, the contribution of the sign of
PðioÞ ¼ q

ð1Þ
0 ðioÞ � � � q

ðm�1Þ
0 ðioÞ must be taken into consideration due to Eq. (14). The unstable solution is

stabilized only if there are exactly N vibration frequencies, say o1;o2; . . . ;oN without loss of generality, that
satisfy PðiokÞF

0ðokÞo0, and the other N vibration frequencies oNþ1;oNþ2; . . . ;o2N satisfy PðiokÞF
0ðokÞ40.

The trivial solution of the controlled system is asymptotically stable for all t 2 ðmaxft1;0; t2;0; . . . ; tN ;0g;
minftNþ1;0; tNþ2;0; . . . ; t2N ;0gÞ.
5. Conclusions

In this paper, the stabilization problem under delayed feedback of Pyragas type is discussed for the linear
dynamical systems that have even number of characteristic roots with positive real part. From the viewpoint
of stability switches, as the delay increases from zero to infinity, the closed-loop system experiences stability
changes from being unstable to being stable, or from being stable to being unstable, and eventually to being
unstable. When the delay passes from a critical delay value, the system increases or decreases two new
conjugate characteristic roots with positive real parts, this implies that a delayed feedback control cannot

stabilize the unstable motion of a system that has odd number of characteristic roots with positive real parts.
If the control plant has 2N characteristic roots with positive real parts, the first step of our stabilization
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Fig. 3. The time histories of Eq. (39) for: a ¼ 1; (a) t ¼ 0:21; (b) t ¼ 0:23; (c) t ¼ 0:55; and (d) t ¼ 0:57.
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procedure is to determine the admissible feedback gains such that the critical function F ðoÞ has exactly 2N

positive roots (vibration frequencies), and then to find out all the minimal critical values of the delay
corresponding to all the vibration frequencies. The second step is to determine the changing direction of the
characteristic roots as the delay passes through the critical values. In general, the changing direction depends
not only on the critical function F ðoÞ, but also on the coefficient function PðioÞ. The system can be stabilized
only if the delay firstly passes through the N minimal critical delay values corresponding to the N vibration
frequencies, at which the characteristic root goes through the imaginary axis of the complex plane from the
right to the left. The peculiarity of this paper is that the present stabilization method is constructive, easier,
and computational tractable in finding out the admissible feedback gains and the admissible values of the
delay, as shown in the two demonstrative examples.
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