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Abstract

This paper presents the application of an alternative waveguide finite element method (WFE) using standard FE-code
for the computation of dispersion curves in fluid filled elastic pipes. Only one element is needed in longitudinal direction of
the pipe in the FE model, which includes structural-acoustic interaction by a full coupling interface. After rearranging the
dynamic stiffness matrix of the segment model in transfer matrix form, a periodicity condition is applied leading to an
eigenvalue problem. Here, eigenvectors correspond to wave modes and eigenvalues are a function of the complex
wavenumber. From the eigenpairs, phase velocities and group velocities of branches are computed as well as sound power
transmission. Instead of solving the eigenvalue problem for each frequency separately, an eigenpath analysis is presented in
order to track dispersion curves through the frequency band of interest. The numerical results are compared to results from
an analytical model of a thin walled fluid-filled shell. The method allows periodic wave guides with any cross section to be
analyzed while employing standard FE discretization.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of harmonic wave propagation in piping systems takes a special role in pipe engineering, since
continuous conveyance of liquids by pumps and valve actuation generates acoustic sources which may lead to
excessive noise levels. In even worse cases, pipe components or attached structural components undergo
deterioration. In general, pipes act as a longitudinal waveguide, thus acoustic energy can be transmitted over
very large distances. This becomes crucial for low frequency noise in water filled metal pipes, where both
structure and fluid barely dissipate energy due to very low viscosities and material damping. The knowledge
about sound speed is also important for setting up transfer matrix methods for 1D [1] or 3D [2] pipe
components. On the other hand, waveguide properties of pipes are exploited in the context of non-destructive
evaluation (NDE), where pipes need to be inspected for cracks or leakage. Harmonic waves, once introduced
into pipes, propagate very far. By analyzing times of flight for signals at different receiver points, defect
positions or changes of pipe properties can be detected [3]. Both the analysis of unwanted pipe acoustics and
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the application for NDE purposes require models for predicting harmonic wave propagation and in particular
sound speeds. It was found early that wave propagation in elastic pipes is a strongly dispersive phenomenon
[4], resulting in a coexistence of several wave modes with frequency-dependent wavenumbers. As a result,
group and phase velocities depend on frequency and wavenumber. A large number of authors analyzed the
problem of determining wave dispersion in elastic pipes in recent decades [5—7]. In Ref. [§], a model for an
acoustic fluid embedded in a thin elastic cylindrical shell including bending capacities is described. Special
spectral finite elements have been developed [9] to determine dispersion in fluid filled elastic pipes by
discretized models. Thus, it is possible to obtain waveguide properties for ducts with arbitrary cross sections,
where analytical solutions might not be known. Lately, Mace et al. [10,11] introduced a method in order to
predict dispersion curves by using standard FE codes. Hereby, dynamic stiffness matrices of segment models
are rearranged in transfer matrix form and periodicity conditions are applied in order to recover dispersion
curves from an eigenvalue analysis. In the paper at hand, this method is extended to thick walled and thin
walled fluid filled elastic pipes, which include a structural-acoustic interface. Furthermore, single dispersion
curves may be understood as wavenumber—frequency eigenpath and can be tracked directly as a function of
frequency. As a result, the numerical computation of single dispersion curves is accelerated by avoiding the
computation of the full or partial spectrum for each frequency of interest.

The main advantage of the presented approach is the computation of dispersion curves for two-field wave
guides with arbitrary cross sections while using a standard FE package.

2. Finite element modeling

Approximate discrete solutions of the structural-acoustic field equations [12] are given in terms of the
acoustic excess pressure p in the fluid and displacements u in the solid domain, respectively. Applying
d’Alembert’s principle to the structural field equation and taking the weak form of the wave equation in the
fluid leads to a coupled finite element formulation [13] in terms of nodal displacements u and nodal acoustic
pressures p:

M, 07T[i] [D, 0][a] [K —C] [u £,(1) 1
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Here, mass and stiffness matrices of the acoustic partition in the fluid domain Q; are given as
1
M, = / —R'RdQ, K, = / (2R 7,/RdQ, 2)
Q¢ &

where ¢ denotes the free sound speed in the fluid, p the mean fluid mass density, R are interpolation functions
in matrix notation and %y is a differential operator to build spatial gradients, i.e. ¥y = V(:). Mass and
stiffness matrices of the solid partition in domain €, equate as

M, = / pN'NdQ, K, = / (@N)T 6N Q. (3)
Q Q

The mass density of the solid is denoted by p,, the mechanical stiffness matrix is given by &, whereas N are
interpolation functions and 2 denotes differential operators to realize strains from the displacements
& = 2Nu. The coupling matrix C in Eq. (1) equates as integral over the acoustic fluid—structure interface I'; as

C= [ NTnRdr (4)
I;
with normal vector n. External nodal structural forces and fluxes are resumed in f; and f,, respectively. Linear
damping in the solid and in the fluid enters the system equations (1) as D, and Dy, respectively. In this paper,
stiffness-proportional damping D = K; and Dy = Ky is applied.
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3. Computation of dispersion curves by standard FE package

Following the idea of Mace et al. [11], a ““segment” model of the wave guide is generated by using standard
FE-code [14]. Hereby, a model of a fluid-filled pipe segment as depicted in Fig. 1 is generated by the
commercial FE package ANSYS using a structured mesh. Hereby, linecar 8-node elements FLUID30 and
SOLID45 are employed in the acoustic and in the solid partition, respectively.

All pressure and displacement nodal degrees of freedom are arranged as x = [u! p']' and the forces and
fluxes as f = [fsT f}]T. For time-harmonic system behavior in a waveguide, the dynamic stiffness matrix

T]T

H(w) = K + ioD — *M (5)

is introduced. Afterwards, the DOFs are partitioned with respect to their positions at the left or right end of
the segment model, i.e. x =[x} er]T and f = [f,T frT]T. The dynamic stiffness matrix is partitioned accordingly

H; H;
Hrl Hrr

(6)

It is worth pointing out that the order of “left” DOFs x; and “‘right” DOFs x, must be chosen in the same
way, such that periodicity conditions for the field variables between the sth and the s+ 1th plane in the
segment model fulfil

xf“ =x) (7
for the nodal Dirichlet data and
fitl =) 8)

for the nodal Neumann data. Rearrangement leads to the frequency-dependent transfer matrix system
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Fig. 1. FE segment model of the thick walled fluid filled pipe by ANSYS.
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Assuming harmonic wave propagation in z-direction over the segment length A¢ (Fig. 1) with complex circular
wavenumber

X, = e,

f, = e, (11)

leads to the eigenvalue problem

T(w) (12)

X)) L [Ri@) _, X)(w)
B | = | o) | = it |

As an alternative, the generalized eigenvalue problem

H, -1][% -H;, 0||%
il . (13)
H, 0 f; —-H, 1 f;

may be considered. The physical complex wavenumber « is retrieved from the eigenvalues by

In(A)

K=

For a fixed frequency w, the number of numerically computed solutions of k is as many as the dimension of T.

Also, the eigenvalues occur in pairs of 4; and 1//; [11] representing left-propagating and right-propagating

wave modes. However, only a very limited number of eigenvalues represent physical solutions of interest.

First, right-propagating wave modes with |A|>1 increase their amplitude according to Eq. (11) while

propagating, and are considered non-physical. Therefore, |4|<1 is a necessary condition. This becomes
evident from the fact that 4 can be written in the complex plane as

(14)

A=A @ —=0,1,2,3... (15)
and
In(2) = In(|A]) + i(¢p + 2mm). (16)

The modification of wave amplitudes is given by the real part of the complex wavenumber. Wave modes are
exponentially decaying if || <1 while maintaining their amplitude only if |A| = 1. If wave modes have a purely
negative real part of the wavenumber, they represent evanescent waves and are excluded from the further
analysis. Fig. 2 displays the spectrum only in the vicinity of the unit circle. Eigenvalues may also be excluded
for engineering reasons if |A| <1, such that they are oscillatory but decaying very quickly. Furthermore, the
imaginary part of the wavenumber is represented by negative angles ¢ in the complex plane, if waves are right-
propagating. Note that the logarithm is not uniquely defined in the complex plane, since m in Eq. (15) does not
necessarily equal zero. However, the analysis in Section 3.1 reveals that physical relevant wavenumbers cannot
be characterized by m>0. The area of interest is therefore restricted to eigenvalues on or within the unit circle
with radius r = |4| = 1 for negative imaginary values. Note that positive imaginary values in the upper half of
the complex plane denote left-propagating waves, which contain redundant information and are therefore
excluded from further analysis. If dispersion curves are tracked while increasing frequency w, one finds that
eigenvalues belonging to (undamped) propagating wave modes move on the unit circle in clockwise direction
(in negative ¢-direction), if wavenumbers increase as well.

The method is applied for a water-filled brass pipe as found in cooling systems of ships, here denoted as
thick walled pipe (#/a = 0.11). Dimensions and material properties of the shell are listed in Table 1 and fluid
properties are given by ¢ = 1481 m/s and p = 1000 kg/m>.

The segment model has a number of 674 DOFs, thereof 432 structural DOFs and 242 pressure DOFs.
Frequencies are normalized with respect to the ring frequency Q@ = w/w,, which equates as o, = cgeir/a. The
eigenvalues A are plotted for Q = 1.49 and A¢ = Smm in the complex plane as depicted in Fig. 2. First,
damping is excluded, thus D =0 (B, = ; =0, marker + +), and eigenvalues representing non-decaying
propagating wave modes are on the unit circle. If damping is applied (8, = f; = 1.5 x 1076, marker o o, and
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Fig. 2. Eigenvalues at Q = 1.49 for various damping values f; = ff, = 0(+), B, = f; = 1.5 x 107%(0), B, = Br=3x 1076 ().

Table 1
Properties of the thick walled and of the thin walled brass pipe
Mean radius a (m) Thickness & (m) Young’s modulus (N/m?) Density p, (kg/m?)
Thick 0.036 0.004 1.35 x 101 8900
Thin 0.036 0.002 1.35 x 10" 8900

Bs=Pr=3x 107°, marker < <), eigenvalues A decrease their absolute value, thus the corresponding wave
mode amplitudes decay exponentially.

In order to obtain the complete dispersion diagram, the method according to Mace et al. [11] is applied for
all frequencies of interest. In the following analysis, damping is neglected by setting again D = 0. Propagating
wave modes with a purely imaginary wavenumber are depicted in the dispersion diagram in Fig. 3. Note that
imaginary parts of the wavenumber denoting the propagating part of the wavenumber are made non-
dimensional by multiplication with shell mean radius a. Solid-type waves are marked by solid lines. Branch 1 is
the extensional shell mode for low frequencies, whereas branch 3 corresponds to the torsional shell mode,
which barely couples to the fluid and turns out to be almost non-dispersive. Branch 2 is an axis-symmetric
shell mode cutting on near the ring frequency of the pipe near Q = 1. Dashed lines denote shell beam modes,
whereas fluid-type wave modes are depicted as dotted lines. Branch 4 is the fluid-type mode corresponding to a
plane wave in a rigid duct. A complete discussion of wave modes in fluid filled shells is given in Ref. [8]. Wave
modes are conveniently visualized by displaying wall deformations and the coupled acoustic pressure field as
contour plot contained in eigenvectors X; from Eq. (12). Fig. 4 shows wave modes for Q = 0.765 of the n = 0-
bending mode (left, marker ‘+’ in Fig. 3) and of the n = 4-bending mode (right, marker ‘o’ in Fig. 3).

3.1. Influence of mesh size on wavenumbers

The use of discretized models for the determination of complex wavenumbers is encompassed by
discretization errors if results are compared to exact solutions of continuous systems. Using approximations
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wave number Im(ka)

. 3
0 . . . 0.8
circular frequency Q

Fig. 3. Dispersion diagram of wave modes in a water-filled thick walled brass pipe (1/a = 0.11) with segment length A¢ = 5mm. Fluid-
type modes (- - -), extensional/torsional shell modes (—) and beam-type modes (- - -) are distinguished.

Fig. 4. Wave forms for Q = 0.765 of the n = 0-bending mode (left,"+’ in Fig. 3) and of the n = 4-bending mode (right, ‘0’ in Fig. 3):
Deformation of the shell and pressure field in the fluid.

for the field variable results in most cases in increased eigenfrequencies as shown by Rayleigh’s quotient in case
of the first vibrating mode. Stiffening does also affect increased sound speeds of propagating wave modes. For
comparison, the results by postprocessed FE models of a thin walled pipe (4/a = 0.056, Table 1) are compared
to numerical results by an analytical model using Fliigge’s shell theory [2] for thin walled pipes. The agreement
of dispersion curves is depicted in Fig. 5, where n = 0O-branches, i.e. axis-symmetric wave modes, of the
analytical approach (x x) are compared to wave modes obtained by the FE-model. First, a model with
segment length A¢ = 10mm (- -) is employed. Slight deviations from the analytical approach for the cut-on
mode near the ring frequency (branch 2) and for the extensional shell mode (branch 1) occur. They are
considered to result from defects of Fliigge’s thin walled shell equations and from the discretization, since no
curvilinear elements are used in circumferential shell direction. Focusing on the fluid-mode (branch 4), it is
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Fig. 5. Underestimation of wave numbers due to finite element approximation for axis-symmetric n = 0-modes in a thin walled brass pipe
(h/a = 0.056): Analytical solution (x x), longitudinal mesh size A = Smm (—), longitudinal mesh size A = 10mm (- -).

evident that a systematic error occurs above wavenumbers xa > 4. If one applies the rule of thumb in acoustics,
i.e. n, linear elements should be used at least per wavelength (minimum 7, = 6), one equates theoretically the
non-dimensional wavenumber xj,a = 3.7, depicted as horizontal dashed line. If the segment length is reduced
to A¢ = 5mm encompassed by mesh refinement (branches —), the confidelity range is further increased
(theoretically r;ma = 7.4 for 6 linear elements). In the computed range, the deviations are reduced for branch
4. Similar results are deduced by analyzing errors of asymmetric » = 1-modes in Fig. 6. Deviations are
deduced for the Bernoulli beam-type bending mode (B). As a general result, one finds that errors due to coarse
discretization follow the standard rule of thumb from finite element method. As a consequence, mesh
refinement improves the accuracy of the results and an A-adaptive strategy may serve as indicator to check
convergence of the approximate solution.
Formulating the rule of thumb with Eq. (15) results in the inequality

In(4)  |¢ + 2nm|
Al T AL '

Hence, the condition |¢ + 27m|<2n/n, is imposed. Recalling that only negative values are of relevance for ¢
in the complex plane (compare Fig. 2) and that m = 0 by considering the results in the dispersion diagram, one
obtains for n, = 6 the value —1.04<¢ <0. It should be mentioned that in general, right-propagating waves
may also have a negative group velocity [10], or in other words, left-propagating wave modes transfer energy
to the right. In this case, the possible segment for the phase angle ¢ for wave modes of interest in Eq. (17) has
to be extended to positive values. However, this case does not occur in any of the presented results.

(17)

27
—— >3 =
1o AL =13(x)|

3.2. Numerical treatment of the eigenvalue problem

The first remark addresses to the inversion of submatrix Hj.. Eigenanalysis of corresponding mass and
stiffness partitions My, and K;. show that eigenvalues occur in the frequency range of interest. This means that
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Fig. 6. Underestimation of wavenumbers due to finite element approximation for asymmetric # = 1-modes in a thin walled brass pipe

(h/a = 0.056): Analytical solution (x x), longitudinal mesh size A = 5mm (—), longitudinal mesh size A¢ = 10mm (- -).

at these eigenfrequencies, H; cannot be inverted. However, the methodology gives results for frequencies w
that are very close to these eigenfrequencies. From an engineering point of view, the method can be applied,
since the chance of hitting on the singularity of Hj, can be avoided.

The efficient solution of the eigenvalue problem according to Eq. (9) or (13) involves numerical difficulties.
Firstly, the system matrices are ill-conditioned and require preconditioning [15]. This problem refers to both
the generalized and the special eigenvalue problem. Secondly, wave modes occur twice for axis-symmetric
waveguides, such that multiple eigenvalues occur in the spectrum. A crude way to solve the eigenvalue
problem is therefore to use an eigensolver based on QR algorithm [16]. Only wave modes of interest, i.e.
propagating wave modes with an imaginary wave number are further considered. This method works very
accurately even for multiple eigenvalues and eigenvectors, but requires large computing times. It turns out that
solving the generalized eigenvalue problem increases computing times due to conditioning problems, even
though the submatrix Hj needs not to be inverted.

4. Computation of phase velocities and group velocities

From the dispersion curves, the phase velocities are deduced easily by the relation
Cp=—. (18)

On the other hand, one is particularly interested in group velocities describing the speed by which energy is
transmitted in wave packages. Group velocities are defined from the dispersion curves [17] as
ow
= 19
CJ oK ( )

This equation requires a numerical derivation of the wave modes from discrete pairs (w,x) resulting in
relatively large errors. For this reason, it is more convenient to express the group velocity as velocity at which
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energy propagates, i.e. the ratio of transmitted power P and energy density £ in the waveguide

_P_ Pr+ P
_E_T5+T/‘+Us+0f"

Cy (20)
Eq. (20) splits all terms according to their contribution to solid domain or fluid domain. For the
structural-acoustic problem, energy densities are computed by means of system matrices and wave modes, i.e.
the partitions of the eigenvectors in Eq. (12). The kinetic energy T and the potential energy Uy in a
linear—elastic solid segment are given as

1 1
T, =/ —p7dQ, U, =/ —R@E:Hda (21)
02" .2
in terms of particle velocities v, linear strain tensor ¢ and Cauchy stress tensor o respectively. Subscript (-)"
denotes complex conjugate transposed values. The tilde denotes root mean square values to take into account
the effective time-averaged energy density in the acoustic field for harmonic wave propagation as compared to
the amplitude values. In discrete FE-representation, energy densities in a pipe segment of length A¢ equate in
agreement with Eq. (3) as

- 1 - 1

T, =-—oi"Mya, U,=—ia"K,a. 22

STaA M T BTt Y 22)

Note that time-averaging leads to the four in the denominator, since @i = @/+/2. In the acoustic domain, kinetic
and potential energy are expressed as [18]

1 1
T-:/ —pi? dQ, U-:/ ——p*dQ. (23)
Y sz Y Q/ 2pC2

Carrying out these expressions rigorously by employing definitions for the acoustic mass and stiffness matrices
from Eq. (2) and by applying Euler’s equation in the frequency domain

iwpv = —Vp, (24)
energy densities in the acoustic fluid equate from discrete wave modes as

- 1 R

- 1
H A ~H ~
Ty = Wl’ Kp, Uy= mp Myp. (25)

It is worth mentioning that the stiffness matrix enters the kinetic energy density, while the mass matrix governs
the elastic energy density in the pipe segment. This is in agreement with the observation that the so-called mass
matrix My does not represent generalized mass in a physical sense [19].

Time-averaged power flows P over pipe cross sections I'y and I'y, see Fig. 7, are given as

P, = / &vdr, P;= / pvdr. (26)
r, r,
In terms of discrete results for wave modes, power flows become in the frequency domain
P, = Loz v) 7)
for the cross section of the solid domain and
1 AH A
Pr=—3 28
= 2w @'p) (28)

for the cross section of the fluid domain, respectively. Despite the use of some algebra in Egs. (20)—(28), the
group velocities are computed accurately by Eq. (20) without large numerical effort. Group velocities for all
propagating wave modes in the thick walled brass pipe are depicted in Fig. 8.
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Fig. 7. Geometric properties of the segment model.
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Fig. 8. Group velocities in the water-filled brass pipe. Fluid-type modes (- - -), extensional/torsional shell modes (—) and beam-type modes
(- - -) are distinguished.

5. Eigenpath analysis

In practical applications, one might be interested in tracking only single dispersion curves through the
dispersion diagram such as in the case of parameter variations. On the other hand, it is evident from Eqgs. (12)
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and (13) that eigenvalues / and eigenvectors € = [f(Tf'T]T are functions of frequency w. Therefore, wave modes
are computed by eigenvalue analysis for a given frequency w;. However, frequency can be understood as
varying parameter in the system of equations. Instead of solving the time-consuming full or partial eigenvalue
problem again for other frequencies of interest w;;; = w; + Aw, one is interested in the change of €;(w;) and
Aj(wj) to conclude on &, 1(w;y1) and A 1(wjy1) at this new frequency. This problem is referred to as an
eigenpath analysis [20], where branches mark frequency-dependent eigenpaths. It is therefore intended to
generate the dispersion curves in Fig. 3 by an eigenpath analysis. An initial solution for one w; is needed to
start the algorithm. In case of the fluid filled pipes, it is recommendable to start with the highest @ of interest,
and to choose the increments Aw <0, thus following dispersion curves from right to left. Hereby, the problem
of missing cut-on modes as seen in Fig. 3 is circumvented as compared to a left-right scheme. Two solution
steps, namely predictor and corrector step, are performed for this analysis.
A predictor step is applied first. For convenient notation, eigenvectors are written as € = [xT f 1t

Eigenvectors and eigenvalues are expanded as Taylor series

A

X Ao+ O(A0Y),
ow

W=w;

€1 =¢ +

N

ﬂ 0
Jier = g+ a—A Aw + O(A?). (29)

(U:(})/

By inserting the linear terms of this series in the eigenvalue problem (9) and by using the normalization
éHe. i+1 = 1, one obtains the system of equation
T'¢
= . (30)

J
—(T-4D &][¢
0

H )
€ 0y

The operator (-)' denotes partial derivative with respect to w. The partial derivative 0T /0w = T’ equates as
po | ZOIDH - HH, (H; 'Y (1)
_(H/;l)/ + HLFH[;IH” + HWA _H/rrHl;l - Hrr(Hl;l)/

with abbreviation A = [(H]’rl)/H” + Hfrl ). The partial derivatives of the inverses are computed by using the
relation

H,H;"Y =H,H,' + H,(H,") =0, (32)

thus rendering

p 0 . _
(Hljl) = %((Klr +iwCy — szlr) 1)
= (K +i0Cpy — ™M) (=iC + 20M)(K, + i0Cjr — 0’ M) !
= H, ! (—iC}, + 20M,)H;". (33)
Euler’s predictor step allows the first approximation of eigenpairs for the new frequency by Eq. (29).

In order to guarantee conversion, corrector steps following the predictor step need to be performed. Linear
increments for the i 4+ 1th corrector step of the solution in terms of € and 4, i.e. ¢l =& A8, A =1+ AL

are used to set up the static iteration scheme
Aé —(T = A1)é’
L= - (34)
Al 1—e ¢

The normalization condition € = 1 is applied. The correction according to Eq. (34) is repeated until the
residuum r = ||(T — A'T)é||, <e, where ¢ is a user-specified limit to quantify the accuracy of the numerical
solutions. The eigenpath analysis includes the capacity of automatically tracking crossings or repelling
branches in the dispersion diagram, since an evolution of the wave mode shapes is performed over frequency
rather than a pure tracking of the eigenvalues representing wavenumbers.

T -1
AfH
—2e 0

H—l AH—]
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The efficiency of the eigenpath analysis compared to computation of the full eigenvalue problem depends on
the number of tracked branches and the resolution of w;. If Aw is chosen very small in order to obtain a fine
resolution of the dispersion curves, the predictor step can be omitted, since the solution stays in the close
vicinity for the following w;,;. In addition, the number of static iterations in the corrector step decreases as a
result. In the dispersion diagram in Fig. 3 for 150 discrete frequencies, tracking of five curves approximately
needs as much computing time as the repeated use of a full eigensolver. Larger model sizes with more DOFs
may result in an even better performance of the eigenpath analysis. It is worth noticing that the eigenpath
analysis accelerates solutions, if one is only interested in particular branches, for example for parameter
variations.

6. Conclusion

The practical advantages of the proposed methodology based on solutions of eigenvalue problems are
manifold. First, any pipes with geometries being homogeneous in longitudinal direction can be considered, if
FE-models are available. This includes thick-wall cylinders, anisotropic materials, linear damping models,
multiple layers or non-annular cross sections. Considering the fact that modern commercial FE packages offer
a tremendous variety of element types, a large class of fluid filled pipe problems may be considered, which
cannot be solved easily by means of analytical approaches. It is also worth noticing that analytical models
require special numerical solvers to find roots of the corresponding transcendental eigenvalue problem [21,22].
Even though the dimension of dispersion equations for fluid filled pipes is of small size, they require large
computing times due to the choice of proper initial values and due to the iterative solution of strongly
nonlinear equations. Furthermore, analytical models are not available for a large class of problems. These
drawbacks are clearly circumvented by the presented WFE-method. Furthermore, the development of special
waveguide finite elements is not needed, such that engineers and scientists can employ standard tools for this
analysis. The most important advantage is the simple practical use of this postprocessing tool, which may be
applied as a black-box tool, transferring a standard linear FE model with arbitrary cross-sectional complexity
to a complete dispersion diagram.

Future applications may include the analysis of the harmonic wave motion in ripple pipes, which have non-
uniform but periodic properties. The presented method needs to be complemented by dynamic condensation
[11]. Furthermore, transfer matrices representing segment models might be continued periodically in order to
obtain dynamic models for larger piping segments, which could be combined with standard structural models
at interfaces [23] allowing structural analysis of complex pipe assemblies. This can be considered as model
reduction on a wave-mode basis, which might reduce memory needs and may extend harmonic analysis to
higher frequencies compared to standard FE analysis.
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