
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 296 (2006) 319–333

www.elsevier.com/locate/jsvi
Response of an impacting Hertzian contact to an order-2
subharmonic excitation : Theory and experiments

J. Perret-Liaudet�, E. Rigaud
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Abstract

In this paper, the response of a normally excited preloaded Hertzian contact is investigated in order to analyse the

subharmonic resonance of order 2. The nonlinearity associated with contact losses is included. The method of multiple

scales is used to obtain the non-trivial steady-state solutions, their stability, and the frequency–response curves. To this

end, a third-order Taylor series of the elastic Hertzian contact force is introduced over the displacement interval where the

system remains in contact. A classical time integration method is also used in conjunction with a shooting method to take

into account losses of contact. The theoretical results show that the subharmonic resonance constitutes a precursor of

dynamic responses characterised by loss of contact, and consequently, the resonance establishes over a wide frequency

range. Finally, experimental validations are also presented in this paper. To this end, a specific test rig is used. It

corresponds to a double sphere–plane contact preloaded by the weight of a moving mass. Experimental results show good

agreements with theoretical ones.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Hertzian contacts exist in many mechanical systems such as mechanisms and machines (gears, cam systems,
rolling element bearings, to name a few). Under operating conditions, these contacts are often excited by
dynamic normal forces superimposed on a mean static load. Under excessive excitation, contacts can exhibit
undesirable vibroimpact responses, as a result of clearances introduced through manufacturing tolerances.
The resulting dynamic behaviour is characterised by loss of contact and impacts, leading to excessive wear,
surface damage and noise.

In a previous paper [1], the dynamic behaviour of an idealized preloaded and non-sliding dry Hertzian
contact was studied under primary resonance conditions. To this end, an experimental test rig was built in
order to investigate the resonance in detail, including vibroimpact responses. Theoretical results were also
presented showing good agreement with the main characteristics of the primary resonance. In a companion
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Latin characters

A amplitude of the subharmonic compo-
nent of the response

B intermediate variable
c damping coefficient
Dp differentiation with respect to indepen-

dent time variables
Dpq differentiation of order two with respect

to independent time variables
E Young’s modulus
f0 linearized natural frequency
Fexp dimensionless experimental contact force
F(q) dimensionless restoring contact force
k Hertzian constant
m rigid moving mass
N static load
q(t) dimensionless displacement response
R ball radius
t time
Tn order n independent time variables
z(t) displacement response
zs static contact compression

Greek characters

b intermediate variable
g intermediate variable
e small parameter
z damping ratio
l detuning parameter
n Poisson ratio
s dimensionless level of the excitation force
s* first threshold of the dimensionless ex-

citation force level
s** second threshold of the dimensionless

excitation force level
t dimensionless time
f phase of the subharmonic component of

the response
o circular frequency of the excitation force
ō dimensionless excitation circular frequency
O linearized natural circular frequency

Accents

^ indicates O(1) variable
� differentiation with respect to time t or

dimensionless time t
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paper [2], analysis was extended to the case of vibroimpact responses under Gaussian white random normal
excitation.

The present work is concerned with the subharmonic response of the identical fundamental Hertzian
contact under harmonic excitation. Several earlier papers discuss the dynamic response of Hertzian contacts
[3–11], but to our knowledge, theoretical and experimental analyses of the 2-subharmonic resonance are rarely
presented [12]. In this paper, the dynamic model studied is described in Section 2. Theoretical results are
presented in Section 3, and finally experimental investigations and results are presented in Section 4.
2. The dynamic model

2.1. Equation of motion

The system under study corresponds to the single-degree-of-freedom impact oscillator shown in Fig. 1. A
moving rigid mass m is kept in contact with a flat surface and loaded by a static normal force N. Assuming a
Hertzian contact law, the nonlinear restoring contact force is derived from material properties and contact
geometry [13]. When the system is excited by a purely harmonic normal force superimposed on the static load,
the equation of motion may be written as follows:

m€zþ c_zþ kz3=2 ¼ Nð1þ s cos otÞ; for zX0;

m€zþ c_zþ ¼ Nð1þ s cos otÞ; for zo0;
(1)

where z is the normal displacement of the rigid mass m measured such that zo0 corresponds to loss of contact,
c the damping coefficient, and k the constant given by the Hertzian theory. Furthermore, s controls the level
of the excitation and o denotes the excitation angular frequency.
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Fig. 1. Dynamic model of the single-degree-of-freedom impact oscillator.

J. Perret-Liaudet, E. Rigaud / Journal of Sound and Vibration 296 (2006) 319–333 321
When the excitation force is zero, the static contact compression zs is given by

zs ¼
N

k

� �2=3

(2)

we introduce the linearized contact natural frequency O and the damping ratio z given by

O2 ¼
3k

2m

� �
z1=2s , (3)

z ¼
c

2mO
(4)

and rescale Eq. (1) by defining

q ¼
3ðz� zsÞ

2zs

, (5)

t ¼ Ot. (6)

The dimensionless equation of motion is obtained as follows [1]:

€qþ 2z _qþ 1þ 2
3

q
� �3=2

¼ 1þ s cos ōt for qX� 3
2
;

€qþ 2z _q ¼ 1þ s cos ōt for qo� 3
2
:

(7)

In this equation, overdot indicates differentiation with respect to the dimensionless time t, and ō the
dimensionless excitation circular frequency defined as follows:

ō ¼
o
O
. (8)

It should be noted that loss of contact now corresponds to the inequality

qp�
3

2
. (9)

2.2. Approximation of the elastic contact force

In order to use the analytical method of multiple scales, the restoring elastic contact force is approximated
by expanding the nonlinearity in a third-order Taylor series around the static load. In this way, both quadratic
and cubic nonlinearities appear naturally, and the approximate elastic restoring force is given as follows:

1þ
2

3
q

� �3=2
� 1þ qþ

1

6
q2 �

1

54
q3. (10)
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Fig. 2. The dimensionless restoring contact force model (thick line) and its approximate form defined by Eq. (10) (thin line).
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Then, the final dimensionless equation appropriate for the use of the method of multiple scales is:

€qþ 2z _qþ qþ
1

6
q2 �

1

54
q3 ¼ s cos ōt. (11)

This equation remains valid if the following inequality is satisfied:

qX� 1:348. (12)

This inequality guarantees positive values for the approximate restoring force. In other words, this inequality
corresponds to the loss of contact condition for the approximate system.

Furthermore, the absolute difference between the actual and the approximate elastic restoring force is less
than 0.01 in the range –1oqo1. Comparison is shown in Fig. 2.
3. The theoretical response to the order-2 subharmonic excitation

3.1. Multiple scales method

Initially, the method of multiple scales is used [14,15]. To this end, the ordering

q ¼ eq̂; z ¼ eẑ; s ¼ eŝ (13)

is assumed in Eq. (11) where circumflexes indicate O(1) variables. As a result, the excitation appears at the
same order as the free response (i.e. at the order e0), and the damping appears at the same time as the quadratic
nonlinearity (i.e. at the order e1). Then Eq. (11) becomes, omitting circumflexes in Eq. (13),

€qþ qþ eð2z _qþ
1

6
q2Þ �

e2

54
q3 ¼ s cos ōt. (14)

By introducing new independent time variables Tn ¼ ent (with n ¼ 0, 1, 2), expanding q in power series of e,

q ¼
Xn¼2
n¼0

enqnðT0;T1;T2Þ (15)

and equating coefficients of like powers of e, one obtains the following system of perturbation equations at the
first three e orders [15]:

D00q0 þ q0 ¼ s cos ōT0, (16a)
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D00q1 þ q1 ¼ �ð2D01 þ 2zD0Þq0 �
1

6
q2
0, (16b)

D00q2 þ q2 ¼ �ð2D01 þ 2zD0Þq1 � ð2D02 þD11 þ 2zD1Þq0 �
1

3
q0q1 þ

1

54
q3
0, (16c)

where

Dp ¼
q

qTp

; Dpq ¼
q2

qTpqTq

. (17)

To analyse the subharmonic resonance of order 2, one expresses the nearness of the external excitation
frequency to twice the linearized natural frequency by introducing the detuning parameter l defined according
to

ō ¼ 2þ el. (18)

Solving system (16), eliminating secular terms and retaining steady-state solutions leads to the non-trivial
steady-state response at the e order as follows:

qðtÞ ¼ �
1

3
B2 þ

A2

4

� �
þ A cos

ōt� f
2

� �

þ 2B cosðōtÞ þ
A2

36
cosðōt� fÞ þ

4zōB

1� ō2
sinðōtÞ

þ
AB

3ōðōþ 2Þ
cos

3ōt� f
2

� �
þ

B2

3ð4ō2 � 1Þ
cosð2ōtÞ, ð19Þ

where

B ¼
s

2ð1� ō2Þ
. (20)

In Eq. (19) the phase f is given by

tanf ¼
ðō2 � 1Þðl=2� 1Þ � ōðl� gþ A2=27Þ

½ð1� ō2Þðl=2� 1Þðl� gþ A2=27Þ=2z� � zō
, (21)

where

g ¼ ½�
7

36
þ

1

9
ðō2 þ 2ōÞ�B2 � z2. (22)

Also, the amplitude A of the component at one half the excitation frequency is determined by the following
frequency response equation:

A2

27
¼ ðg� lÞ � ðb2s2 � 4z2Þ1=2, (23)

where

b ¼
1

ō2 � 1

1

36
1�

l
2

� �2

þ
zō

3ō2 � 3

� �2
" #1=2

. (24)

Next, it is easy to precise the regions of existence of parameter space where subharmonic responses exist, by
determining the real roots of Eq. (23). The stability of the solutions can also be easily obtained [15].
Introducing the two critical values defined by

s1 ¼
2z
b
�� �� , (25a)

s2 ¼
½ðl� gÞ2 þ 4z2�1=2

b
�� �� , (25b)
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Fig. 3. Bifurcation set in the ō2s plane for z ¼ 0:5%.
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one can distinguish the three following regions, illustrated in Fig. 3 for the case z ¼ 0.005. In region I defined
by s4s2 , the trivial response (or 1T-periodic response) is unstable and subharmonic responses are always
excited. In region II defined by s1osos2 and ōo2, the trivial response is stable and it coexists with two
subharmonic responses, one of which stable, the other unstable. For this case, the stable subharmonic
response can be excited depending on the initial conditions. In region III, when sos1 and ōo2, or when
sos2 and ōo2, the trivial 1T-periodic response is always stable and subharmonic response can never be
excited. In other words, the curve s ¼ s2 corresponds to the subharmonic bifurcation which is subcritical
when ōo2 and critical when ōo2. Following these results, one obtains a critical excitation level s* which can
be viewed as a threshold beyond which the subharmonic resonance is always excited. This value is given
according to

sn ¼
36z

1þ 16z2=9
(26)

and if z51:

sn � 36z. (27)

Beyond this threshold, the subharmonic resonance exhibits a softening behaviour shown in Fig. 4. This figure
displays the frequency–response curve obtained for s ¼ 0:5 and z ¼ 0:01. This result is in agreement with the
behaviour of the system under primary resonance conditions in the sense that the frequency–response curve is
bent to low frequency (softening behaviour) [1].

Fig. 5 shows the minimum value of the displacement response when subharmonic resonance occurs. By
considering the approximate system, Eq. (11), one can see that the 2-subharmonic response leads to contact
loss. In fact, we have always observed this behaviour which constitutes a general trend of the system. The
question can now be stated as follows: does the 2-superharmonic response always lead to loss of contact for
the original dynamic model defined by Eq. (7)? This question requires a more detailed analysis of
superharmonic resonance condition. We therefore supplement this theoretical study by a numerical
investigation described as below.

3.2. Continuation method

In order to achieve dynamic responses including loss of contact, a classical numerical time integration
explicit scheme is used, i.e. the central difference method. The interest of using an explicit scheme is the
estimation of the nonlinear restoring force which is not required at each time step by a nonlinear solver, like
the Newton-Raphson method. The counterpart is to use a sufficiently small time step examining both the
period of the response and the linearized natural frequency of the system. In our simulations, we have imposed
a time step 10 000 times less than the period of the response. Further, a specific computing method devoted to
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Fig. 5. Frequency–response curve Min(q) exhibiting loss of contact under the expected value q ¼ �1.348, see Eq. (12), and for s ¼ 0:5
and z ¼ 1%.
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Fig. 4. Frequency–response curve AðōÞ exhibiting the subharmonic resonance (s ¼ 0:5, z ¼ 1%).
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nonlinear problems is used, namely the shooting method combined with a continuation technique. For details
of these known methods, see for example Refs. [16,17]. In our case, the shooting method is similar to tracking
fixed points on a Poincaré map. To this end, we have chosen a Poincaré section equivalent to a stroboscopic
section at a period 1 or 2 times the period of the external excitation. Finally, the required Jacobian matrices
attached to the fixed points are evaluated via a numerical rule. Actually, these cannot be analytically
determinate because of the non regular characteristic of the nonlinear restoring force. One can also notice that
the stability of the response and the kind of bifurcations can be deduced from the eigenvalues of the Jacobian
matrices.

Fig. 6 shows a typical frequency–response curve which is obtained for the same values as used in Figs. 4 and
5 (s ¼ 0:5 and z ¼ 1%). As we can see in the upper part (Fig. 6(a)), the subharmonic resonance is very strong
as it is established over a wide frequency range. Actually, the downward jump frequency appears to be very
low ($E0.475). As one observes in the lower part (Fig. 6(b)) which is the frequency–response curve detailed
around $E2, we confirm the multiple scales method result, i.e. the fact that the subharmonic resonance
initiates vibroimpact responses. This is of great importance in a practical point of view when vibroimpacts lead
to excessive wear, surface damage and excessive noise.
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In order to describe the bifurcation set obtained by the used numerical shooting method, we have tracked
the 1T-periodic response for different values of s and identified frequencies for which subharmonic
bifurcations occur. This can be done by computing the multipliers or eigenvalues of the Monodromy matrix
related to the associated fixed point. Remind that subharmonic bifurcation occurs when one of the multipliers
leaves the unit circle in the complex plane by the �1 value. Comparison of the results with those obtained by
the multiple scales method is given in Fig. 7. As we can see, very good agreement between the two approaches
occurs.

In our simulations, we have found that the loss of contact nonlinearity is also at the origin of subharmonic
responses which then exhibit impacts. To illustrate this result, Fig. 8 displays an example of
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frequency–response curve obtained with an excitation amplitude s quite lower than the threshold value s*
defined by Eq. (26). As we can see, these subharmonic responses take place on an isola, i.e. a loop in the
bifurcation set, delimited by a couple of saddle-node bifurcations. This isola establishes itself in the interval
1oōo2, which is coherent with the softening character of the loss of contact nonlinearity. Fig. 9 displays the
saddle-node bifurcation curve in the ō� s plane which circumscribes the region where isola takes place. In
this figure, the excitation amplitude threshold quoted s** (s**E0.165) corresponds to the isola formation at a
frequency close to 1.5. It is found quite lower than the preceding one s* defined by Eq. (26). Up to this
threshold, we observe that isola rapidly grows when the excitation amplitude increases until it meets the
preceding flip bifurcation close to ō ¼ 2 and s ¼ s�. For these conditions, one can assume the existence of an
unstable transcritical bifurcation. Actually, this last takes place very close to the conditions s ¼ 0:336 and
z ¼ 1%, as illustrated in Fig. 10.

The result is of great importance as it proves that the subharmonic resonance initiated by the Hertzian
nonlinearity almost always induces vibroimpact responses in a wide frequency range.
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4. Experimental validation

4.1. Test rig

The main goals of our experimental study are to confirm the excitation level threshold value defined by
Eq. (26) and to confirm the occurrence of vibroimpact responses initiated by subharmonic resonance
conditions. In order to perform these experimental validations, we have used a test rig similar to that described
in Refs. [1,2]. The used test rig is depicted in Fig. 11. It consists of a 25.4mm diameter SAE 52100 steel ball
preloaded between two horizontal SAE 52100 steel flat surfaces. The first one is fixed to a heavy rigid frame
and the second one is rigidly fixed to a vertically moving cylinder. Compliance of a rough and weakly loaded
contact obtained experimentally can be different from the theoretical compliance supplied by the Hertz
equation. So, to take into account this problem, planes were ground to obtain roughness Rao0.4 mm. Ball
roughness is also weak (Rao0.03 mm). Then, as we will see, asperities will be quite smaller than contact
deflection and contact area. The double sphere–plane dry contact is preloaded by a static normal load
N ¼ 69:7N, which corresponds to the weight of the moving cylinder (m ¼ 7:1 kg). By assuming identical
mechanical properties for the ball and the discs, the constant k of the restoring elastic force expression is
deduced from the double sphere–plane Hertzian contact as follows [13]:

k ¼
E

ffiffiffiffi
R
p

3
ffiffiffi
2
p
ð1� n2Þ

, (28)

where E is the Young’s modulus (210GPa), n the Poisson ratio (0.29) and R the ball radius (12.7mm). Then,
the main theoretical characteristics of the experimental system are:

k ¼ 6:1109 Nm�3=2, (29a)
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Fig. 12. Experimental H1 (a) and H2 (b) harmonic response curves versus the dimensionless excitation circular frequency ō (with ō41:9)
and obtained for a dimensionless excitation force s � 30%.
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zs ¼ 5:1mm; (29b)

f 0 ¼
O
2p
¼ 271Hz: (29c)

Contact is normally excited by a suspended vibration shaker. Harmonic normal force is applied to the moving
cylinder and superimposed on the static load. Excitation force and normal force transmitted to the frame
through the contact are measured by piezoelectric force transducers. Classical charge amplifiers are used for
all responses.

4.2. Measured natural frequency and damping ratio

Linearized contact frequency (f 0 ¼ 270:6Hz) and equivalent viscous damping ratio (0.5%) are measured
from the almost linear contact dynamic behaviour under very low external input amplitude [1,6]. The
experimental natural frequency is close to the theoretical one since the relative error is less than 0.15%, and the
damping ratio value is coherent with preceding studies [1,2,6].

4.3. Experimental subharmonic resonance

For this set of experimental results, it is important to say that good repeatability was always observed.
Experimental subharmonic resonance is exhibited for external input amplitude s up to 20%. This value can be
considered as the critical excitation level s* theoretically defined by Eq. (26) or Eq. (27). By considering the
measured viscous damping ratio (0.5%), the experimental ratio, that is ðsn/zÞexp � 40, appears to be in a good
agreement with the theoretical one, that is ðsn/zÞth ¼ 36. Fig. 12 displays a typical result obtained for an
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Fig. 13. Experimental H1 (a) and H2 (b) harmonic response curves versus the dimensionless excitation circular frequency ō (with ō40:9)
and obtained for a dimensionless excitation force s � 30%.
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external input amplitude sE30%. It consists of the frequency–response curves for the two first harmonics of
the transmitted force, quoted H1 and H2 and, respectively, associated to the external input frequency ō and to
its first harmonic 2ō. The jump discontinuities associated to the 2-subharmonic resonance are clearly
observed. In particular, tracking the H2 component allows to identify one of the two flip bifurcations. The
subharmonic resonance leads to intermittent loss of contact. This source of nonlinearity noticeably dominates
the dynamic behaviour of the system. Actually, Fig. 13 shows that it strongly bends the frequency–response
curve to low frequency with a downward jump frequency less than the linearized contact natural frequency.
So, for decreasing external input frequency, dynamic vibroimpact response is established over a wide
frequency range, at least from 2O to O. In fact, this result is obtained for all the experimental conditions, even
for an external input amplitude close to the amplitude threshold s*E20%.

Finally, time histories of the dimensionless normal force observed in subharmonic resonance conditions are
displayed in Figs. 14 and 15. Notice that the contact force Fexp is dimensionalized after centered it regards to
the static load as follows:

F exp ¼
F ðtÞ �N

N
. (30)

So, contact is lost when the dimensionless normal contact force is under the �1 value.
These are obtained in the same conditions that those imposed in Fig. 12, i.e. with an external input

amplitude sE30%. The flip bifurcation is clearly identified when the period of the normal force is twice of its
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(c) and obtained for a dimensionless excitation force s � 30%.
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of the external excitation. Time histories show also the hardening behaviour of the dynamic system in
compression and its softening behaviour in extension. Finally, plates shown in Fig. 15 correspond to the flight
duration when loss of contact occurs.

5. Conclusion

In this study, the dynamic response of an impacting Hertzian contact subjected to an order-2 subharmonic
excitation is analysed. The critical excitation level beyond which subharmonic resonance always occurs is
theoretically predicted and experimentally confirmed. Beyond this excitation level, response is quickly
characterized by vibroimpacts and the dynamic behaviour is mainly governed by loss of contact nonlinearity.
Although contact stiffness is modelled by a linear law in most o classical impact models, we showed that the
nonlinearity inherent in the Hertzian law or more general law, contact laws cannot be ignored if one wishes to
predict vibroimpact response, because it is this nonlinearity which initiates the subharmonic resonance.
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