
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 296 (2006) 383–400

www.elsevier.com/locate/jsvi
Vibration of an oscillator with random damping: Analytical
expression for the probability density function
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Abstract

This study deals with the impact of probabilistic viscous and hysteretic damping upon the dynamic response of a linear

single degree-of-freedom oscillator. Assuming that damping is governed by an unspecified probability density function

(PDF), an analytical expression of the output PDF of the oscillator’s transfer function is provided in terms of the input

damping PDF. The instance of a uniform PDF is thoroughly treated for both viscous and hysteretic damping cases. The

methodology also yields to analytical expressions of all moments of the output law of probability. A definition of a new

concept of envelopes is then introduced and their analytical expression is derived. Exact analytical results are compared

with Monte Carlo simulations for an academic case study. An identification procedure of a predefined input damping PDF

is proposed allowing one to obtain probabilistic parameters from experimental frequency response data.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A lot of work related to the treatment of parameters uncertainty within mechanical systems exists in the
literature. This field of research which is referring to uncertain parameters is from a general point of view
studying the influence of uncertainty brought by intrinsic parameters upon the system’s behavior, rather than
the uncertainty associated to external excitation.

In recent studies [1,2] which cover a broad range of engineering problems, numerous methods have been
investigated that treat parameters uncertainty: Monte Carlo approach [3], method of chaotic polynomials [2],
method of intervals [4], Taguchi method [5], perturbation method or still sensitivity method [6]. Most of these
approximate techniques apply to the investigation of the response of a linear problem with respect to a
random parameter and may be linked to finite element methods for predictions of complex systems.
Unfortunately, each previously mentioned method can only provide an approximate solution and inherits of
its own limitations. First drawback is bound to convergence problems. For example, the perturbation method
exhibits strong divergence problems around resonances frequencies. High-order chaotic polynomials may be
required for reducing oscillating behavior and accurately converging towards genuine solutions of the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

c viscous damping coefficient
Eð�Þ expected value of �
f � probability density function of �
H transfer function
k stiffness
m mass

Mk moment of order k

Pð�Þ probability of �
Z loss factor
s� standard deviation of �
o driving frequency
ð�̄Þ mean value of �
ð�̂Þ Fourier transform of �
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problem [2]. Inner limitations relate to polynomial or series truncations in the case of perturbation
method or chaotic polynomials. Limitations can also have a numerical origin as in Monte Carlo
simulations for which convergence requires a high number of computational drawings. Alternatively, Soize -
proposed a non-parametric model to treat uncertainty [7–9]. Although the construction of non--
parametric model is mathematically more complex, the main interest is that it only involves basic and direct
calculations.

Additionally, obtaining the system response law of probability is made difficult for all previous methods
which only provide the first moments of the law. A possibility is nevertheless offered in the case of the method
of intervals to build the transfer function envelope by using a modified Rump algorithm [4]. Again, analytical
definition of envelopes is out of reach for all aforementioned methods.

The present study aims at analytically solving the problem of an idealized spring mass damped oscillator,
whose damping is assumed to be probabilistic. Both viscous and hysteretic damping are considered here. To
the best of the authors’ knowledge, such a direct analytical resolution has seldom been tried. In Refs. [10–12],
authors propose an analytical method to only estimate mean value and standard deviation of the steady-state
displacement response of such system. Moreover, introducing an analytical treatment of damping’s
randomness quickly leads to the investigation of a class of problems in which the system response is
nonlinearly dependent on intrinsic parameters. Here though the simple spring–mass response is linear with
respect to driving displacement amplitude, its dependance is nonlinear according to driving frequency of
excitation and damping. Analytical developments described hereafter also emphasize some of the difficulties
inherent to probabilistic modeling.

The paper is organized as follows: basic definitions and probabilistic description of the problem are recalled
in Section 1. Random viscous damping is treated in Section 2 and random hysteretic damping in Section 3. A
new definition of the envelope is introduced in Section 4 and a comparison with numerical simulations
achieved by applying the sensitivity method is given in Section 5. An identification method is finally proposed
in Section 6.
2. Description of the problem

2.1. Description of the mechanical system

Consider a single degree-of-freedom system, consisting of a mass, a viscous damping and a spring. The
forced equation of motion of this system is

m €xðtÞ þ 2c _xðtÞ þ kxðtÞ ¼ f ðtÞ, (1)

where t is the time variable, x is the displacement, k is the spring stiffness, m is the mass, c is the viscous
damping coefficient and f the external forcing.

Eq. (1) may be written in the Fourier domain as

½�mo2 þ 2cioþ k�x̂ ¼ f̂ , (2)

where o stands for the driving frequency and X̂ denotes the Fourier transform of X .
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Alternatively to Eq. (2), a hysteretic damping Z—also called loss factor—may be introduced in the Fourier
domain. From a physical point of view, hysteretic damping may be defined as the ratio of energy dissipated to
energy stored per cycle. Then Eq. (2) becomes:

½�mo2 þ kð1þ iZÞ�x̂ ¼ f̂ . (3)

The transfer function of the simply damped oscillator defined as (Ĥ ¼ x̂/f̂ ) is classically given by

ĤðoÞ ¼
1

�mo2 þ 2icoþ k
(4)

for viscous damping and

ĤðoÞ ¼
1

�mo2 þ kð1þ iZÞ
(5)

for hysteretic damping.
In following sections, the probabilistic parameter is assumed to be either the viscous damping coefficient c

or the loss factor Z. It can be noted that the mass and stiffness are assumed to be deterministic. The transfer
function Ĥ is nonlinear with respect to the probabilistic parameters.

2.2. Probabilistic description

Let n denote a probabilistic parameter of the previous mechanical problem, whose density is governed by a
strictly positive measurable function f n belonging to Lebesgue space L2ðRÞ called density of n and such that:Z þ1

�1

f nðtÞdt ¼ 1, (6)

Z þ1
�1

QðtÞf nðtÞdtoþ1, (7)

where QðtÞ is a polynomial function in the variable t. If a density f n satisfies Eqs. (6) and (7), the parameter n is
referred to a random variable.

The probability that n lies in the interval ½n1; n2� is denoted Pðn1pnpn2Þ, and is given by

Pðn1pnpn2Þ ¼
Z n2

n1
f nðtÞdt. (8)

The mean value (written n̄) or expected value (written E) of a random variable n is defined by

n̄ ¼ EðnÞ ¼
Z þ1
�1

tf nðtÞdt. (9)

The standard deviation of the random variable n (written sn) is defined by the square root of Eððn� EðnÞÞ2Þ
namely:

s2n ¼ Eððn� EðnÞÞ2Þ ¼ Eðn2Þ � E2ðnÞ ¼
Z þ1
�1

t2f nðtÞdt� n̄2. (10)

If the first two moments exist, n can be re-normalized to the standardized random variable x with an average of
0 and a standard deviation of 1. Thus, the standardized random variable is defined by

x ¼
n� EðnÞ

sn
. (11)

Define f xðtÞ ¼ snf nðn̄þ sntÞ. This is an even function, with the following properties:Z þ1
�1

tf xðtÞdt ¼ 0 (12)
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and Z þ1
�1

t2f xðtÞdt ¼ 1. (13)

2.3. Choice of the density function

In the following, most derivatives will be carried out with an unspecified PDF for the random variable x.
The choice of the PDF must take into account the physical conditions of the problem.
It is important to note that in practice, the probability law of damping is usually believed to be log-normal.

This type of law allows physical conditions to be satisfied, because it prevents damping from becoming zero or
negative. Nevertheless, even if it is a ‘‘physical’’ law, it is not compactly supported.

For the present paper, the analytical derivation of the output PDF in problem (4) is reachable if a uniform
probability law for damping is assumed. This is one originality of the paper.

3. Random viscous damping

3.1. Introduction of randomness

The response density of interest is considered to be the modulus of the oscillator’s transfer function. The aim
is to give analytical expressions of output PDF in terms of the probability density of the standardized random
variable x. The case of viscous damping is first considered.

According to Section 2.3, Eq. (2) may be written as

½�o2mþ 2ðc̄þ scxÞioþ k�x̂ ¼ f̂ , (14)

where c̄ and sc, respectively, stand for the viscous damping coefficient mean value and the standard deviation.
Writing the left-hand side of Eq. (14) as LþP where:

L ¼ �o2mþ 2c̄ioþ k, (15)

P ¼ 2scc̄io (16)

gives:

ðLþ xPÞH ¼ 1. (17)

L is referred as the deterministic resolvent operator. It is the operator that solves the deterministic problem (if
x ¼ 0) and P stands for the stochastic resolvent operator.

To this point it is important to recall that jĤj depends both on the random parameter x and on the driving
frequency o. Hence jĤj2 may be written as

jĤðo; xÞj2 ¼
1

b0 þ b1ðxÞo2 þ b2o4
, (18)

where

b0 ¼ k2;

b1ðxÞ ¼ �2mk þ 4ðc̄þ scxÞ
2;

b2 ¼ m2:

8><
>:

Defining P1ðX Þ ¼ b0 þ b1ðxÞX þ b2X
2 where X ¼ o2, the discriminant D reads D ¼ 16ðc̄þ scxÞ

2

ððc̄þ scxÞ
2
�mkÞ. A condition is obtained by enforcing D to be always negative which is expressed by

xþ
c̄

sc

����
����o

ffiffiffiffiffiffiffi
mk
p

sc

. (19)

Condition (19) gives a bound on the choice of c̄ and sc.
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The resonance frequency oc of jHj2 is found by writing:

qjĤj2ðo; xÞ
qo

¼ 0, (20)

i.e.

oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk � 2ðc̄þ scxÞ

2
q

m
. (21)

It can be noted that the resonance frequency also depends on the random variable x.
Furthermore, if one considers jĤj2 as a function of x and o, a divergent point occurs for

ðx;oÞ ¼ �
c̄

sc

;

ffiffiffiffi
k

m

r !
, (22)

which is physically related to the cancellation of viscous damping c at resonance frequency oc. Hence,
divergence is only permitted when viscous damping c vanishes. Such random damping does not appear
judicious since it may become negative. In order to correct this drawback, oc is assumed to be real in Eq. (21)
thus extending the domain of definition of oc. This condition may be expressed by

xþ
c̄

sc

����
����o 1

sc

ffiffiffiffiffiffiffi
mk

2

r
. (23)

Condition (23) can always be satisfied for any general law of probability and replaces Eq. (19) in what follows.

3.2. Expression for the probability density function of jĤj

Consider a fixed value of o. The transfer function jĤj2 becomes a mapping of x and is renamed jĤj2 ¼
Y ¼ fðxÞ for notation purposes. f is strictly monotonically increasing over the interval � �1;�c̄=sc½ and
decreasing over the interval � � c̄=sc;1½.

On the other hand, fðt� ðc̄=scÞÞ appears to be even with respect to t. Then:

f �
c̄

sc

;1

� �� �
¼ f �1;�

c̄

sc

� �� �
¼ 0;

1

ðo2m� kÞ2

� �
¼ I . (24)

I is then the image of R by f. Hence, each real number y 2 I is the image under f of two real numbers xþ and
x� belonging, respectively, to intervals � �1;�c̄=sc½ and � � c̄=sc;1½ and defined by

xþ ¼ �
c̄

sc

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y2ðo2m� kÞ2

q
2ysco

(25)

and

x� ¼ �
c̄

sc

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y2ðo2m� kÞ2

q
2ysco

. (26)

Let f x be the PDF associated to x and f Y the PDF associated with Y ¼ fðxÞ ¼ jĤj2. f Y is given by

f Y ðyÞ ¼
f xðf

�1
ðyÞÞ

jf0ðf�1ðyÞÞj
, (27)

where 0 denotes the derivative with respect to x.
It is easy to derive the following property:

jf0ðf�1ðyÞÞj ¼ jf0ðxþÞj ¼ jf
0
ðx�Þj ¼ 4scyo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y2ðo2m� kÞ2

q
. (28)
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Then f Y vanishes over RnI and may be simplified as

8y 2 I ; f Y ðyÞ ¼
f xðxþÞ þ f xðx�Þ

4scyo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y2ðo2m� kÞ2

q . (29)

In order to derive the expression of PDF of the transfer function modulus jĤj noted f H , one proceeds in the
same way.

Considering a new random variable c such that jĤj ¼ cðY Þ, then:

cðyÞ ¼
ffiffiffi
y
p

. (30)

c is obviously injective over subset I since c�1ðhÞ ¼ h2. Letting J ¼�0; 1=jo2m� kj½ and applying Eq. (27) one
finally obtains that f H is zero on RnJ and that 8h 2 J:

f H ðhÞ ¼
gðc�1ðhÞÞ

jc0ðc�1ÞðhÞj
¼

f xðyþÞ þ f xðy�Þ

2sch2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q , (31)

with

yþ ¼ �
c̄

sc

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

2hsco
, (32)

y� ¼ �
c̄

sc

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

2hsco
. (33)

3.3. Application with the uniform law

Since resolving yþðhÞ ¼ �
ffiffiffi
3
p

or y�ðhÞ ¼ �
ffiffiffi
3
p

leads to essentially the same calculations, applying Eq. (27)
with the uniform law:

f xðyÞ ¼
1x

2
ffiffiffi
3
p with 1x ¼

1 if x 2 ½�
ffiffiffi
3
p

;
ffiffiffi
3
p
�;

0 otherwise:

(
(34)

This leads to two values h1 and h2 given by

h1 ¼ ððo2m� kÞ2 þ 4o2ðc̄þ
ffiffiffi
3
p

scÞ
2
Þ
�1=2 (35)

and

h2 ¼ ððo2m� kÞ2 þ 4o2ðc̄�
ffiffiffi
3
p

scÞ
2
Þ
�1=2. (36)

Here two cases shall be distinguished. If condition ðc̄=scÞ4
ffiffiffi
3
p

holds, then

f H ðhÞ ¼
1h

4
ffiffiffi
3
p

sch2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q with 1h ¼

1 if h 2 ½h1; h2�;

0 otherwise:

�
(37)

Moreover, if a lower bound provided by ðc̄=scÞp
ffiffiffi
3
p

prevails, then:

f H ðhÞ ¼
1h

4
ffiffiffi
3
p

sch
2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q þ

1hlim

2
ffiffiffi
3
p

sch2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

with 1hlim ¼
1 if h 2 h2;

1

jo2m� kj

� �
;

0 otherwise:

8<
: (38)

Previous conditions related to Eqs. (37) and (38) are essentially correlated to the choice of viscous damping
parameter c. Indeed, condition (38) means that damping can become zero or negative which results in the
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Fig. 1. PDF of frequency response function in the neighborhood of oc ’ 8:9443 for parameters: m ¼ 1, k ¼ 80�m, c̄ ¼ 0:1, sc ¼ 0:3� c̄.

The variable h is the variable of f H ðhÞ.

C. Heinkelé et al. / Journal of Sound and Vibration 296 (2006) 383–400 389
divergence of the PDF at point ðx;oÞ ¼ ð�c̄=sc;
ffiffiffiffiffiffiffiffiffi
k=m

p
Þ. Here it must be pointed out that it is hopeless to think

that moments will converge. On the contrary, if condition (37) is met, viscous damping realizations always
remain in the physically acceptable domain. As an example, density f H is plotted in Fig. 1 for o close to the
resonance frequency in the case of a uniform input probability law.
3.4. Calculation of the three first moments with the uniform law

The first three moments of the transfer function modulus are calculated in case (37), i.e. when c̄=sc4
ffiffiffi
3
p

.
The general moment of order k is given by

Mk ¼

Z
R

tkf H ðtÞdt ¼

Z h2

h1

tk

4
ffiffiffi
3
p

sct2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ðo2m� kÞ2

q dt, (39)

with M0 being equal to 1.
Analytical expression of moments for orders k ¼ 1; 2; 3 are developed in the following equations:

M1 ¼

ffiffiffi
3
p

12osc

Z h2jo2m�kj

h1jo2m�kj

du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

¼

ffiffiffi
3
p

12osc

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2m� kÞ2 þ 4o2ðc̄�

ffiffiffi
3
p

scÞ
2

q
� 2oðc̄�

ffiffiffi
3
p

scÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2m� kÞ2 þ 4o2ðc̄þ

ffiffiffi
3
p

scÞ
2

q
� 2oðc̄þ

ffiffiffi
3
p

scÞ

0
B@

1
CA, ð40Þ

M2 ¼

ffiffiffi
3
p

12oscjo2m� kj
arcsin

jo2m� kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2m� kÞ2 þ 4o2ðc̄�

ffiffiffi
3
p

scÞ
2

q
0
B@

1
CA

2
64

� arcsin
jo2m� kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2m� kÞ2 þ 4o2ðc̄þ
ffiffiffi
3
p

scÞ
2

q
0
B@

1
CA
3
75, ð41Þ
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C. Heinkelé et al. / Journal of Sound and Vibration 296 (2006) 383–400390
M3 ¼

ffiffiffi
3
p

6scðo2m� kÞ2
c̄þ

ffiffiffi
3
p

scffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2m� kÞ2 þ 4o2ðc̄þ

ffiffiffi
3
p

scÞ
2

q
0
B@

�
c̄�

ffiffiffi
3
p

scffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2m� kÞ2 þ 4o2ðc̄�

ffiffiffi
3
p

scÞ
2

q
1
CA. ð42Þ

3.5. Numerical validation

Results obtained by using formulas (40) and (41) are compared with numerical Monte Carlo simulations
involving 10 000 and 6 millions outcomes as depicted in Fig. 2. In addition to the fact that the analytical
expressions require less computational time compared to the Monte Carlo method, Fig. 2 shows that for a
high standard deviation level (50% of the selected average initial value), Monte Carlo simulations requires 6
millions outcomes to be in good agreement with the exact ones provided by analytical solutions. Moreover, a
statistical approach as Monte Carlo demonstrates that it is difficult to evaluate convergence speed with this
method. It converges with a speed of sH=

ffiffiffi
n
p

, where sH is the standard deviation of the response and n the
number of outcomes. The problem is that sH is not known a priori.

Analytical results constitute a reference solution. The present simulations, of course, illustrate an academic
problem in which calculations have been led up to an order 2 with a large initial standard deviation parameter.
Such analysis may however be justified in the case of small viscous damping, for which accurate experimental
values are difficult to measure.

4. Random hysteretic damping

4.1. Introduction of randomness

Proceeding in the same way as for the viscous damping, Eq. (5) becomes:

½�o2mþ kð1þ iðZ̄þ sZxÞÞ�x̂ ¼ f̂ . (43)

Using the same decomposition LþP as in Section 3:

L ¼ �o2mþ kð1þ iZ̄Þ, (44)

P ¼ kisZ, (45)

with

ðLþ xPÞĤ ¼ 1. (46)

Then

jĤðo; xÞj2 ¼
1

b0 þ b1o2 þ b2o4
, (47)

where

b0 ¼ k2
ð1þ ðZ̄þ sZxÞ

2
Þ;

b1 ¼ �2mk;

b2 ¼ m2:

8><
>:

Considering PðX Þ ¼ b0 þ b1X þ b2X 2, (with X ¼ o2), the discriminant D of P may be written as

D ¼ �4m2k2
ðZ̄þ sZxÞ

2. (48)
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Except for the critical value x ¼ �Z̄=sZ, which has no physical meaning, jĤj2 is not singular in o. A condition
identical to Eq. (23) holds for x.

4.2. Expression of the probability density function jĤj

As in Section 2, PDF f H is zero over subset RnJ and for all h 2 J:

f H ðhÞ ¼
f xðyþÞ þ f xðy�Þ

sZh2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q , (49)

with

yþ ¼ �
Z̄
sZ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

hsZk
, (50)

y� ¼ �
Z̄
sZ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

hsZk
. (51)
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4.3. Application with the uniform law

Similarly to Section 2, h1 and h2 are given by

h1 ¼ ððo2m� kÞ2 þ k2
ðZ̄þ

ffiffiffi
3
p

sZÞ
2
Þ
�1=2, (52)

h2 ¼ ððo2m� kÞ2 þ k2
ðZ̄�

ffiffiffi
3
p

sZÞ
2
Þ
�1=2. (53)

Two cases shall be distinguished: If Z̄=sZ4
ffiffiffi
3
p

, then:

f H ðhÞ ¼
1h

2
ffiffiffi
3
p

sZh2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q with 1h ¼

1 if h 2 ½h1; h2�;

0 otherwise:

�
(54)

If Z̄=sZp
ffiffiffi
3
p

, then:

f H ðhÞ ¼
1h

2
ffiffiffi
3
p

sZh
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q þ

1hlimffiffiffi
3
p

sZh2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ðo2m� kÞ2
q

with 1hlim ¼
1 if h 2 h2;

1

jo2m� kj

� �
;

0 otherwise:

8<
: (55)

Eqs. (54) and (55) are similar to criteria (37) and (38). As expected, they naturally depend on the choice of
hysteretic damping Z. Since Z must be positive, only Eq. (54) is considered.

4.4. Calculation of the three first moments with the uniform law

In the case where Z̄=sZ4
ffiffiffi
3
p

, the first moment M0 is equal to 1 and the first three moments of the output
transfer function modulus are given by

M1 ¼

ffiffiffi
3
p

6ksZ

Z h2jo2m�kj
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du
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4.5. Numerical validation

Same comments and conclusions as in Section 2 may be drawn for hysteretic damping. Results are
not shown, since they are very similar to Fig. 2. Practically speaking, estimating hysteric damping is not
easy to perform experimentally and predictions are highly variable. This acknowledges the relevance of
considering hysteretic damping as a random parameter that greatly influences the output transfer function
behavior. A new concept of envelope is therefore introduced hereafter to carefully take into account these
aspects.
5. Concept of envelope

From an engineering point of view, the ability to assess the probability of making errors due to intrinsic
parameters randomness, is of great interest. This leads to the definition of randomness factors which is closely
related to the concept of confidence interval.
5.1. Definition of confidence interval

Given the probability density function f X of a random variable X , the distribution function which
characterizes the law of probability may be written as

F ðbÞ ¼ PðXobÞ ¼
Z b

�1

f X ðtÞdt. (60)

The confidence interval ½b1;b2� may also be defined by

Pðb1oXob2Þ ¼ F ðb2Þ � F ðb1Þ ¼
Z b2

b1

f X ðtÞdt ¼ a, (61)

where a is a target probability satisfying 0oap1.
Confidence intervals are always subject to arbitrariness because it should merely surround the mean value of

X . It is also important to answer the following question: ‘‘How to choose interval bounds b1 and b2 such that
for a given probability a, random outcomes of X remain within interval ½X̄ � b1; X̄ þ b2�?’’

Such a probability may be depicted by

PðX̄ � b1oXoX̄ þ b2Þ ¼
Z X̄þb2

X̄�b1

f X ðtÞdt. (62)

Hence, the definition of confidence interval around X̄ is

fb1;b2g
Z X̄þb2

X̄�b1

f H ðtÞdt

,
¼ a. (63)

5.2. Definition of the envelope

5.2.1. A first definition

Sections 2 and 3 provide analytical expressions for the PDF of the transfer function modulus
f H which depends on o. From this point it is then possible to exactly compute the distribution
function for a given o using Eq. (63) with PDF given either by Eq. (27) or (49). For the problem of
interest, Eq. (63) rewrites:

fb1;b2g
Z H̄þb2

H̄�b1

f H ðtÞdt

,
¼ a. (64)
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From a practical point, it can be useful to predict possible outcomes of H around its average value for a given
probability a. The definition for an a-envelope may then be written as:

Pðbo1oH � H̄o0Þ ¼ a1 ¼
Z 0

bo1

f H ðt� H̄Þdt, ð65Þ

Pð0pH � H̄obo2 Þ ¼ a2 ¼
Z bo2

0

f H ðt� H̄Þdt, ð66Þ

a1 þ a2 ¼ a. ð67Þ

The a-envelope of H is written UaH where:

UaH ¼
[
o

½bo1 ;b
o
2 �. (68)

This is however incorrectly defined.
There is no reason indeed for the sum of probabilities Pðbo1oH � H̄o0Þ þ Pð0pH � H̄obo2 Þ to be equal

to the probability of the sum a1 þ a2. Both bo1 ða1Þ and bo2 ða2Þ quantities may exhibit singular points when a1
and/or a2 are lower than 1. This definition is ill-posed since it uses the complicated expression of mean value H̄

given by Eqs. (40) or (57) which makes the resolution of Eqs. (65) or (66) quite difficult. The output PDF f H is
not symmetric and as a consequence, the output mean value is not centered on interval ½t1; t2� which makes it
difficult to define symmetric envelopes with respect to the mean value. Considering the current definition, the
choice of a pair fa1; a2g appears to be arbitrary in the definition of a-envelopes. It is also virtually possible to
define the envelope position according to the probability below the mean value (a1) or above the mean value
(a2). This last point is not too restrictive since equiprobable envelopes are usually considered.
5.2.2. Envelope of H for compactly supported input PDF

Random parameters governed by non-compact densities lead to output transfer function outcomes that
may not always be physically admissible. Focusing on the case of random damping for instance, the forced
response of the oscillator with a vanishing or negative damping is simply diverging towards infinity. Thus,
considering a compactly supported input PDF enables one to derive the expression of PDF of H given
by Eqs. (27) or (49) which in turn also appears to be compactly supported. Another advantage is that
simple integrations can be carried out to calculate the output law of probability.

f H ðtÞ is defined on the compact set ½to1 ; t
o
2 �. Since f H is a density probability function:Z to

2

to
1

f H ðtÞdt ¼ 1 8o40. (69)

Moreover H necessarily belongs to ½to1 ; t
o
2 �. Thus an envelope containing all outcomes of H (i.e. with a

probability of 1) is given by [
o

½to1 ; t
o
2 �. (70)

An a-envelope UaH may be similarly defined as follows. a1 and a2 are two probabilities and one is interested in
finding the set fbo1 ; b

o
2 g such that: Z to

1
þbo1

to
1

f H ðtÞdt ¼ a1, ð71Þ

Z to
2

to
2
�bo2

f H ðtÞdt ¼ a2, ð72Þ

a1 þ a2 ¼ a, ð73Þ

involving positive values bo1 and bo2 .
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The a-envelope of H namely UaH may finally be defined as the complementary of the union of intervals:

UaH ¼
[
o

½ to1 þ bo1 ; t
o
2 � bo2 �. (74)

At first sight, this definition preserves an arbitrary choice for probability levels a1 and a2. The meaning of these
latter values is now directly connected to the probabilities that an outcome of H does not belong to the
envelope defined by the total probability a. Hence, an a-envelope can also be called ‘ð1� aÞ%-envelope’. For
instance, a 0:20-envelope may be understood as an 80%-envelope.

5.2.3. Equiprobable envelope

An a-envelope with a1 ¼ a2 ¼ a=2 is called an equiprobable a-envelope. It should be noticed that an
equiprobable envelope is not necessarily centered, i.e. that following property holds:

H̄ � bo1 ða=2ÞaH̄ þ bo2 ða=2Þ. (75)

Following applications concentrate on equiprobable envelopes and one will investigate outcomes of H around
its average within these envelopes.

5.3. Resolution and application

5.3.1. Expression of U a
H for a compactly supported PDF

The problem consists in solving: Z to
1
þbo1

to
1

f H ðtÞdt ¼ a1, ð76Þ

Z to
2

to
2
�bo2

f H ðtÞdt ¼ a2, ð77Þ

where bo1 and bo2 are unknown variables.
Only the case of viscous damping is developed here. Hysteretic damping can be treated in a similar way.

5.3.2. Application to viscous damping

The resolution of Eqs. (76) and (77) leads to

bo2 ða2Þ ¼

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48t22a

2
2o

2s2 þ 8t2
ffiffiffi
3
p

a2os
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t22ðo

2m� kÞ2
qr

� 1

 !
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1þ 48t22a
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ffiffiffi
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p

a2os
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t22ðo

2m� kÞ2
qr , (78)

bo1 ða1Þ ¼

t1 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffi
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qr !
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2s2 � 8t1
ffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t21ðo

2m� kÞ2
qr . (79)

Note that bo1 ð0Þ ¼ bo2 ð0Þ ¼ 0, which corresponds to an envelope with a maximum range, i.e. it contains all
outcomes of H. This shows that a 0-envelope brings us back to Eq. (70).

Moreover, it can be verified that to2 � bo2 ð1Þ ¼ to1 and to1 þ bo1 ð1Þ ¼ to2 which means that upper and
lower envelopes are reversed when a1 ¼ 1ða2 ¼ 0Þ or a2 ¼ 1ða1 ¼ 0Þ. Note to2 � bo2 ðaÞ ¼ to1 þ bo1 ð1� aÞ, i.e.
a 1-envelope (or 0%-envelope) has a null range.

Eqs. (78) and (79) display the 80%-envelope for the output transfer function modulus for the specific case of
random viscous damping. Fig. 3 displays the 80%-envelope together with the mean value curve and the 100%-
envelope. Generally speaking, numerical simulations are in reasonable agreement with expected results. The
80%-envelope is located within the maximum envelope and the mean value curve remains well inside the
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boundaries of these two envelopes. Simulations have been also carried out to check whether computed
envelopes correspond to probabilities that can be numerically obtained with a significant number of drawings.
The 80%-envelope is superposed to 100 outcomes of H related to random drawings of the input standardized
random variable x. All numerical simulations are in reasonable agreement with exact ones, the outcomes of H

remaining within the 100%-envelope. From a statistical point of view, outcomes of H that are not within the
80%-envelope have been counted and thus the percentage of missed drawings has been estimated. For
example, for 50 000 drawings a figure of 20:03% of missed outcomes is obtained.
6. A sensitivity study

6.1. The case of viscous damping

The modulus of frequency response function is a mapping involving variables x and o:

jĤjðo; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2m� kÞ2 þ 4o2 c̄þ scxð Þ
2

q . (80)

Normalized variable x belongs to an interval ½a; b�, and jĤj 2 C1ðRÞ. The result that follows may
straightforwardly be written by applying the mean-value theorem

qjĤjðo; xÞ
qx

¼
�4o2scðc̄þ scxÞ

ððo2m� kÞ2 þ 4o2 c̄þ scxð Þ
2
Þ
3=2

. (81)

The bound value Kv is given by

Kv ¼
4o2scðc̄þ scbÞ

ððo2m� kÞ2 þ 4o2 c̄þ scað Þ
2
Þ
3=2

, (82)
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Fig. 3. Mean value (–), 80%-envelopes (�), 100%-envelopes (+) for H and 100 outcomes of H: c̄ ¼ 0:1, m ¼ 1, k ¼ 80�m, sc ¼ 0:3� c̄.
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which gives

jĤjðo; 0Þ � jĤjðo; xÞ
�� ��pMvjb� aj. (83)

Assuming that the random parameter is governed by a uniform law (a ¼ �
ffiffiffi
3
p

and b ¼
ffiffiffi
3
p

), an inequality
holds for jĤj:

jĤjðo; 0Þ � jĤjðo; xÞ
�� ��p 8

ffiffiffi
3
p

o2scðc̄þ sc

ffiffiffi
3
p
Þ

ððo2m� kÞ2 þ 4o2ðc̄� sc

ffiffiffi
3
p
Þ
2
Þ
3=2

. (84)

6.2. The case of hysteretic damping

The transfer function modulus is related to x and o,

jĤjðo; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2m� kÞ2 þ k2
ðZ̄þ sZxÞ

2
q (85)

and similarly:

qjĤjðo; xÞ
qx

¼
�k2sZðZ̄þ sZxÞ

ððo2m� kÞ2 þ k2
ðZ̄þ sZxÞ

2
Þ
3=2

. (86)

The bound Kh is given by

Kh ¼
k2sZðZ̄þ sZbÞ

ððo2m� kÞ2 þ k2
ðZ̄þ sZaÞ2Þ3=2

. (87)

For the uniform law (a ¼ �
ffiffiffi
3
p

and b ¼
ffiffiffi
3
p

), one finally obtains:

jĤjðo; 0Þ � jĤjðo; xÞ
�� ��p 2

ffiffiffi
3
p

k2sZðZ̄þ sZ
ffiffiffi
3
p
Þ

ððo2m� kÞ2 þ k2
ðZ̄� sZ

ffiffiffi
3
p
Þ
2
Þ
3=2

. (88)

6.3. Comparison between envelope and sensitivity methods

The main differences between these two approaches are exhibited in Fig. 4 in the case of viscous damping.
In the neighborhood of resonances, the sensitivity method largely over-estimates possible variations of
transfer function. Although the selected example only presents results associated with an initial standard
deviation value of 20%, variability is even more important for higher values. Similar remarks can be pointed
out for hysteretic damping. Generally speaking, envelope curves displayed in Fig. 4 highlight potential benefits
offered by the envelope method versus sensitivity method to reduce the randomness margins of studied
parameter.
7. Identification of the uniform law

The theoretical construction of 100%-envelopes ensure that all random outcomes of transfer function H

remain contained within the envelope. Extremal values obtained by following envelope curves also exhibit
mean value and standard deviation of the initial random parameter. Assuming that the parameter of interest is
a viscous damping governed by a uniform law, the issue is here to identify sc and c̄ from ‘experimental’ data.

Expressions of to1 and to2 in Eq. (70) are given by condition (37) as follows:

to1 ¼ ððo
2m� kÞ2 þ 4o2ðc̄þ

ffiffiffi
3
p

scÞ
2
Þ
�1=2, ð89Þ

to2 ¼ ððo
2m� kÞ2 þ 4o2ðc̄�

ffiffiffi
3
p

scÞ
2
Þ
�1=2. ð90Þ
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sensitivity study (�) : m ¼ 1, k ¼ 80�m, c̄ ¼ 0:1m, sc ¼ 0:2� c̄.
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When resonance is encountered
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Hence, reading values of toc

1 and toc

2 on the envelope curve and solving previous system of equations finally
yields:

c̄ ¼
1

4

ffiffiffiffi
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. ð94Þ

Verification of analytical expressions is made with numerical simulations computed for c̄ ¼ 0:1 and sc ¼ 0:03
as displayed in Fig. 3. After plotting 10 000 outcomes of the transfer function, toc

1 and toc

2 are estimated
numerically and correspond to the experimental 100%-envelope. Applying the proposed identification
technique on 100%-envelope numerical data, one finds expected c̄ ¼ 0:999992 instead of 0:1 and sc ¼

0:0299997 instead of 0:03 with a precision of order 10�6. This means that the theoretical and experimental
100%-envelope match.

Considering a ‘thinner’ envelope increases prediction error committed on standard deviation estimate. For
instance, if a 50%-envelope is constructed in the following: among the 10 000 outcomes of the transfer
function, 25% are discarded starting from each curve delimiting the experimental 100%-envelope. This 50%-
envelope gives relatively wide spread estimates c̄ ¼ 0:1052 and sc ¼ 0:0149999: standard deviation is only
evaluated to half of its expected value (the envelope probability is 50%) whereas mean value error is only
about 5%. For this particular case, the envelope method may be understood as an identification method for
mean and standard deviation values of random parameter c that holds for an input uniform law.
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8. Conclusion

The purpose of the present work has been to derive the analytical expression of the output transfer function
norm PDF of a simple linear dynamic oscillator featuring a single random parameter. The PDF analytical
expression obviously depends on the input density function of the random damping parameter. Regarding
numerical applications, only PDFs with compact support for the random parameters have been considered to
prevent the occurrence of physical aberrations. Straightforward calculation also provide analytical expressions
of the first three moments of the output transfer function probability law in the case of a uniform probability
law characterizing damping randomness. Comparison with numerical Monte Carlo drawings shows that
analytical results indeed provide exact solution of the investigated problem.

The present analytical methodology brings a better understanding of the influence of input parameter
randomness upon the output variability since the output probability density function dispersion is known
exactly.

Analyzing analytical formulas (31) or (49) in the particular case of a uniform input probability law shows
two important results. Firstly, an initially centered input probability law does not necessarily remain centered
for the PDF of the transfer function. Secondly, the property of support compactness is preserved by the
oscillator’s transfer function. This compactness property of PDF support was originally used to introduce the
notion of envelope and to give their analytical expression although no property of symmetry is available for
probability density functions. Given the choice of mean and standard deviation values of initial random
parameter, the problem of defining both an envelope and a probability that outcomes of H remain within
envelope is well posed. The envelope method may be useful to find out parameters of an input law from
experimental data.

In the present paper, envelopes were used to identify statistical values such as mean or standard deviation
when a random parameter is governed by a uniform law. This technique was numerically tested and identified
data proved to be in good agreement with the expected ones. The main disadvantage of the envelope method is
in practice related to the experimental construction of the 100% confidence envelope. Important errors may
occur in estimating standard deviation as demonstrated in Section 6, which highlights the difficulty in finding
available statistical information.

Future prospects deal with the validation of the proposed identification technique using experimental data
(for instance, does the identification method work in presence of noise) and the feasibility to draw an envelope
sketch from a relatively reasonable number of experimental outcomes. Applying analytical formulas after a
calibration process would allow one to characterize the dispersion of viscous or hysteretic damping for the
specific case of uniform law. The general envelope procedure also needs further investigation to incorporate
other classical laws of probability. Other research topics under study are related to the generalization of
present works to treat multiple degree-of-freedom systems or multiple random parameters in relationship with
modal synthesis.
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